1705 строки
43 KiB
C
1705 строки
43 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/arch/x86_64/mm/init.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
|
|
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kcore.h>
|
|
#include <linux/bootmem_info.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/bios_ebda.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/kdebug.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/init.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/ftrace.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
#include "ident_map.c"
|
|
|
|
#define DEFINE_POPULATE(fname, type1, type2, init) \
|
|
static inline void fname##_init(struct mm_struct *mm, \
|
|
type1##_t *arg1, type2##_t *arg2, bool init) \
|
|
{ \
|
|
if (init) \
|
|
fname##_safe(mm, arg1, arg2); \
|
|
else \
|
|
fname(mm, arg1, arg2); \
|
|
}
|
|
|
|
DEFINE_POPULATE(p4d_populate, p4d, pud, init)
|
|
DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
|
|
DEFINE_POPULATE(pud_populate, pud, pmd, init)
|
|
DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
|
|
|
|
#define DEFINE_ENTRY(type1, type2, init) \
|
|
static inline void set_##type1##_init(type1##_t *arg1, \
|
|
type2##_t arg2, bool init) \
|
|
{ \
|
|
if (init) \
|
|
set_##type1##_safe(arg1, arg2); \
|
|
else \
|
|
set_##type1(arg1, arg2); \
|
|
}
|
|
|
|
DEFINE_ENTRY(p4d, p4d, init)
|
|
DEFINE_ENTRY(pud, pud, init)
|
|
DEFINE_ENTRY(pmd, pmd, init)
|
|
DEFINE_ENTRY(pte, pte, init)
|
|
|
|
|
|
/*
|
|
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
|
|
* physical space so we can cache the place of the first one and move
|
|
* around without checking the pgd every time.
|
|
*/
|
|
|
|
/* Bits supported by the hardware: */
|
|
pteval_t __supported_pte_mask __read_mostly = ~0;
|
|
/* Bits allowed in normal kernel mappings: */
|
|
pteval_t __default_kernel_pte_mask __read_mostly = ~0;
|
|
EXPORT_SYMBOL_GPL(__supported_pte_mask);
|
|
/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
|
|
EXPORT_SYMBOL(__default_kernel_pte_mask);
|
|
|
|
int force_personality32;
|
|
|
|
/*
|
|
* noexec32=on|off
|
|
* Control non executable heap for 32bit processes.
|
|
* To control the stack too use noexec=off
|
|
*
|
|
* on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
|
|
* off PROT_READ implies PROT_EXEC
|
|
*/
|
|
static int __init nonx32_setup(char *str)
|
|
{
|
|
if (!strcmp(str, "on"))
|
|
force_personality32 &= ~READ_IMPLIES_EXEC;
|
|
else if (!strcmp(str, "off"))
|
|
force_personality32 |= READ_IMPLIES_EXEC;
|
|
return 1;
|
|
}
|
|
__setup("noexec32=", nonx32_setup);
|
|
|
|
static void sync_global_pgds_l5(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
|
|
const pgd_t *pgd_ref = pgd_offset_k(addr);
|
|
struct page *page;
|
|
|
|
/* Check for overflow */
|
|
if (addr < start)
|
|
break;
|
|
|
|
if (pgd_none(*pgd_ref))
|
|
continue;
|
|
|
|
spin_lock(&pgd_lock);
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
pgd_t *pgd;
|
|
spinlock_t *pgt_lock;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
|
|
/* the pgt_lock only for Xen */
|
|
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
|
|
spin_lock(pgt_lock);
|
|
|
|
if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
|
|
BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
|
|
|
|
if (pgd_none(*pgd))
|
|
set_pgd(pgd, *pgd_ref);
|
|
|
|
spin_unlock(pgt_lock);
|
|
}
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
}
|
|
|
|
static void sync_global_pgds_l4(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
|
|
pgd_t *pgd_ref = pgd_offset_k(addr);
|
|
const p4d_t *p4d_ref;
|
|
struct page *page;
|
|
|
|
/*
|
|
* With folded p4d, pgd_none() is always false, we need to
|
|
* handle synchronization on p4d level.
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
|
|
p4d_ref = p4d_offset(pgd_ref, addr);
|
|
|
|
if (p4d_none(*p4d_ref))
|
|
continue;
|
|
|
|
spin_lock(&pgd_lock);
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
spinlock_t *pgt_lock;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
/* the pgt_lock only for Xen */
|
|
pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
|
|
spin_lock(pgt_lock);
|
|
|
|
if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
|
|
BUG_ON(p4d_pgtable(*p4d)
|
|
!= p4d_pgtable(*p4d_ref));
|
|
|
|
if (p4d_none(*p4d))
|
|
set_p4d(p4d, *p4d_ref);
|
|
|
|
spin_unlock(pgt_lock);
|
|
}
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When memory was added make sure all the processes MM have
|
|
* suitable PGD entries in the local PGD level page.
|
|
*/
|
|
static void sync_global_pgds(unsigned long start, unsigned long end)
|
|
{
|
|
if (pgtable_l5_enabled())
|
|
sync_global_pgds_l5(start, end);
|
|
else
|
|
sync_global_pgds_l4(start, end);
|
|
}
|
|
|
|
/*
|
|
* NOTE: This function is marked __ref because it calls __init function
|
|
* (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
|
|
*/
|
|
static __ref void *spp_getpage(void)
|
|
{
|
|
void *ptr;
|
|
|
|
if (after_bootmem)
|
|
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
|
|
else
|
|
ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
|
|
|
|
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
|
|
panic("set_pte_phys: cannot allocate page data %s\n",
|
|
after_bootmem ? "after bootmem" : "");
|
|
}
|
|
|
|
pr_debug("spp_getpage %p\n", ptr);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
|
|
{
|
|
if (pgd_none(*pgd)) {
|
|
p4d_t *p4d = (p4d_t *)spp_getpage();
|
|
pgd_populate(&init_mm, pgd, p4d);
|
|
if (p4d != p4d_offset(pgd, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
|
|
p4d, p4d_offset(pgd, 0));
|
|
}
|
|
return p4d_offset(pgd, vaddr);
|
|
}
|
|
|
|
static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
|
|
{
|
|
if (p4d_none(*p4d)) {
|
|
pud_t *pud = (pud_t *)spp_getpage();
|
|
p4d_populate(&init_mm, p4d, pud);
|
|
if (pud != pud_offset(p4d, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
|
|
pud, pud_offset(p4d, 0));
|
|
}
|
|
return pud_offset(p4d, vaddr);
|
|
}
|
|
|
|
static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
|
|
{
|
|
if (pud_none(*pud)) {
|
|
pmd_t *pmd = (pmd_t *) spp_getpage();
|
|
pud_populate(&init_mm, pud, pmd);
|
|
if (pmd != pmd_offset(pud, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
|
|
pmd, pmd_offset(pud, 0));
|
|
}
|
|
return pmd_offset(pud, vaddr);
|
|
}
|
|
|
|
static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
|
|
{
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *pte = (pte_t *) spp_getpage();
|
|
pmd_populate_kernel(&init_mm, pmd, pte);
|
|
if (pte != pte_offset_kernel(pmd, 0))
|
|
printk(KERN_ERR "PAGETABLE BUG #03!\n");
|
|
}
|
|
return pte_offset_kernel(pmd, vaddr);
|
|
}
|
|
|
|
static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
pmd_t *pmd = fill_pmd(pud, vaddr);
|
|
pte_t *pte = fill_pte(pmd, vaddr);
|
|
|
|
set_pte(pte, new_pte);
|
|
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
flush_tlb_one_kernel(vaddr);
|
|
}
|
|
|
|
void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
p4d_t *p4d = p4d_page + p4d_index(vaddr);
|
|
pud_t *pud = fill_pud(p4d, vaddr);
|
|
|
|
__set_pte_vaddr(pud, vaddr, new_pte);
|
|
}
|
|
|
|
void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
|
|
{
|
|
pud_t *pud = pud_page + pud_index(vaddr);
|
|
|
|
__set_pte_vaddr(pud, vaddr, new_pte);
|
|
}
|
|
|
|
void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d_page;
|
|
|
|
pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
printk(KERN_ERR
|
|
"PGD FIXMAP MISSING, it should be setup in head.S!\n");
|
|
return;
|
|
}
|
|
|
|
p4d_page = p4d_offset(pgd, 0);
|
|
set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
|
|
}
|
|
|
|
pmd_t * __init populate_extra_pmd(unsigned long vaddr)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
pgd = pgd_offset_k(vaddr);
|
|
p4d = fill_p4d(pgd, vaddr);
|
|
pud = fill_pud(p4d, vaddr);
|
|
return fill_pmd(pud, vaddr);
|
|
}
|
|
|
|
pte_t * __init populate_extra_pte(unsigned long vaddr)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
pmd = populate_extra_pmd(vaddr);
|
|
return fill_pte(pmd, vaddr);
|
|
}
|
|
|
|
/*
|
|
* Create large page table mappings for a range of physical addresses.
|
|
*/
|
|
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
|
|
enum page_cache_mode cache)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pgprot_t prot;
|
|
|
|
pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
|
|
protval_4k_2_large(cachemode2protval(cache));
|
|
BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
|
|
for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
|
|
pgd = pgd_offset_k((unsigned long)__va(phys));
|
|
if (pgd_none(*pgd)) {
|
|
p4d = (p4d_t *) spp_getpage();
|
|
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
p4d = p4d_offset(pgd, (unsigned long)__va(phys));
|
|
if (p4d_none(*p4d)) {
|
|
pud = (pud_t *) spp_getpage();
|
|
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
pud = pud_offset(p4d, (unsigned long)__va(phys));
|
|
if (pud_none(*pud)) {
|
|
pmd = (pmd_t *) spp_getpage();
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
|
|
_PAGE_USER));
|
|
}
|
|
pmd = pmd_offset(pud, phys);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
|
|
}
|
|
}
|
|
|
|
void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
|
|
{
|
|
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
|
|
}
|
|
|
|
void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
|
|
{
|
|
__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
|
|
}
|
|
|
|
/*
|
|
* The head.S code sets up the kernel high mapping:
|
|
*
|
|
* from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
|
|
*
|
|
* phys_base holds the negative offset to the kernel, which is added
|
|
* to the compile time generated pmds. This results in invalid pmds up
|
|
* to the point where we hit the physaddr 0 mapping.
|
|
*
|
|
* We limit the mappings to the region from _text to _brk_end. _brk_end
|
|
* is rounded up to the 2MB boundary. This catches the invalid pmds as
|
|
* well, as they are located before _text:
|
|
*/
|
|
void __init cleanup_highmap(void)
|
|
{
|
|
unsigned long vaddr = __START_KERNEL_map;
|
|
unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
|
|
unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
|
|
pmd_t *pmd = level2_kernel_pgt;
|
|
|
|
/*
|
|
* Native path, max_pfn_mapped is not set yet.
|
|
* Xen has valid max_pfn_mapped set in
|
|
* arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
|
|
*/
|
|
if (max_pfn_mapped)
|
|
vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
|
|
|
|
for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
if (vaddr < (unsigned long) _text || vaddr > end)
|
|
set_pmd(pmd, __pmd(0));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create PTE level page table mapping for physical addresses.
|
|
* It returns the last physical address mapped.
|
|
*/
|
|
static unsigned long __meminit
|
|
phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
|
|
pgprot_t prot, bool init)
|
|
{
|
|
unsigned long pages = 0, paddr_next;
|
|
unsigned long paddr_last = paddr_end;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
pte = pte_page + pte_index(paddr);
|
|
i = pte_index(paddr);
|
|
|
|
for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
|
|
paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
|
|
if (paddr >= paddr_end) {
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_pte_init(pte, __pte(0), init);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We will re-use the existing mapping.
|
|
* Xen for example has some special requirements, like mapping
|
|
* pagetable pages as RO. So assume someone who pre-setup
|
|
* these mappings are more intelligent.
|
|
*/
|
|
if (!pte_none(*pte)) {
|
|
if (!after_bootmem)
|
|
pages++;
|
|
continue;
|
|
}
|
|
|
|
if (0)
|
|
pr_info(" pte=%p addr=%lx pte=%016lx\n", pte, paddr,
|
|
pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
|
|
pages++;
|
|
set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
|
|
paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
|
|
}
|
|
|
|
update_page_count(PG_LEVEL_4K, pages);
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
/*
|
|
* Create PMD level page table mapping for physical addresses. The virtual
|
|
* and physical address have to be aligned at this level.
|
|
* It returns the last physical address mapped.
|
|
*/
|
|
static unsigned long __meminit
|
|
phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
|
|
unsigned long page_size_mask, pgprot_t prot, bool init)
|
|
{
|
|
unsigned long pages = 0, paddr_next;
|
|
unsigned long paddr_last = paddr_end;
|
|
|
|
int i = pmd_index(paddr);
|
|
|
|
for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
|
|
pmd_t *pmd = pmd_page + pmd_index(paddr);
|
|
pte_t *pte;
|
|
pgprot_t new_prot = prot;
|
|
|
|
paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
|
|
if (paddr >= paddr_end) {
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_pmd_init(pmd, __pmd(0), init);
|
|
continue;
|
|
}
|
|
|
|
if (!pmd_none(*pmd)) {
|
|
if (!pmd_large(*pmd)) {
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pte = (pte_t *)pmd_page_vaddr(*pmd);
|
|
paddr_last = phys_pte_init(pte, paddr,
|
|
paddr_end, prot,
|
|
init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we are ok with PG_LEVEL_2M mapping, then we will
|
|
* use the existing mapping,
|
|
*
|
|
* Otherwise, we will split the large page mapping but
|
|
* use the same existing protection bits except for
|
|
* large page, so that we don't violate Intel's TLB
|
|
* Application note (317080) which says, while changing
|
|
* the page sizes, new and old translations should
|
|
* not differ with respect to page frame and
|
|
* attributes.
|
|
*/
|
|
if (page_size_mask & (1 << PG_LEVEL_2M)) {
|
|
if (!after_bootmem)
|
|
pages++;
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
|
|
}
|
|
|
|
if (page_size_mask & (1<<PG_LEVEL_2M)) {
|
|
pages++;
|
|
spin_lock(&init_mm.page_table_lock);
|
|
set_pte_init((pte_t *)pmd,
|
|
pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
|
|
__pgprot(pgprot_val(prot) | _PAGE_PSE)),
|
|
init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
|
|
pte = alloc_low_page();
|
|
paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_populate_kernel_init(&init_mm, pmd, pte, init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
update_page_count(PG_LEVEL_2M, pages);
|
|
return paddr_last;
|
|
}
|
|
|
|
/*
|
|
* Create PUD level page table mapping for physical addresses. The virtual
|
|
* and physical address do not have to be aligned at this level. KASLR can
|
|
* randomize virtual addresses up to this level.
|
|
* It returns the last physical address mapped.
|
|
*/
|
|
static unsigned long __meminit
|
|
phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
|
|
unsigned long page_size_mask, pgprot_t _prot, bool init)
|
|
{
|
|
unsigned long pages = 0, paddr_next;
|
|
unsigned long paddr_last = paddr_end;
|
|
unsigned long vaddr = (unsigned long)__va(paddr);
|
|
int i = pud_index(vaddr);
|
|
|
|
for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pgprot_t prot = _prot;
|
|
|
|
vaddr = (unsigned long)__va(paddr);
|
|
pud = pud_page + pud_index(vaddr);
|
|
paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
|
|
|
|
if (paddr >= paddr_end) {
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_pud_init(pud, __pud(0), init);
|
|
continue;
|
|
}
|
|
|
|
if (!pud_none(*pud)) {
|
|
if (!pud_large(*pud)) {
|
|
pmd = pmd_offset(pud, 0);
|
|
paddr_last = phys_pmd_init(pmd, paddr,
|
|
paddr_end,
|
|
page_size_mask,
|
|
prot, init);
|
|
continue;
|
|
}
|
|
/*
|
|
* If we are ok with PG_LEVEL_1G mapping, then we will
|
|
* use the existing mapping.
|
|
*
|
|
* Otherwise, we will split the gbpage mapping but use
|
|
* the same existing protection bits except for large
|
|
* page, so that we don't violate Intel's TLB
|
|
* Application note (317080) which says, while changing
|
|
* the page sizes, new and old translations should
|
|
* not differ with respect to page frame and
|
|
* attributes.
|
|
*/
|
|
if (page_size_mask & (1 << PG_LEVEL_1G)) {
|
|
if (!after_bootmem)
|
|
pages++;
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
|
|
}
|
|
|
|
if (page_size_mask & (1<<PG_LEVEL_1G)) {
|
|
pages++;
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
|
|
|
|
set_pte_init((pte_t *)pud,
|
|
pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
|
|
prot),
|
|
init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
paddr_last = paddr_next;
|
|
continue;
|
|
}
|
|
|
|
pmd = alloc_low_page();
|
|
paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
|
|
page_size_mask, prot, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_populate_init(&init_mm, pud, pmd, init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
update_page_count(PG_LEVEL_1G, pages);
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
|
|
unsigned long page_size_mask, pgprot_t prot, bool init)
|
|
{
|
|
unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
|
|
|
|
paddr_last = paddr_end;
|
|
vaddr = (unsigned long)__va(paddr);
|
|
vaddr_end = (unsigned long)__va(paddr_end);
|
|
|
|
if (!pgtable_l5_enabled())
|
|
return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
|
|
page_size_mask, prot, init);
|
|
|
|
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
|
|
p4d_t *p4d = p4d_page + p4d_index(vaddr);
|
|
pud_t *pud;
|
|
|
|
vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
|
|
paddr = __pa(vaddr);
|
|
|
|
if (paddr >= paddr_end) {
|
|
paddr_next = __pa(vaddr_next);
|
|
if (!after_bootmem &&
|
|
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
|
|
E820_TYPE_RAM) &&
|
|
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
|
|
E820_TYPE_RESERVED_KERN))
|
|
set_p4d_init(p4d, __p4d(0), init);
|
|
continue;
|
|
}
|
|
|
|
if (!p4d_none(*p4d)) {
|
|
pud = pud_offset(p4d, 0);
|
|
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
|
|
page_size_mask, prot, init);
|
|
continue;
|
|
}
|
|
|
|
pud = alloc_low_page();
|
|
paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
|
|
page_size_mask, prot, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
p4d_populate_init(&init_mm, p4d, pud, init);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
static unsigned long __meminit
|
|
__kernel_physical_mapping_init(unsigned long paddr_start,
|
|
unsigned long paddr_end,
|
|
unsigned long page_size_mask,
|
|
pgprot_t prot, bool init)
|
|
{
|
|
bool pgd_changed = false;
|
|
unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
|
|
|
|
paddr_last = paddr_end;
|
|
vaddr = (unsigned long)__va(paddr_start);
|
|
vaddr_end = (unsigned long)__va(paddr_end);
|
|
vaddr_start = vaddr;
|
|
|
|
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
|
|
pgd_t *pgd = pgd_offset_k(vaddr);
|
|
p4d_t *p4d;
|
|
|
|
vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
|
|
|
|
if (pgd_val(*pgd)) {
|
|
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
|
|
paddr_last = phys_p4d_init(p4d, __pa(vaddr),
|
|
__pa(vaddr_end),
|
|
page_size_mask,
|
|
prot, init);
|
|
continue;
|
|
}
|
|
|
|
p4d = alloc_low_page();
|
|
paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
|
|
page_size_mask, prot, init);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
if (pgtable_l5_enabled())
|
|
pgd_populate_init(&init_mm, pgd, p4d, init);
|
|
else
|
|
p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
|
|
(pud_t *) p4d, init);
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pgd_changed = true;
|
|
}
|
|
|
|
if (pgd_changed)
|
|
sync_global_pgds(vaddr_start, vaddr_end - 1);
|
|
|
|
return paddr_last;
|
|
}
|
|
|
|
|
|
/*
|
|
* Create page table mapping for the physical memory for specific physical
|
|
* addresses. Note that it can only be used to populate non-present entries.
|
|
* The virtual and physical addresses have to be aligned on PMD level
|
|
* down. It returns the last physical address mapped.
|
|
*/
|
|
unsigned long __meminit
|
|
kernel_physical_mapping_init(unsigned long paddr_start,
|
|
unsigned long paddr_end,
|
|
unsigned long page_size_mask, pgprot_t prot)
|
|
{
|
|
return __kernel_physical_mapping_init(paddr_start, paddr_end,
|
|
page_size_mask, prot, true);
|
|
}
|
|
|
|
/*
|
|
* This function is similar to kernel_physical_mapping_init() above with the
|
|
* exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
|
|
* when updating the mapping. The caller is responsible to flush the TLBs after
|
|
* the function returns.
|
|
*/
|
|
unsigned long __meminit
|
|
kernel_physical_mapping_change(unsigned long paddr_start,
|
|
unsigned long paddr_end,
|
|
unsigned long page_size_mask)
|
|
{
|
|
return __kernel_physical_mapping_init(paddr_start, paddr_end,
|
|
page_size_mask, PAGE_KERNEL,
|
|
false);
|
|
}
|
|
|
|
#ifndef CONFIG_NUMA
|
|
void __init initmem_init(void)
|
|
{
|
|
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
|
|
}
|
|
#endif
|
|
|
|
void __init paging_init(void)
|
|
{
|
|
sparse_init();
|
|
|
|
/*
|
|
* clear the default setting with node 0
|
|
* note: don't use nodes_clear here, that is really clearing when
|
|
* numa support is not compiled in, and later node_set_state
|
|
* will not set it back.
|
|
*/
|
|
node_clear_state(0, N_MEMORY);
|
|
node_clear_state(0, N_NORMAL_MEMORY);
|
|
|
|
zone_sizes_init();
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
#define PAGE_UNUSED 0xFD
|
|
|
|
/*
|
|
* The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
|
|
* from unused_pmd_start to next PMD_SIZE boundary.
|
|
*/
|
|
static unsigned long unused_pmd_start __meminitdata;
|
|
|
|
static void __meminit vmemmap_flush_unused_pmd(void)
|
|
{
|
|
if (!unused_pmd_start)
|
|
return;
|
|
/*
|
|
* Clears (unused_pmd_start, PMD_END]
|
|
*/
|
|
memset((void *)unused_pmd_start, PAGE_UNUSED,
|
|
ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
|
|
unused_pmd_start = 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/* Returns true if the PMD is completely unused and thus it can be freed */
|
|
static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
|
|
{
|
|
unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
|
|
|
|
/*
|
|
* Flush the unused range cache to ensure that memchr_inv() will work
|
|
* for the whole range.
|
|
*/
|
|
vmemmap_flush_unused_pmd();
|
|
memset((void *)addr, PAGE_UNUSED, end - addr);
|
|
|
|
return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
|
|
}
|
|
#endif
|
|
|
|
static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
|
|
{
|
|
/*
|
|
* As we expect to add in the same granularity as we remove, it's
|
|
* sufficient to mark only some piece used to block the memmap page from
|
|
* getting removed when removing some other adjacent memmap (just in
|
|
* case the first memmap never gets initialized e.g., because the memory
|
|
* block never gets onlined).
|
|
*/
|
|
memset((void *)start, 0, sizeof(struct page));
|
|
}
|
|
|
|
static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* We only optimize if the new used range directly follows the
|
|
* previously unused range (esp., when populating consecutive sections).
|
|
*/
|
|
if (unused_pmd_start == start) {
|
|
if (likely(IS_ALIGNED(end, PMD_SIZE)))
|
|
unused_pmd_start = 0;
|
|
else
|
|
unused_pmd_start = end;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the range does not contiguously follows previous one, make sure
|
|
* to mark the unused range of the previous one so it can be removed.
|
|
*/
|
|
vmemmap_flush_unused_pmd();
|
|
__vmemmap_use_sub_pmd(start);
|
|
}
|
|
|
|
|
|
static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
|
|
{
|
|
vmemmap_flush_unused_pmd();
|
|
|
|
/*
|
|
* Could be our memmap page is filled with PAGE_UNUSED already from a
|
|
* previous remove. Make sure to reset it.
|
|
*/
|
|
__vmemmap_use_sub_pmd(start);
|
|
|
|
/*
|
|
* Mark with PAGE_UNUSED the unused parts of the new memmap range
|
|
*/
|
|
if (!IS_ALIGNED(start, PMD_SIZE))
|
|
memset((void *)start, PAGE_UNUSED,
|
|
start - ALIGN_DOWN(start, PMD_SIZE));
|
|
|
|
/*
|
|
* We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
|
|
* consecutive sections. Remember for the last added PMD where the
|
|
* unused range begins.
|
|
*/
|
|
if (!IS_ALIGNED(end, PMD_SIZE))
|
|
unused_pmd_start = end;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Memory hotplug specific functions
|
|
*/
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
|
|
* updating.
|
|
*/
|
|
static void update_end_of_memory_vars(u64 start, u64 size)
|
|
{
|
|
unsigned long end_pfn = PFN_UP(start + size);
|
|
|
|
if (end_pfn > max_pfn) {
|
|
max_pfn = end_pfn;
|
|
max_low_pfn = end_pfn;
|
|
high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
|
|
}
|
|
}
|
|
|
|
int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
|
|
struct mhp_params *params)
|
|
{
|
|
int ret;
|
|
|
|
ret = __add_pages(nid, start_pfn, nr_pages, params);
|
|
WARN_ON_ONCE(ret);
|
|
|
|
/* update max_pfn, max_low_pfn and high_memory */
|
|
update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
|
|
nr_pages << PAGE_SHIFT);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int arch_add_memory(int nid, u64 start, u64 size,
|
|
struct mhp_params *params)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
|
|
init_memory_mapping(start, start + size, params->pgprot);
|
|
|
|
return add_pages(nid, start_pfn, nr_pages, params);
|
|
}
|
|
|
|
static void __meminit free_pagetable(struct page *page, int order)
|
|
{
|
|
unsigned long magic;
|
|
unsigned int nr_pages = 1 << order;
|
|
|
|
/* bootmem page has reserved flag */
|
|
if (PageReserved(page)) {
|
|
__ClearPageReserved(page);
|
|
|
|
magic = page->index;
|
|
if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
|
|
while (nr_pages--)
|
|
put_page_bootmem(page++);
|
|
} else
|
|
while (nr_pages--)
|
|
free_reserved_page(page++);
|
|
} else
|
|
free_pages((unsigned long)page_address(page), order);
|
|
}
|
|
|
|
static void __meminit free_hugepage_table(struct page *page,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
if (altmap)
|
|
vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
|
|
else
|
|
free_pagetable(page, get_order(PMD_SIZE));
|
|
}
|
|
|
|
static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
/* free a pte talbe */
|
|
free_pagetable(pmd_page(*pmd), 0);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_clear(pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
/* free a pmd talbe */
|
|
free_pagetable(pud_page(*pud), 0);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_clear(pud);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
|
|
{
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
pud = pud_start + i;
|
|
if (!pud_none(*pud))
|
|
return;
|
|
}
|
|
|
|
/* free a pud talbe */
|
|
free_pagetable(p4d_page(*p4d), 0);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
p4d_clear(p4d);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
|
|
bool direct)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pte_t *pte;
|
|
phys_addr_t phys_addr;
|
|
|
|
pte = pte_start + pte_index(addr);
|
|
for (; addr < end; addr = next, pte++) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
|
|
/*
|
|
* We mapped [0,1G) memory as identity mapping when
|
|
* initializing, in arch/x86/kernel/head_64.S. These
|
|
* pagetables cannot be removed.
|
|
*/
|
|
phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
|
|
if (phys_addr < (phys_addr_t)0x40000000)
|
|
return;
|
|
|
|
if (!direct)
|
|
free_pagetable(pte_page(*pte), 0);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pte_clear(&init_mm, addr, pte);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
|
|
/* For non-direct mapping, pages means nothing. */
|
|
pages++;
|
|
}
|
|
|
|
/* Call free_pte_table() in remove_pmd_table(). */
|
|
flush_tlb_all();
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_4K, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
|
|
bool direct, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pte_t *pte_base;
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_start + pmd_index(addr);
|
|
for (; addr < end; addr = next, pmd++) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
|
|
if (pmd_large(*pmd)) {
|
|
if (IS_ALIGNED(addr, PMD_SIZE) &&
|
|
IS_ALIGNED(next, PMD_SIZE)) {
|
|
if (!direct)
|
|
free_hugepage_table(pmd_page(*pmd),
|
|
altmap);
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_clear(pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pages++;
|
|
}
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
else if (vmemmap_pmd_is_unused(addr, next)) {
|
|
free_hugepage_table(pmd_page(*pmd),
|
|
altmap);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pmd_clear(pmd);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
}
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
|
|
remove_pte_table(pte_base, addr, next, direct);
|
|
free_pte_table(pte_base, pmd);
|
|
}
|
|
|
|
/* Call free_pmd_table() in remove_pud_table(). */
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_2M, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
|
|
struct vmem_altmap *altmap, bool direct)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pmd_t *pmd_base;
|
|
pud_t *pud;
|
|
|
|
pud = pud_start + pud_index(addr);
|
|
for (; addr < end; addr = next, pud++) {
|
|
next = pud_addr_end(addr, end);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
|
|
if (pud_large(*pud) &&
|
|
IS_ALIGNED(addr, PUD_SIZE) &&
|
|
IS_ALIGNED(next, PUD_SIZE)) {
|
|
spin_lock(&init_mm.page_table_lock);
|
|
pud_clear(pud);
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pages++;
|
|
continue;
|
|
}
|
|
|
|
pmd_base = pmd_offset(pud, 0);
|
|
remove_pmd_table(pmd_base, addr, next, direct, altmap);
|
|
free_pmd_table(pmd_base, pud);
|
|
}
|
|
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_1G, -pages);
|
|
}
|
|
|
|
static void __meminit
|
|
remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
|
|
struct vmem_altmap *altmap, bool direct)
|
|
{
|
|
unsigned long next, pages = 0;
|
|
pud_t *pud_base;
|
|
p4d_t *p4d;
|
|
|
|
p4d = p4d_start + p4d_index(addr);
|
|
for (; addr < end; addr = next, p4d++) {
|
|
next = p4d_addr_end(addr, end);
|
|
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
BUILD_BUG_ON(p4d_large(*p4d));
|
|
|
|
pud_base = pud_offset(p4d, 0);
|
|
remove_pud_table(pud_base, addr, next, altmap, direct);
|
|
/*
|
|
* For 4-level page tables we do not want to free PUDs, but in the
|
|
* 5-level case we should free them. This code will have to change
|
|
* to adapt for boot-time switching between 4 and 5 level page tables.
|
|
*/
|
|
if (pgtable_l5_enabled())
|
|
free_pud_table(pud_base, p4d);
|
|
}
|
|
|
|
if (direct)
|
|
update_page_count(PG_LEVEL_512G, -pages);
|
|
}
|
|
|
|
/* start and end are both virtual address. */
|
|
static void __meminit
|
|
remove_pagetable(unsigned long start, unsigned long end, bool direct,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long next;
|
|
unsigned long addr;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
p4d = p4d_offset(pgd, 0);
|
|
remove_p4d_table(p4d, addr, next, altmap, direct);
|
|
}
|
|
|
|
flush_tlb_all();
|
|
}
|
|
|
|
void __ref vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
|
|
VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
|
|
|
|
remove_pagetable(start, end, false, altmap);
|
|
}
|
|
|
|
static void __meminit
|
|
kernel_physical_mapping_remove(unsigned long start, unsigned long end)
|
|
{
|
|
start = (unsigned long)__va(start);
|
|
end = (unsigned long)__va(end);
|
|
|
|
remove_pagetable(start, end, true, NULL);
|
|
}
|
|
|
|
void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
|
|
__remove_pages(start_pfn, nr_pages, altmap);
|
|
kernel_physical_mapping_remove(start, start + size);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
static struct kcore_list kcore_vsyscall;
|
|
|
|
static void __init register_page_bootmem_info(void)
|
|
{
|
|
#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP)
|
|
int i;
|
|
|
|
for_each_online_node(i)
|
|
register_page_bootmem_info_node(NODE_DATA(i));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
|
|
* Only the level which needs to be synchronized between all page-tables is
|
|
* allocated because the synchronization can be expensive.
|
|
*/
|
|
static void __init preallocate_vmalloc_pages(void)
|
|
{
|
|
unsigned long addr;
|
|
const char *lvl;
|
|
|
|
for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
lvl = "p4d";
|
|
p4d = p4d_alloc(&init_mm, pgd, addr);
|
|
if (!p4d)
|
|
goto failed;
|
|
|
|
if (pgtable_l5_enabled())
|
|
continue;
|
|
|
|
/*
|
|
* The goal here is to allocate all possibly required
|
|
* hardware page tables pointed to by the top hardware
|
|
* level.
|
|
*
|
|
* On 4-level systems, the P4D layer is folded away and
|
|
* the above code does no preallocation. Below, go down
|
|
* to the pud _software_ level to ensure the second
|
|
* hardware level is allocated on 4-level systems too.
|
|
*/
|
|
lvl = "pud";
|
|
pud = pud_alloc(&init_mm, p4d, addr);
|
|
if (!pud)
|
|
goto failed;
|
|
}
|
|
|
|
return;
|
|
|
|
failed:
|
|
|
|
/*
|
|
* The pages have to be there now or they will be missing in
|
|
* process page-tables later.
|
|
*/
|
|
panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
|
|
}
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
pci_iommu_alloc();
|
|
|
|
/* clear_bss() already clear the empty_zero_page */
|
|
|
|
/* this will put all memory onto the freelists */
|
|
memblock_free_all();
|
|
after_bootmem = 1;
|
|
x86_init.hyper.init_after_bootmem();
|
|
|
|
/*
|
|
* Must be done after boot memory is put on freelist, because here we
|
|
* might set fields in deferred struct pages that have not yet been
|
|
* initialized, and memblock_free_all() initializes all the reserved
|
|
* deferred pages for us.
|
|
*/
|
|
register_page_bootmem_info();
|
|
|
|
/* Register memory areas for /proc/kcore */
|
|
if (get_gate_vma(&init_mm))
|
|
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
|
|
|
|
preallocate_vmalloc_pages();
|
|
}
|
|
|
|
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
|
|
int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
|
|
{
|
|
/*
|
|
* More CPUs always led to greater speedups on tested systems, up to
|
|
* all the nodes' CPUs. Use all since the system is otherwise idle
|
|
* now.
|
|
*/
|
|
return max_t(int, cpumask_weight(node_cpumask), 1);
|
|
}
|
|
#endif
|
|
|
|
int kernel_set_to_readonly;
|
|
|
|
void mark_rodata_ro(void)
|
|
{
|
|
unsigned long start = PFN_ALIGN(_text);
|
|
unsigned long rodata_start = PFN_ALIGN(__start_rodata);
|
|
unsigned long end = (unsigned long)__end_rodata_hpage_align;
|
|
unsigned long text_end = PFN_ALIGN(_etext);
|
|
unsigned long rodata_end = PFN_ALIGN(__end_rodata);
|
|
unsigned long all_end;
|
|
|
|
printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
|
|
(end - start) >> 10);
|
|
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
|
|
|
|
kernel_set_to_readonly = 1;
|
|
|
|
/*
|
|
* The rodata/data/bss/brk section (but not the kernel text!)
|
|
* should also be not-executable.
|
|
*
|
|
* We align all_end to PMD_SIZE because the existing mapping
|
|
* is a full PMD. If we would align _brk_end to PAGE_SIZE we
|
|
* split the PMD and the reminder between _brk_end and the end
|
|
* of the PMD will remain mapped executable.
|
|
*
|
|
* Any PMD which was setup after the one which covers _brk_end
|
|
* has been zapped already via cleanup_highmem().
|
|
*/
|
|
all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
|
|
set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
|
|
|
|
set_ftrace_ops_ro();
|
|
|
|
#ifdef CONFIG_CPA_DEBUG
|
|
printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
|
|
set_memory_rw(start, (end-start) >> PAGE_SHIFT);
|
|
|
|
printk(KERN_INFO "Testing CPA: again\n");
|
|
set_memory_ro(start, (end-start) >> PAGE_SHIFT);
|
|
#endif
|
|
|
|
free_kernel_image_pages("unused kernel image (text/rodata gap)",
|
|
(void *)text_end, (void *)rodata_start);
|
|
free_kernel_image_pages("unused kernel image (rodata/data gap)",
|
|
(void *)rodata_end, (void *)_sdata);
|
|
|
|
debug_checkwx();
|
|
}
|
|
|
|
int kern_addr_valid(unsigned long addr)
|
|
{
|
|
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (above != 0 && above != -1UL)
|
|
return 0;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd))
|
|
return 0;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!p4d_present(*p4d))
|
|
return 0;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (!pud_present(*pud))
|
|
return 0;
|
|
|
|
if (pud_large(*pud))
|
|
return pfn_valid(pud_pfn(*pud));
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_present(*pmd))
|
|
return 0;
|
|
|
|
if (pmd_large(*pmd))
|
|
return pfn_valid(pmd_pfn(*pmd));
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
return pfn_valid(pte_pfn(*pte));
|
|
}
|
|
|
|
/*
|
|
* Block size is the minimum amount of memory which can be hotplugged or
|
|
* hotremoved. It must be power of two and must be equal or larger than
|
|
* MIN_MEMORY_BLOCK_SIZE.
|
|
*/
|
|
#define MAX_BLOCK_SIZE (2UL << 30)
|
|
|
|
/* Amount of ram needed to start using large blocks */
|
|
#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
|
|
|
|
/* Adjustable memory block size */
|
|
static unsigned long set_memory_block_size;
|
|
int __init set_memory_block_size_order(unsigned int order)
|
|
{
|
|
unsigned long size = 1UL << order;
|
|
|
|
if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
set_memory_block_size = size;
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long probe_memory_block_size(void)
|
|
{
|
|
unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
|
|
unsigned long bz;
|
|
|
|
/* If memory block size has been set, then use it */
|
|
bz = set_memory_block_size;
|
|
if (bz)
|
|
goto done;
|
|
|
|
/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
|
|
if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
|
|
bz = MIN_MEMORY_BLOCK_SIZE;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Use max block size to minimize overhead on bare metal, where
|
|
* alignment for memory hotplug isn't a concern.
|
|
*/
|
|
if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
|
|
bz = MAX_BLOCK_SIZE;
|
|
goto done;
|
|
}
|
|
|
|
/* Find the largest allowed block size that aligns to memory end */
|
|
for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
|
|
if (IS_ALIGNED(boot_mem_end, bz))
|
|
break;
|
|
}
|
|
done:
|
|
pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
|
|
|
|
return bz;
|
|
}
|
|
|
|
static unsigned long memory_block_size_probed;
|
|
unsigned long memory_block_size_bytes(void)
|
|
{
|
|
if (!memory_block_size_probed)
|
|
memory_block_size_probed = probe_memory_block_size();
|
|
|
|
return memory_block_size_probed;
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/*
|
|
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
|
|
*/
|
|
static long __meminitdata addr_start, addr_end;
|
|
static void __meminitdata *p_start, *p_end;
|
|
static int __meminitdata node_start;
|
|
|
|
static int __meminit vmemmap_populate_hugepages(unsigned long start,
|
|
unsigned long end, int node, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p;
|
|
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
|
|
if (p) {
|
|
pte_t entry;
|
|
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
|
|
PAGE_KERNEL_LARGE);
|
|
set_pmd(pmd, __pmd(pte_val(entry)));
|
|
|
|
/* check to see if we have contiguous blocks */
|
|
if (p_end != p || node_start != node) {
|
|
if (p_start)
|
|
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
|
|
addr_start, addr_end-1, p_start, p_end-1, node_start);
|
|
addr_start = addr;
|
|
node_start = node;
|
|
p_start = p;
|
|
}
|
|
|
|
addr_end = addr + PMD_SIZE;
|
|
p_end = p + PMD_SIZE;
|
|
|
|
if (!IS_ALIGNED(addr, PMD_SIZE) ||
|
|
!IS_ALIGNED(next, PMD_SIZE))
|
|
vmemmap_use_new_sub_pmd(addr, next);
|
|
|
|
continue;
|
|
} else if (altmap)
|
|
return -ENOMEM; /* no fallback */
|
|
} else if (pmd_large(*pmd)) {
|
|
vmemmap_verify((pte_t *)pmd, node, addr, next);
|
|
vmemmap_use_sub_pmd(addr, next);
|
|
continue;
|
|
}
|
|
if (vmemmap_populate_basepages(addr, next, node, NULL))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
int err;
|
|
|
|
VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
|
|
VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
|
|
|
|
if (end - start < PAGES_PER_SECTION * sizeof(struct page))
|
|
err = vmemmap_populate_basepages(start, end, node, NULL);
|
|
else if (boot_cpu_has(X86_FEATURE_PSE))
|
|
err = vmemmap_populate_hugepages(start, end, node, altmap);
|
|
else if (altmap) {
|
|
pr_err_once("%s: no cpu support for altmap allocations\n",
|
|
__func__);
|
|
err = -ENOMEM;
|
|
} else
|
|
err = vmemmap_populate_basepages(start, end, node, NULL);
|
|
if (!err)
|
|
sync_global_pgds(start, end - 1);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
|
|
void register_page_bootmem_memmap(unsigned long section_nr,
|
|
struct page *start_page, unsigned long nr_pages)
|
|
{
|
|
unsigned long addr = (unsigned long)start_page;
|
|
unsigned long end = (unsigned long)(start_page + nr_pages);
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
unsigned int nr_pmd_pages;
|
|
struct page *page;
|
|
|
|
for (; addr < end; addr = next) {
|
|
pte_t *pte = NULL;
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
continue;
|
|
}
|
|
get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
continue;
|
|
}
|
|
get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
continue;
|
|
}
|
|
get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PSE)) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
get_page_bootmem(section_nr, pmd_page(*pmd),
|
|
MIX_SECTION_INFO);
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(*pte))
|
|
continue;
|
|
get_page_bootmem(section_nr, pte_page(*pte),
|
|
SECTION_INFO);
|
|
} else {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
continue;
|
|
|
|
nr_pmd_pages = 1 << get_order(PMD_SIZE);
|
|
page = pmd_page(*pmd);
|
|
while (nr_pmd_pages--)
|
|
get_page_bootmem(section_nr, page++,
|
|
SECTION_INFO);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
if (p_start) {
|
|
pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
|
|
addr_start, addr_end-1, p_start, p_end-1, node_start);
|
|
p_start = NULL;
|
|
p_end = NULL;
|
|
node_start = 0;
|
|
}
|
|
}
|
|
#endif
|