WSL2-Linux-Kernel/drivers/media/pci/pt1/pt1.c

1224 строки
25 KiB
C

/*
* driver for Earthsoft PT1/PT2
*
* Copyright (C) 2009 HIRANO Takahito <hiranotaka@zng.info>
*
* based on pt1dvr - http://pt1dvr.sourceforge.jp/
* by Tomoaki Ishikawa <tomy@users.sourceforge.jp>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/ratelimit.h>
#include "dvbdev.h"
#include "dvb_demux.h"
#include "dmxdev.h"
#include "dvb_net.h"
#include "dvb_frontend.h"
#include "va1j5jf8007t.h"
#include "va1j5jf8007s.h"
#define DRIVER_NAME "earth-pt1"
#define PT1_PAGE_SHIFT 12
#define PT1_PAGE_SIZE (1 << PT1_PAGE_SHIFT)
#define PT1_NR_UPACKETS 1024
#define PT1_NR_BUFS 511
struct pt1_buffer_page {
__le32 upackets[PT1_NR_UPACKETS];
};
struct pt1_table_page {
__le32 next_pfn;
__le32 buf_pfns[PT1_NR_BUFS];
};
struct pt1_buffer {
struct pt1_buffer_page *page;
dma_addr_t addr;
};
struct pt1_table {
struct pt1_table_page *page;
dma_addr_t addr;
struct pt1_buffer bufs[PT1_NR_BUFS];
};
#define PT1_NR_ADAPS 4
struct pt1_adapter;
struct pt1 {
struct pci_dev *pdev;
void __iomem *regs;
struct i2c_adapter i2c_adap;
int i2c_running;
struct pt1_adapter *adaps[PT1_NR_ADAPS];
struct pt1_table *tables;
struct task_struct *kthread;
int table_index;
int buf_index;
struct mutex lock;
int power;
int reset;
};
struct pt1_adapter {
struct pt1 *pt1;
int index;
u8 *buf;
int upacket_count;
int packet_count;
int st_count;
struct dvb_adapter adap;
struct dvb_demux demux;
int users;
struct dmxdev dmxdev;
struct dvb_frontend *fe;
int (*orig_set_voltage)(struct dvb_frontend *fe,
enum fe_sec_voltage voltage);
int (*orig_sleep)(struct dvb_frontend *fe);
int (*orig_init)(struct dvb_frontend *fe);
enum fe_sec_voltage voltage;
int sleep;
};
static void pt1_write_reg(struct pt1 *pt1, int reg, u32 data)
{
writel(data, pt1->regs + reg * 4);
}
static u32 pt1_read_reg(struct pt1 *pt1, int reg)
{
return readl(pt1->regs + reg * 4);
}
static int pt1_nr_tables = 8;
module_param_named(nr_tables, pt1_nr_tables, int, 0);
static void pt1_increment_table_count(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x00000020);
}
static void pt1_init_table_count(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x00000010);
}
static void pt1_register_tables(struct pt1 *pt1, u32 first_pfn)
{
pt1_write_reg(pt1, 5, first_pfn);
pt1_write_reg(pt1, 0, 0x0c000040);
}
static void pt1_unregister_tables(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x08080000);
}
static int pt1_sync(struct pt1 *pt1)
{
int i;
for (i = 0; i < 57; i++) {
if (pt1_read_reg(pt1, 0) & 0x20000000)
return 0;
pt1_write_reg(pt1, 0, 0x00000008);
}
dev_err(&pt1->pdev->dev, "could not sync\n");
return -EIO;
}
static u64 pt1_identify(struct pt1 *pt1)
{
int i;
u64 id;
id = 0;
for (i = 0; i < 57; i++) {
id |= (u64)(pt1_read_reg(pt1, 0) >> 30 & 1) << i;
pt1_write_reg(pt1, 0, 0x00000008);
}
return id;
}
static int pt1_unlock(struct pt1 *pt1)
{
int i;
pt1_write_reg(pt1, 0, 0x00000008);
for (i = 0; i < 3; i++) {
if (pt1_read_reg(pt1, 0) & 0x80000000)
return 0;
schedule_timeout_uninterruptible((HZ + 999) / 1000);
}
dev_err(&pt1->pdev->dev, "could not unlock\n");
return -EIO;
}
static int pt1_reset_pci(struct pt1 *pt1)
{
int i;
pt1_write_reg(pt1, 0, 0x01010000);
pt1_write_reg(pt1, 0, 0x01000000);
for (i = 0; i < 10; i++) {
if (pt1_read_reg(pt1, 0) & 0x00000001)
return 0;
schedule_timeout_uninterruptible((HZ + 999) / 1000);
}
dev_err(&pt1->pdev->dev, "could not reset PCI\n");
return -EIO;
}
static int pt1_reset_ram(struct pt1 *pt1)
{
int i;
pt1_write_reg(pt1, 0, 0x02020000);
pt1_write_reg(pt1, 0, 0x02000000);
for (i = 0; i < 10; i++) {
if (pt1_read_reg(pt1, 0) & 0x00000002)
return 0;
schedule_timeout_uninterruptible((HZ + 999) / 1000);
}
dev_err(&pt1->pdev->dev, "could not reset RAM\n");
return -EIO;
}
static int pt1_do_enable_ram(struct pt1 *pt1)
{
int i, j;
u32 status;
status = pt1_read_reg(pt1, 0) & 0x00000004;
pt1_write_reg(pt1, 0, 0x00000002);
for (i = 0; i < 10; i++) {
for (j = 0; j < 1024; j++) {
if ((pt1_read_reg(pt1, 0) & 0x00000004) != status)
return 0;
}
schedule_timeout_uninterruptible((HZ + 999) / 1000);
}
dev_err(&pt1->pdev->dev, "could not enable RAM\n");
return -EIO;
}
static int pt1_enable_ram(struct pt1 *pt1)
{
int i, ret;
int phase;
schedule_timeout_uninterruptible((HZ + 999) / 1000);
phase = pt1->pdev->device == 0x211a ? 128 : 166;
for (i = 0; i < phase; i++) {
ret = pt1_do_enable_ram(pt1);
if (ret < 0)
return ret;
}
return 0;
}
static void pt1_disable_ram(struct pt1 *pt1)
{
pt1_write_reg(pt1, 0, 0x0b0b0000);
}
static void pt1_set_stream(struct pt1 *pt1, int index, int enabled)
{
pt1_write_reg(pt1, 2, 1 << (index + 8) | enabled << index);
}
static void pt1_init_streams(struct pt1 *pt1)
{
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_set_stream(pt1, i, 0);
}
static int pt1_filter(struct pt1 *pt1, struct pt1_buffer_page *page)
{
u32 upacket;
int i;
int index;
struct pt1_adapter *adap;
int offset;
u8 *buf;
int sc;
if (!page->upackets[PT1_NR_UPACKETS - 1])
return 0;
for (i = 0; i < PT1_NR_UPACKETS; i++) {
upacket = le32_to_cpu(page->upackets[i]);
index = (upacket >> 29) - 1;
if (index < 0 || index >= PT1_NR_ADAPS)
continue;
adap = pt1->adaps[index];
if (upacket >> 25 & 1)
adap->upacket_count = 0;
else if (!adap->upacket_count)
continue;
if (upacket >> 24 & 1)
printk_ratelimited(KERN_INFO "earth-pt1: device buffer overflowing. table[%d] buf[%d]\n",
pt1->table_index, pt1->buf_index);
sc = upacket >> 26 & 0x7;
if (adap->st_count != -1 && sc != ((adap->st_count + 1) & 0x7))
printk_ratelimited(KERN_INFO "earth-pt1: data loss in streamID(adapter)[%d]\n",
index);
adap->st_count = sc;
buf = adap->buf;
offset = adap->packet_count * 188 + adap->upacket_count * 3;
buf[offset] = upacket >> 16;
buf[offset + 1] = upacket >> 8;
if (adap->upacket_count != 62)
buf[offset + 2] = upacket;
if (++adap->upacket_count >= 63) {
adap->upacket_count = 0;
if (++adap->packet_count >= 21) {
dvb_dmx_swfilter_packets(&adap->demux, buf, 21);
adap->packet_count = 0;
}
}
}
page->upackets[PT1_NR_UPACKETS - 1] = 0;
return 1;
}
static int pt1_thread(void *data)
{
struct pt1 *pt1;
struct pt1_buffer_page *page;
pt1 = data;
set_freezable();
while (!kthread_should_stop()) {
try_to_freeze();
page = pt1->tables[pt1->table_index].bufs[pt1->buf_index].page;
if (!pt1_filter(pt1, page)) {
schedule_timeout_interruptible((HZ + 999) / 1000);
continue;
}
if (++pt1->buf_index >= PT1_NR_BUFS) {
pt1_increment_table_count(pt1);
pt1->buf_index = 0;
if (++pt1->table_index >= pt1_nr_tables)
pt1->table_index = 0;
}
}
return 0;
}
static void pt1_free_page(struct pt1 *pt1, void *page, dma_addr_t addr)
{
dma_free_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, page, addr);
}
static void *pt1_alloc_page(struct pt1 *pt1, dma_addr_t *addrp, u32 *pfnp)
{
void *page;
dma_addr_t addr;
page = dma_alloc_coherent(&pt1->pdev->dev, PT1_PAGE_SIZE, &addr,
GFP_KERNEL);
if (page == NULL)
return NULL;
BUG_ON(addr & (PT1_PAGE_SIZE - 1));
BUG_ON(addr >> PT1_PAGE_SHIFT >> 31 >> 1);
*addrp = addr;
*pfnp = addr >> PT1_PAGE_SHIFT;
return page;
}
static void pt1_cleanup_buffer(struct pt1 *pt1, struct pt1_buffer *buf)
{
pt1_free_page(pt1, buf->page, buf->addr);
}
static int
pt1_init_buffer(struct pt1 *pt1, struct pt1_buffer *buf, u32 *pfnp)
{
struct pt1_buffer_page *page;
dma_addr_t addr;
page = pt1_alloc_page(pt1, &addr, pfnp);
if (page == NULL)
return -ENOMEM;
page->upackets[PT1_NR_UPACKETS - 1] = 0;
buf->page = page;
buf->addr = addr;
return 0;
}
static void pt1_cleanup_table(struct pt1 *pt1, struct pt1_table *table)
{
int i;
for (i = 0; i < PT1_NR_BUFS; i++)
pt1_cleanup_buffer(pt1, &table->bufs[i]);
pt1_free_page(pt1, table->page, table->addr);
}
static int
pt1_init_table(struct pt1 *pt1, struct pt1_table *table, u32 *pfnp)
{
struct pt1_table_page *page;
dma_addr_t addr;
int i, ret;
u32 buf_pfn;
page = pt1_alloc_page(pt1, &addr, pfnp);
if (page == NULL)
return -ENOMEM;
for (i = 0; i < PT1_NR_BUFS; i++) {
ret = pt1_init_buffer(pt1, &table->bufs[i], &buf_pfn);
if (ret < 0)
goto err;
page->buf_pfns[i] = cpu_to_le32(buf_pfn);
}
pt1_increment_table_count(pt1);
table->page = page;
table->addr = addr;
return 0;
err:
while (i--)
pt1_cleanup_buffer(pt1, &table->bufs[i]);
pt1_free_page(pt1, page, addr);
return ret;
}
static void pt1_cleanup_tables(struct pt1 *pt1)
{
struct pt1_table *tables;
int i;
tables = pt1->tables;
pt1_unregister_tables(pt1);
for (i = 0; i < pt1_nr_tables; i++)
pt1_cleanup_table(pt1, &tables[i]);
vfree(tables);
}
static int pt1_init_tables(struct pt1 *pt1)
{
struct pt1_table *tables;
int i, ret;
u32 first_pfn, pfn;
tables = vmalloc(sizeof(struct pt1_table) * pt1_nr_tables);
if (tables == NULL)
return -ENOMEM;
pt1_init_table_count(pt1);
i = 0;
if (pt1_nr_tables) {
ret = pt1_init_table(pt1, &tables[0], &first_pfn);
if (ret)
goto err;
i++;
}
while (i < pt1_nr_tables) {
ret = pt1_init_table(pt1, &tables[i], &pfn);
if (ret)
goto err;
tables[i - 1].page->next_pfn = cpu_to_le32(pfn);
i++;
}
tables[pt1_nr_tables - 1].page->next_pfn = cpu_to_le32(first_pfn);
pt1_register_tables(pt1, first_pfn);
pt1->tables = tables;
return 0;
err:
while (i--)
pt1_cleanup_table(pt1, &tables[i]);
vfree(tables);
return ret;
}
static int pt1_start_polling(struct pt1 *pt1)
{
int ret = 0;
mutex_lock(&pt1->lock);
if (!pt1->kthread) {
pt1->kthread = kthread_run(pt1_thread, pt1, "earth-pt1");
if (IS_ERR(pt1->kthread)) {
ret = PTR_ERR(pt1->kthread);
pt1->kthread = NULL;
}
}
mutex_unlock(&pt1->lock);
return ret;
}
static int pt1_start_feed(struct dvb_demux_feed *feed)
{
struct pt1_adapter *adap;
adap = container_of(feed->demux, struct pt1_adapter, demux);
if (!adap->users++) {
int ret;
ret = pt1_start_polling(adap->pt1);
if (ret)
return ret;
pt1_set_stream(adap->pt1, adap->index, 1);
}
return 0;
}
static void pt1_stop_polling(struct pt1 *pt1)
{
int i, count;
mutex_lock(&pt1->lock);
for (i = 0, count = 0; i < PT1_NR_ADAPS; i++)
count += pt1->adaps[i]->users;
if (count == 0 && pt1->kthread) {
kthread_stop(pt1->kthread);
pt1->kthread = NULL;
}
mutex_unlock(&pt1->lock);
}
static int pt1_stop_feed(struct dvb_demux_feed *feed)
{
struct pt1_adapter *adap;
adap = container_of(feed->demux, struct pt1_adapter, demux);
if (!--adap->users) {
pt1_set_stream(adap->pt1, adap->index, 0);
pt1_stop_polling(adap->pt1);
}
return 0;
}
static void
pt1_update_power(struct pt1 *pt1)
{
int bits;
int i;
struct pt1_adapter *adap;
static const int sleep_bits[] = {
1 << 4,
1 << 6 | 1 << 7,
1 << 5,
1 << 6 | 1 << 8,
};
bits = pt1->power | !pt1->reset << 3;
mutex_lock(&pt1->lock);
for (i = 0; i < PT1_NR_ADAPS; i++) {
adap = pt1->adaps[i];
switch (adap->voltage) {
case SEC_VOLTAGE_13: /* actually 11V */
bits |= 1 << 1;
break;
case SEC_VOLTAGE_18: /* actually 15V */
bits |= 1 << 1 | 1 << 2;
break;
default:
break;
}
/* XXX: The bits should be changed depending on adap->sleep. */
bits |= sleep_bits[i];
}
pt1_write_reg(pt1, 1, bits);
mutex_unlock(&pt1->lock);
}
static int pt1_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage)
{
struct pt1_adapter *adap;
adap = container_of(fe->dvb, struct pt1_adapter, adap);
adap->voltage = voltage;
pt1_update_power(adap->pt1);
if (adap->orig_set_voltage)
return adap->orig_set_voltage(fe, voltage);
else
return 0;
}
static int pt1_sleep(struct dvb_frontend *fe)
{
struct pt1_adapter *adap;
adap = container_of(fe->dvb, struct pt1_adapter, adap);
adap->sleep = 1;
pt1_update_power(adap->pt1);
if (adap->orig_sleep)
return adap->orig_sleep(fe);
else
return 0;
}
static int pt1_wakeup(struct dvb_frontend *fe)
{
struct pt1_adapter *adap;
adap = container_of(fe->dvb, struct pt1_adapter, adap);
adap->sleep = 0;
pt1_update_power(adap->pt1);
schedule_timeout_uninterruptible((HZ + 999) / 1000);
if (adap->orig_init)
return adap->orig_init(fe);
else
return 0;
}
static void pt1_free_adapter(struct pt1_adapter *adap)
{
adap->demux.dmx.close(&adap->demux.dmx);
dvb_dmxdev_release(&adap->dmxdev);
dvb_dmx_release(&adap->demux);
dvb_unregister_adapter(&adap->adap);
free_page((unsigned long)adap->buf);
kfree(adap);
}
DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
static struct pt1_adapter *
pt1_alloc_adapter(struct pt1 *pt1)
{
struct pt1_adapter *adap;
void *buf;
struct dvb_adapter *dvb_adap;
struct dvb_demux *demux;
struct dmxdev *dmxdev;
int ret;
adap = kzalloc(sizeof(struct pt1_adapter), GFP_KERNEL);
if (!adap) {
ret = -ENOMEM;
goto err;
}
adap->pt1 = pt1;
adap->voltage = SEC_VOLTAGE_OFF;
adap->sleep = 1;
buf = (u8 *)__get_free_page(GFP_KERNEL);
if (!buf) {
ret = -ENOMEM;
goto err_kfree;
}
adap->buf = buf;
adap->upacket_count = 0;
adap->packet_count = 0;
adap->st_count = -1;
dvb_adap = &adap->adap;
dvb_adap->priv = adap;
ret = dvb_register_adapter(dvb_adap, DRIVER_NAME, THIS_MODULE,
&pt1->pdev->dev, adapter_nr);
if (ret < 0)
goto err_free_page;
demux = &adap->demux;
demux->dmx.capabilities = DMX_TS_FILTERING | DMX_SECTION_FILTERING;
demux->priv = adap;
demux->feednum = 256;
demux->filternum = 256;
demux->start_feed = pt1_start_feed;
demux->stop_feed = pt1_stop_feed;
demux->write_to_decoder = NULL;
ret = dvb_dmx_init(demux);
if (ret < 0)
goto err_unregister_adapter;
dmxdev = &adap->dmxdev;
dmxdev->filternum = 256;
dmxdev->demux = &demux->dmx;
dmxdev->capabilities = 0;
ret = dvb_dmxdev_init(dmxdev, dvb_adap);
if (ret < 0)
goto err_dmx_release;
return adap;
err_dmx_release:
dvb_dmx_release(demux);
err_unregister_adapter:
dvb_unregister_adapter(dvb_adap);
err_free_page:
free_page((unsigned long)buf);
err_kfree:
kfree(adap);
err:
return ERR_PTR(ret);
}
static void pt1_cleanup_adapters(struct pt1 *pt1)
{
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_free_adapter(pt1->adaps[i]);
}
static int pt1_init_adapters(struct pt1 *pt1)
{
int i;
struct pt1_adapter *adap;
int ret;
for (i = 0; i < PT1_NR_ADAPS; i++) {
adap = pt1_alloc_adapter(pt1);
if (IS_ERR(adap)) {
ret = PTR_ERR(adap);
goto err;
}
adap->index = i;
pt1->adaps[i] = adap;
}
return 0;
err:
while (i--)
pt1_free_adapter(pt1->adaps[i]);
return ret;
}
static void pt1_cleanup_frontend(struct pt1_adapter *adap)
{
dvb_unregister_frontend(adap->fe);
}
static int pt1_init_frontend(struct pt1_adapter *adap, struct dvb_frontend *fe)
{
int ret;
adap->orig_set_voltage = fe->ops.set_voltage;
adap->orig_sleep = fe->ops.sleep;
adap->orig_init = fe->ops.init;
fe->ops.set_voltage = pt1_set_voltage;
fe->ops.sleep = pt1_sleep;
fe->ops.init = pt1_wakeup;
ret = dvb_register_frontend(&adap->adap, fe);
if (ret < 0)
return ret;
adap->fe = fe;
return 0;
}
static void pt1_cleanup_frontends(struct pt1 *pt1)
{
int i;
for (i = 0; i < PT1_NR_ADAPS; i++)
pt1_cleanup_frontend(pt1->adaps[i]);
}
struct pt1_config {
struct va1j5jf8007s_config va1j5jf8007s_config;
struct va1j5jf8007t_config va1j5jf8007t_config;
};
static const struct pt1_config pt1_configs[2] = {
{
{
.demod_address = 0x1b,
.frequency = VA1J5JF8007S_20MHZ,
},
{
.demod_address = 0x1a,
.frequency = VA1J5JF8007T_20MHZ,
},
}, {
{
.demod_address = 0x19,
.frequency = VA1J5JF8007S_20MHZ,
},
{
.demod_address = 0x18,
.frequency = VA1J5JF8007T_20MHZ,
},
},
};
static const struct pt1_config pt2_configs[2] = {
{
{
.demod_address = 0x1b,
.frequency = VA1J5JF8007S_25MHZ,
},
{
.demod_address = 0x1a,
.frequency = VA1J5JF8007T_25MHZ,
},
}, {
{
.demod_address = 0x19,
.frequency = VA1J5JF8007S_25MHZ,
},
{
.demod_address = 0x18,
.frequency = VA1J5JF8007T_25MHZ,
},
},
};
static int pt1_init_frontends(struct pt1 *pt1)
{
int i, j;
struct i2c_adapter *i2c_adap;
const struct pt1_config *configs, *config;
struct dvb_frontend *fe[4];
int ret;
i = 0;
j = 0;
i2c_adap = &pt1->i2c_adap;
configs = pt1->pdev->device == 0x211a ? pt1_configs : pt2_configs;
do {
config = &configs[i / 2];
fe[i] = va1j5jf8007s_attach(&config->va1j5jf8007s_config,
i2c_adap);
if (!fe[i]) {
ret = -ENODEV; /* This does not sound nice... */
goto err;
}
i++;
fe[i] = va1j5jf8007t_attach(&config->va1j5jf8007t_config,
i2c_adap);
if (!fe[i]) {
ret = -ENODEV;
goto err;
}
i++;
ret = va1j5jf8007s_prepare(fe[i - 2]);
if (ret < 0)
goto err;
ret = va1j5jf8007t_prepare(fe[i - 1]);
if (ret < 0)
goto err;
} while (i < 4);
do {
ret = pt1_init_frontend(pt1->adaps[j], fe[j]);
if (ret < 0)
goto err;
} while (++j < 4);
return 0;
err:
while (i-- > j)
fe[i]->ops.release(fe[i]);
while (j--)
dvb_unregister_frontend(fe[j]);
return ret;
}
static void pt1_i2c_emit(struct pt1 *pt1, int addr, int busy, int read_enable,
int clock, int data, int next_addr)
{
pt1_write_reg(pt1, 4, addr << 18 | busy << 13 | read_enable << 12 |
!clock << 11 | !data << 10 | next_addr);
}
static void pt1_i2c_write_bit(struct pt1 *pt1, int addr, int *addrp, int data)
{
pt1_i2c_emit(pt1, addr, 1, 0, 0, data, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, data, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, data, addr + 3);
*addrp = addr + 3;
}
static void pt1_i2c_read_bit(struct pt1 *pt1, int addr, int *addrp)
{
pt1_i2c_emit(pt1, addr, 1, 0, 0, 1, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 1, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 1, 1, 1, addr + 3);
pt1_i2c_emit(pt1, addr + 3, 1, 0, 0, 1, addr + 4);
*addrp = addr + 4;
}
static void pt1_i2c_write_byte(struct pt1 *pt1, int addr, int *addrp, int data)
{
int i;
for (i = 0; i < 8; i++)
pt1_i2c_write_bit(pt1, addr, &addr, data >> (7 - i) & 1);
pt1_i2c_write_bit(pt1, addr, &addr, 1);
*addrp = addr;
}
static void pt1_i2c_read_byte(struct pt1 *pt1, int addr, int *addrp, int last)
{
int i;
for (i = 0; i < 8; i++)
pt1_i2c_read_bit(pt1, addr, &addr);
pt1_i2c_write_bit(pt1, addr, &addr, last);
*addrp = addr;
}
static void pt1_i2c_prepare(struct pt1 *pt1, int addr, int *addrp)
{
pt1_i2c_emit(pt1, addr, 1, 0, 1, 1, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 0, 0, 0, addr + 3);
*addrp = addr + 3;
}
static void
pt1_i2c_write_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
{
int i;
pt1_i2c_prepare(pt1, addr, &addr);
pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1);
for (i = 0; i < msg->len; i++)
pt1_i2c_write_byte(pt1, addr, &addr, msg->buf[i]);
*addrp = addr;
}
static void
pt1_i2c_read_msg(struct pt1 *pt1, int addr, int *addrp, struct i2c_msg *msg)
{
int i;
pt1_i2c_prepare(pt1, addr, &addr);
pt1_i2c_write_byte(pt1, addr, &addr, msg->addr << 1 | 1);
for (i = 0; i < msg->len; i++)
pt1_i2c_read_byte(pt1, addr, &addr, i == msg->len - 1);
*addrp = addr;
}
static int pt1_i2c_end(struct pt1 *pt1, int addr)
{
pt1_i2c_emit(pt1, addr, 1, 0, 0, 0, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
pt1_i2c_emit(pt1, addr + 2, 1, 0, 1, 1, 0);
pt1_write_reg(pt1, 0, 0x00000004);
do {
if (signal_pending(current))
return -EINTR;
schedule_timeout_interruptible((HZ + 999) / 1000);
} while (pt1_read_reg(pt1, 0) & 0x00000080);
return 0;
}
static void pt1_i2c_begin(struct pt1 *pt1, int *addrp)
{
int addr;
addr = 0;
pt1_i2c_emit(pt1, addr, 0, 0, 1, 1, addr /* itself */);
addr = addr + 1;
if (!pt1->i2c_running) {
pt1_i2c_emit(pt1, addr, 1, 0, 1, 1, addr + 1);
pt1_i2c_emit(pt1, addr + 1, 1, 0, 1, 0, addr + 2);
addr = addr + 2;
pt1->i2c_running = 1;
}
*addrp = addr;
}
static int pt1_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct pt1 *pt1;
int i;
struct i2c_msg *msg, *next_msg;
int addr, ret;
u16 len;
u32 word;
pt1 = i2c_get_adapdata(adap);
for (i = 0; i < num; i++) {
msg = &msgs[i];
if (msg->flags & I2C_M_RD)
return -ENOTSUPP;
if (i + 1 < num)
next_msg = &msgs[i + 1];
else
next_msg = NULL;
if (next_msg && next_msg->flags & I2C_M_RD) {
i++;
len = next_msg->len;
if (len > 4)
return -ENOTSUPP;
pt1_i2c_begin(pt1, &addr);
pt1_i2c_write_msg(pt1, addr, &addr, msg);
pt1_i2c_read_msg(pt1, addr, &addr, next_msg);
ret = pt1_i2c_end(pt1, addr);
if (ret < 0)
return ret;
word = pt1_read_reg(pt1, 2);
while (len--) {
next_msg->buf[len] = word;
word >>= 8;
}
} else {
pt1_i2c_begin(pt1, &addr);
pt1_i2c_write_msg(pt1, addr, &addr, msg);
ret = pt1_i2c_end(pt1, addr);
if (ret < 0)
return ret;
}
}
return num;
}
static u32 pt1_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C;
}
static const struct i2c_algorithm pt1_i2c_algo = {
.master_xfer = pt1_i2c_xfer,
.functionality = pt1_i2c_func,
};
static void pt1_i2c_wait(struct pt1 *pt1)
{
int i;
for (i = 0; i < 128; i++)
pt1_i2c_emit(pt1, 0, 0, 0, 1, 1, 0);
}
static void pt1_i2c_init(struct pt1 *pt1)
{
int i;
for (i = 0; i < 1024; i++)
pt1_i2c_emit(pt1, i, 0, 0, 1, 1, 0);
}
static void pt1_remove(struct pci_dev *pdev)
{
struct pt1 *pt1;
void __iomem *regs;
pt1 = pci_get_drvdata(pdev);
regs = pt1->regs;
if (pt1->kthread)
kthread_stop(pt1->kthread);
pt1_cleanup_tables(pt1);
pt1_cleanup_frontends(pt1);
pt1_disable_ram(pt1);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
pt1_cleanup_adapters(pt1);
i2c_del_adapter(&pt1->i2c_adap);
kfree(pt1);
pci_iounmap(pdev, regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static int pt1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
int ret;
void __iomem *regs;
struct pt1 *pt1;
struct i2c_adapter *i2c_adap;
ret = pci_enable_device(pdev);
if (ret < 0)
goto err;
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret < 0)
goto err_pci_disable_device;
pci_set_master(pdev);
ret = pci_request_regions(pdev, DRIVER_NAME);
if (ret < 0)
goto err_pci_disable_device;
regs = pci_iomap(pdev, 0, 0);
if (!regs) {
ret = -EIO;
goto err_pci_release_regions;
}
pt1 = kzalloc(sizeof(struct pt1), GFP_KERNEL);
if (!pt1) {
ret = -ENOMEM;
goto err_pci_iounmap;
}
mutex_init(&pt1->lock);
pt1->pdev = pdev;
pt1->regs = regs;
pci_set_drvdata(pdev, pt1);
ret = pt1_init_adapters(pt1);
if (ret < 0)
goto err_kfree;
mutex_init(&pt1->lock);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
i2c_adap = &pt1->i2c_adap;
i2c_adap->algo = &pt1_i2c_algo;
i2c_adap->algo_data = NULL;
i2c_adap->dev.parent = &pdev->dev;
strcpy(i2c_adap->name, DRIVER_NAME);
i2c_set_adapdata(i2c_adap, pt1);
ret = i2c_add_adapter(i2c_adap);
if (ret < 0)
goto err_pt1_cleanup_adapters;
pt1_i2c_init(pt1);
pt1_i2c_wait(pt1);
ret = pt1_sync(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
pt1_identify(pt1);
ret = pt1_unlock(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
ret = pt1_reset_pci(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
ret = pt1_reset_ram(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
ret = pt1_enable_ram(pt1);
if (ret < 0)
goto err_i2c_del_adapter;
pt1_init_streams(pt1);
pt1->power = 1;
pt1_update_power(pt1);
schedule_timeout_uninterruptible((HZ + 49) / 50);
pt1->reset = 0;
pt1_update_power(pt1);
schedule_timeout_uninterruptible((HZ + 999) / 1000);
ret = pt1_init_frontends(pt1);
if (ret < 0)
goto err_pt1_disable_ram;
ret = pt1_init_tables(pt1);
if (ret < 0)
goto err_pt1_cleanup_frontends;
return 0;
err_pt1_cleanup_frontends:
pt1_cleanup_frontends(pt1);
err_pt1_disable_ram:
pt1_disable_ram(pt1);
pt1->power = 0;
pt1->reset = 1;
pt1_update_power(pt1);
err_i2c_del_adapter:
i2c_del_adapter(i2c_adap);
err_pt1_cleanup_adapters:
pt1_cleanup_adapters(pt1);
err_kfree:
kfree(pt1);
err_pci_iounmap:
pci_iounmap(pdev, regs);
err_pci_release_regions:
pci_release_regions(pdev);
err_pci_disable_device:
pci_disable_device(pdev);
err:
return ret;
}
static struct pci_device_id pt1_id_table[] = {
{ PCI_DEVICE(0x10ee, 0x211a) },
{ PCI_DEVICE(0x10ee, 0x222a) },
{ },
};
MODULE_DEVICE_TABLE(pci, pt1_id_table);
static struct pci_driver pt1_driver = {
.name = DRIVER_NAME,
.probe = pt1_probe,
.remove = pt1_remove,
.id_table = pt1_id_table,
};
module_pci_driver(pt1_driver);
MODULE_AUTHOR("Takahito HIRANO <hiranotaka@zng.info>");
MODULE_DESCRIPTION("Earthsoft PT1/PT2 Driver");
MODULE_LICENSE("GPL");