873 строки
23 KiB
C
873 строки
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Re-map IO memory to kernel address space so that we can access it.
|
|
* This is needed for high PCI addresses that aren't mapped in the
|
|
* 640k-1MB IO memory area on PC's
|
|
*
|
|
* (C) Copyright 1995 1996 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mmiotrace.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/set_memory.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/efi.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/memtype.h>
|
|
#include <asm/setup.h>
|
|
|
|
#include "physaddr.h"
|
|
|
|
/*
|
|
* Descriptor controlling ioremap() behavior.
|
|
*/
|
|
struct ioremap_desc {
|
|
unsigned int flags;
|
|
};
|
|
|
|
/*
|
|
* Fix up the linear direct mapping of the kernel to avoid cache attribute
|
|
* conflicts.
|
|
*/
|
|
int ioremap_change_attr(unsigned long vaddr, unsigned long size,
|
|
enum page_cache_mode pcm)
|
|
{
|
|
unsigned long nrpages = size >> PAGE_SHIFT;
|
|
int err;
|
|
|
|
switch (pcm) {
|
|
case _PAGE_CACHE_MODE_UC:
|
|
default:
|
|
err = _set_memory_uc(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_MODE_WC:
|
|
err = _set_memory_wc(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_MODE_WT:
|
|
err = _set_memory_wt(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_MODE_WB:
|
|
err = _set_memory_wb(vaddr, nrpages);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Does the range (or a subset of) contain normal RAM? */
|
|
static unsigned int __ioremap_check_ram(struct resource *res)
|
|
{
|
|
unsigned long start_pfn, stop_pfn;
|
|
unsigned long i;
|
|
|
|
if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
|
|
return 0;
|
|
|
|
start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
stop_pfn = (res->end + 1) >> PAGE_SHIFT;
|
|
if (stop_pfn > start_pfn) {
|
|
for (i = 0; i < (stop_pfn - start_pfn); ++i)
|
|
if (pfn_valid(start_pfn + i) &&
|
|
!PageReserved(pfn_to_page(start_pfn + i)))
|
|
return IORES_MAP_SYSTEM_RAM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In a SEV guest, NONE and RESERVED should not be mapped encrypted because
|
|
* there the whole memory is already encrypted.
|
|
*/
|
|
static unsigned int __ioremap_check_encrypted(struct resource *res)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
return 0;
|
|
|
|
switch (res->desc) {
|
|
case IORES_DESC_NONE:
|
|
case IORES_DESC_RESERVED:
|
|
break;
|
|
default:
|
|
return IORES_MAP_ENCRYPTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The EFI runtime services data area is not covered by walk_mem_res(), but must
|
|
* be mapped encrypted when SEV is active.
|
|
*/
|
|
static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
if (!IS_ENABLED(CONFIG_EFI))
|
|
return;
|
|
|
|
if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
|
|
(efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
|
|
efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
|
|
desc->flags |= IORES_MAP_ENCRYPTED;
|
|
}
|
|
|
|
static int __ioremap_collect_map_flags(struct resource *res, void *arg)
|
|
{
|
|
struct ioremap_desc *desc = arg;
|
|
|
|
if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
|
|
desc->flags |= __ioremap_check_ram(res);
|
|
|
|
if (!(desc->flags & IORES_MAP_ENCRYPTED))
|
|
desc->flags |= __ioremap_check_encrypted(res);
|
|
|
|
return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
|
|
(IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
|
|
}
|
|
|
|
/*
|
|
* To avoid multiple resource walks, this function walks resources marked as
|
|
* IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
|
|
* resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
|
|
*
|
|
* After that, deal with misc other ranges in __ioremap_check_other() which do
|
|
* not fall into the above category.
|
|
*/
|
|
static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
|
|
struct ioremap_desc *desc)
|
|
{
|
|
u64 start, end;
|
|
|
|
start = (u64)addr;
|
|
end = start + size - 1;
|
|
memset(desc, 0, sizeof(struct ioremap_desc));
|
|
|
|
walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
|
|
|
|
__ioremap_check_other(addr, desc);
|
|
}
|
|
|
|
/*
|
|
* Remap an arbitrary physical address space into the kernel virtual
|
|
* address space. It transparently creates kernel huge I/O mapping when
|
|
* the physical address is aligned by a huge page size (1GB or 2MB) and
|
|
* the requested size is at least the huge page size.
|
|
*
|
|
* NOTE: MTRRs can override PAT memory types with a 4KB granularity.
|
|
* Therefore, the mapping code falls back to use a smaller page toward 4KB
|
|
* when a mapping range is covered by non-WB type of MTRRs.
|
|
*
|
|
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
|
|
* have to convert them into an offset in a page-aligned mapping, but the
|
|
* caller shouldn't need to know that small detail.
|
|
*/
|
|
static void __iomem *
|
|
__ioremap_caller(resource_size_t phys_addr, unsigned long size,
|
|
enum page_cache_mode pcm, void *caller, bool encrypted)
|
|
{
|
|
unsigned long offset, vaddr;
|
|
resource_size_t last_addr;
|
|
const resource_size_t unaligned_phys_addr = phys_addr;
|
|
const unsigned long unaligned_size = size;
|
|
struct ioremap_desc io_desc;
|
|
struct vm_struct *area;
|
|
enum page_cache_mode new_pcm;
|
|
pgprot_t prot;
|
|
int retval;
|
|
void __iomem *ret_addr;
|
|
|
|
/* Don't allow wraparound or zero size */
|
|
last_addr = phys_addr + size - 1;
|
|
if (!size || last_addr < phys_addr)
|
|
return NULL;
|
|
|
|
if (!phys_addr_valid(phys_addr)) {
|
|
printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
|
|
(unsigned long long)phys_addr);
|
|
WARN_ON_ONCE(1);
|
|
return NULL;
|
|
}
|
|
|
|
__ioremap_check_mem(phys_addr, size, &io_desc);
|
|
|
|
/*
|
|
* Don't allow anybody to remap normal RAM that we're using..
|
|
*/
|
|
if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
|
|
WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
|
|
&phys_addr, &last_addr);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Mappings have to be page-aligned
|
|
*/
|
|
offset = phys_addr & ~PAGE_MASK;
|
|
phys_addr &= PHYSICAL_PAGE_MASK;
|
|
size = PAGE_ALIGN(last_addr+1) - phys_addr;
|
|
|
|
retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
|
|
pcm, &new_pcm);
|
|
if (retval) {
|
|
printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
|
|
return NULL;
|
|
}
|
|
|
|
if (pcm != new_pcm) {
|
|
if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
|
|
printk(KERN_ERR
|
|
"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
|
|
(unsigned long long)phys_addr,
|
|
(unsigned long long)(phys_addr + size),
|
|
pcm, new_pcm);
|
|
goto err_free_memtype;
|
|
}
|
|
pcm = new_pcm;
|
|
}
|
|
|
|
/*
|
|
* If the page being mapped is in memory and SEV is active then
|
|
* make sure the memory encryption attribute is enabled in the
|
|
* resulting mapping.
|
|
*/
|
|
prot = PAGE_KERNEL_IO;
|
|
if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
|
|
prot = pgprot_encrypted(prot);
|
|
|
|
switch (pcm) {
|
|
case _PAGE_CACHE_MODE_UC:
|
|
default:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_UC));
|
|
break;
|
|
case _PAGE_CACHE_MODE_UC_MINUS:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
|
|
break;
|
|
case _PAGE_CACHE_MODE_WC:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WC));
|
|
break;
|
|
case _PAGE_CACHE_MODE_WT:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WT));
|
|
break;
|
|
case _PAGE_CACHE_MODE_WB:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ok, go for it..
|
|
*/
|
|
area = get_vm_area_caller(size, VM_IOREMAP, caller);
|
|
if (!area)
|
|
goto err_free_memtype;
|
|
area->phys_addr = phys_addr;
|
|
vaddr = (unsigned long) area->addr;
|
|
|
|
if (memtype_kernel_map_sync(phys_addr, size, pcm))
|
|
goto err_free_area;
|
|
|
|
if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
|
|
goto err_free_area;
|
|
|
|
ret_addr = (void __iomem *) (vaddr + offset);
|
|
mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
|
|
|
|
/*
|
|
* Check if the request spans more than any BAR in the iomem resource
|
|
* tree.
|
|
*/
|
|
if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
|
|
pr_warn("caller %pS mapping multiple BARs\n", caller);
|
|
|
|
return ret_addr;
|
|
err_free_area:
|
|
free_vm_area(area);
|
|
err_free_memtype:
|
|
memtype_free(phys_addr, phys_addr + size);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ioremap - map bus memory into CPU space
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*
|
|
* This version of ioremap ensures that the memory is marked uncachable
|
|
* on the CPU as well as honouring existing caching rules from things like
|
|
* the PCI bus. Note that there are other caches and buffers on many
|
|
* busses. In particular driver authors should read up on PCI writes
|
|
*
|
|
* It's useful if some control registers are in such an area and
|
|
* write combining or read caching is not desirable:
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
/*
|
|
* Ideally, this should be:
|
|
* pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
|
|
*
|
|
* Till we fix all X drivers to use ioremap_wc(), we will use
|
|
* UC MINUS. Drivers that are certain they need or can already
|
|
* be converted over to strong UC can use ioremap_uc().
|
|
*/
|
|
enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
return __ioremap_caller(phys_addr, size, pcm,
|
|
__builtin_return_address(0), false);
|
|
}
|
|
EXPORT_SYMBOL(ioremap);
|
|
|
|
/**
|
|
* ioremap_uc - map bus memory into CPU space as strongly uncachable
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap_uc performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*
|
|
* This version of ioremap ensures that the memory is marked with a strong
|
|
* preference as completely uncachable on the CPU when possible. For non-PAT
|
|
* systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
|
|
* systems this will set the PAT entry for the pages as strong UC. This call
|
|
* will honor existing caching rules from things like the PCI bus. Note that
|
|
* there are other caches and buffers on many busses. In particular driver
|
|
* authors should read up on PCI writes.
|
|
*
|
|
* It's useful if some control registers are in such an area and
|
|
* write combining or read caching is not desirable:
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
|
|
|
|
return __ioremap_caller(phys_addr, size, pcm,
|
|
__builtin_return_address(0), false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ioremap_uc);
|
|
|
|
/**
|
|
* ioremap_wc - map memory into CPU space write combined
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* This version of ioremap ensures that the memory is marked write combining.
|
|
* Write combining allows faster writes to some hardware devices.
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
|
|
__builtin_return_address(0), false);
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
|
|
/**
|
|
* ioremap_wt - map memory into CPU space write through
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* This version of ioremap ensures that the memory is marked write through.
|
|
* Write through stores data into memory while keeping the cache up-to-date.
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
|
|
__builtin_return_address(0), false);
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wt);
|
|
|
|
void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
|
|
__builtin_return_address(0), true);
|
|
}
|
|
EXPORT_SYMBOL(ioremap_encrypted);
|
|
|
|
void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
|
|
__builtin_return_address(0), false);
|
|
}
|
|
EXPORT_SYMBOL(ioremap_cache);
|
|
|
|
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
|
|
unsigned long prot_val)
|
|
{
|
|
return __ioremap_caller(phys_addr, size,
|
|
pgprot2cachemode(__pgprot(prot_val)),
|
|
__builtin_return_address(0), false);
|
|
}
|
|
EXPORT_SYMBOL(ioremap_prot);
|
|
|
|
/**
|
|
* iounmap - Free a IO remapping
|
|
* @addr: virtual address from ioremap_*
|
|
*
|
|
* Caller must ensure there is only one unmapping for the same pointer.
|
|
*/
|
|
void iounmap(volatile void __iomem *addr)
|
|
{
|
|
struct vm_struct *p, *o;
|
|
|
|
if ((void __force *)addr <= high_memory)
|
|
return;
|
|
|
|
/*
|
|
* The PCI/ISA range special-casing was removed from __ioremap()
|
|
* so this check, in theory, can be removed. However, there are
|
|
* cases where iounmap() is called for addresses not obtained via
|
|
* ioremap() (vga16fb for example). Add a warning so that these
|
|
* cases can be caught and fixed.
|
|
*/
|
|
if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
|
|
(void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
|
|
WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
|
|
return;
|
|
}
|
|
|
|
mmiotrace_iounmap(addr);
|
|
|
|
addr = (volatile void __iomem *)
|
|
(PAGE_MASK & (unsigned long __force)addr);
|
|
|
|
/* Use the vm area unlocked, assuming the caller
|
|
ensures there isn't another iounmap for the same address
|
|
in parallel. Reuse of the virtual address is prevented by
|
|
leaving it in the global lists until we're done with it.
|
|
cpa takes care of the direct mappings. */
|
|
p = find_vm_area((void __force *)addr);
|
|
|
|
if (!p) {
|
|
printk(KERN_ERR "iounmap: bad address %p\n", addr);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
|
|
|
|
/* Finally remove it */
|
|
o = remove_vm_area((void __force *)addr);
|
|
BUG_ON(p != o || o == NULL);
|
|
kfree(p);
|
|
}
|
|
EXPORT_SYMBOL(iounmap);
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
void *xlate_dev_mem_ptr(phys_addr_t phys)
|
|
{
|
|
unsigned long start = phys & PAGE_MASK;
|
|
unsigned long offset = phys & ~PAGE_MASK;
|
|
void *vaddr;
|
|
|
|
/* memremap() maps if RAM, otherwise falls back to ioremap() */
|
|
vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
|
|
|
|
/* Only add the offset on success and return NULL if memremap() failed */
|
|
if (vaddr)
|
|
vaddr += offset;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
|
|
{
|
|
memunmap((void *)((unsigned long)addr & PAGE_MASK));
|
|
}
|
|
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
/*
|
|
* Examine the physical address to determine if it is an area of memory
|
|
* that should be mapped decrypted. If the memory is not part of the
|
|
* kernel usable area it was accessed and created decrypted, so these
|
|
* areas should be mapped decrypted. And since the encryption key can
|
|
* change across reboots, persistent memory should also be mapped
|
|
* decrypted.
|
|
*
|
|
* If SEV is active, that implies that BIOS/UEFI also ran encrypted so
|
|
* only persistent memory should be mapped decrypted.
|
|
*/
|
|
static bool memremap_should_map_decrypted(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
int is_pmem;
|
|
|
|
/*
|
|
* Check if the address is part of a persistent memory region.
|
|
* This check covers areas added by E820, EFI and ACPI.
|
|
*/
|
|
is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
|
|
IORES_DESC_PERSISTENT_MEMORY);
|
|
if (is_pmem != REGION_DISJOINT)
|
|
return true;
|
|
|
|
/*
|
|
* Check if the non-volatile attribute is set for an EFI
|
|
* reserved area.
|
|
*/
|
|
if (efi_enabled(EFI_BOOT)) {
|
|
switch (efi_mem_type(phys_addr)) {
|
|
case EFI_RESERVED_TYPE:
|
|
if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
|
|
return true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check if the address is outside kernel usable area */
|
|
switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
|
|
case E820_TYPE_RESERVED:
|
|
case E820_TYPE_ACPI:
|
|
case E820_TYPE_NVS:
|
|
case E820_TYPE_UNUSABLE:
|
|
/* For SEV, these areas are encrypted */
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
break;
|
|
fallthrough;
|
|
|
|
case E820_TYPE_PRAM:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Examine the physical address to determine if it is EFI data. Check
|
|
* it against the boot params structure and EFI tables and memory types.
|
|
*/
|
|
static bool memremap_is_efi_data(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
u64 paddr;
|
|
|
|
/* Check if the address is part of EFI boot/runtime data */
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return false;
|
|
|
|
paddr = boot_params.efi_info.efi_memmap_hi;
|
|
paddr <<= 32;
|
|
paddr |= boot_params.efi_info.efi_memmap;
|
|
if (phys_addr == paddr)
|
|
return true;
|
|
|
|
paddr = boot_params.efi_info.efi_systab_hi;
|
|
paddr <<= 32;
|
|
paddr |= boot_params.efi_info.efi_systab;
|
|
if (phys_addr == paddr)
|
|
return true;
|
|
|
|
if (efi_is_table_address(phys_addr))
|
|
return true;
|
|
|
|
switch (efi_mem_type(phys_addr)) {
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Examine the physical address to determine if it is boot data by checking
|
|
* it against the boot params setup_data chain.
|
|
*/
|
|
static bool memremap_is_setup_data(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
struct setup_data *data;
|
|
u64 paddr, paddr_next;
|
|
|
|
paddr = boot_params.hdr.setup_data;
|
|
while (paddr) {
|
|
unsigned int len;
|
|
|
|
if (phys_addr == paddr)
|
|
return true;
|
|
|
|
data = memremap(paddr, sizeof(*data),
|
|
MEMREMAP_WB | MEMREMAP_DEC);
|
|
|
|
paddr_next = data->next;
|
|
len = data->len;
|
|
|
|
if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
|
|
memunmap(data);
|
|
return true;
|
|
}
|
|
|
|
if (data->type == SETUP_INDIRECT &&
|
|
((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
|
|
paddr = ((struct setup_indirect *)data->data)->addr;
|
|
len = ((struct setup_indirect *)data->data)->len;
|
|
}
|
|
|
|
memunmap(data);
|
|
|
|
if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
|
|
return true;
|
|
|
|
paddr = paddr_next;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Examine the physical address to determine if it is boot data by checking
|
|
* it against the boot params setup_data chain (early boot version).
|
|
*/
|
|
static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
struct setup_data *data;
|
|
u64 paddr, paddr_next;
|
|
|
|
paddr = boot_params.hdr.setup_data;
|
|
while (paddr) {
|
|
unsigned int len;
|
|
|
|
if (phys_addr == paddr)
|
|
return true;
|
|
|
|
data = early_memremap_decrypted(paddr, sizeof(*data));
|
|
|
|
paddr_next = data->next;
|
|
len = data->len;
|
|
|
|
early_memunmap(data, sizeof(*data));
|
|
|
|
if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
|
|
return true;
|
|
|
|
paddr = paddr_next;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Architecture function to determine if RAM remap is allowed. By default, a
|
|
* RAM remap will map the data as encrypted. Determine if a RAM remap should
|
|
* not be done so that the data will be mapped decrypted.
|
|
*/
|
|
bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
|
|
unsigned long flags)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
|
|
return true;
|
|
|
|
if (flags & MEMREMAP_ENC)
|
|
return true;
|
|
|
|
if (flags & MEMREMAP_DEC)
|
|
return false;
|
|
|
|
if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
|
|
if (memremap_is_setup_data(phys_addr, size) ||
|
|
memremap_is_efi_data(phys_addr, size))
|
|
return false;
|
|
}
|
|
|
|
return !memremap_should_map_decrypted(phys_addr, size);
|
|
}
|
|
|
|
/*
|
|
* Architecture override of __weak function to adjust the protection attributes
|
|
* used when remapping memory. By default, early_memremap() will map the data
|
|
* as encrypted. Determine if an encrypted mapping should not be done and set
|
|
* the appropriate protection attributes.
|
|
*/
|
|
pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
|
|
unsigned long size,
|
|
pgprot_t prot)
|
|
{
|
|
bool encrypted_prot;
|
|
|
|
if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
|
|
return prot;
|
|
|
|
encrypted_prot = true;
|
|
|
|
if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
|
|
if (early_memremap_is_setup_data(phys_addr, size) ||
|
|
memremap_is_efi_data(phys_addr, size))
|
|
encrypted_prot = false;
|
|
}
|
|
|
|
if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
|
|
encrypted_prot = false;
|
|
|
|
return encrypted_prot ? pgprot_encrypted(prot)
|
|
: pgprot_decrypted(prot);
|
|
}
|
|
|
|
bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
|
|
{
|
|
return arch_memremap_can_ram_remap(phys_addr, size, 0);
|
|
}
|
|
|
|
/* Remap memory with encryption */
|
|
void __init *early_memremap_encrypted(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
|
|
}
|
|
|
|
/*
|
|
* Remap memory with encryption and write-protected - cannot be called
|
|
* before pat_init() is called
|
|
*/
|
|
void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
if (!x86_has_pat_wp())
|
|
return NULL;
|
|
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
|
|
}
|
|
|
|
/* Remap memory without encryption */
|
|
void __init *early_memremap_decrypted(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
|
|
}
|
|
|
|
/*
|
|
* Remap memory without encryption and write-protected - cannot be called
|
|
* before pat_init() is called
|
|
*/
|
|
void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
|
|
unsigned long size)
|
|
{
|
|
if (!x86_has_pat_wp())
|
|
return NULL;
|
|
return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
|
|
}
|
|
#endif /* CONFIG_AMD_MEM_ENCRYPT */
|
|
|
|
static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
|
|
|
|
static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
|
|
{
|
|
/* Don't assume we're using swapper_pg_dir at this point */
|
|
pgd_t *base = __va(read_cr3_pa());
|
|
pgd_t *pgd = &base[pgd_index(addr)];
|
|
p4d_t *p4d = p4d_offset(pgd, addr);
|
|
pud_t *pud = pud_offset(p4d, addr);
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t * __init early_ioremap_pte(unsigned long addr)
|
|
{
|
|
return &bm_pte[pte_index(addr)];
|
|
}
|
|
|
|
bool __init is_early_ioremap_ptep(pte_t *ptep)
|
|
{
|
|
return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
|
|
}
|
|
|
|
void __init early_ioremap_init(void)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
|
|
#else
|
|
WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
|
|
#endif
|
|
|
|
early_ioremap_setup();
|
|
|
|
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
|
|
memset(bm_pte, 0, sizeof(bm_pte));
|
|
pmd_populate_kernel(&init_mm, pmd, bm_pte);
|
|
|
|
/*
|
|
* The boot-ioremap range spans multiple pmds, for which
|
|
* we are not prepared:
|
|
*/
|
|
#define __FIXADDR_TOP (-PAGE_SIZE)
|
|
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
|
|
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
|
|
#undef __FIXADDR_TOP
|
|
if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
|
|
WARN_ON(1);
|
|
printk(KERN_WARNING "pmd %p != %p\n",
|
|
pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
|
|
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
|
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_END));
|
|
|
|
printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
|
printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
|
|
FIX_BTMAP_BEGIN);
|
|
}
|
|
}
|
|
|
|
void __init __early_set_fixmap(enum fixed_addresses idx,
|
|
phys_addr_t phys, pgprot_t flags)
|
|
{
|
|
unsigned long addr = __fix_to_virt(idx);
|
|
pte_t *pte;
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pte = early_ioremap_pte(addr);
|
|
|
|
/* Sanitize 'prot' against any unsupported bits: */
|
|
pgprot_val(flags) &= __supported_pte_mask;
|
|
|
|
if (pgprot_val(flags))
|
|
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
else
|
|
pte_clear(&init_mm, addr, pte);
|
|
flush_tlb_one_kernel(addr);
|
|
}
|