WSL2-Linux-Kernel/drivers/clk/baikal-t1/ccu-pll.c

559 строки
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
*
* Authors:
* Serge Semin <Sergey.Semin@baikalelectronics.ru>
* Dmitry Dunaev <dmitry.dunaev@baikalelectronics.ru>
*
* Baikal-T1 CCU PLL interface driver
*/
#define pr_fmt(fmt) "bt1-ccu-pll: " fmt
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/limits.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/slab.h>
#include <linux/clk-provider.h>
#include <linux/of.h>
#include <linux/spinlock.h>
#include <linux/regmap.h>
#include <linux/iopoll.h>
#include <linux/time64.h>
#include <linux/rational.h>
#include <linux/debugfs.h>
#include "ccu-pll.h"
#define CCU_PLL_CTL 0x000
#define CCU_PLL_CTL_EN BIT(0)
#define CCU_PLL_CTL_RST BIT(1)
#define CCU_PLL_CTL_CLKR_FLD 2
#define CCU_PLL_CTL_CLKR_MASK GENMASK(7, CCU_PLL_CTL_CLKR_FLD)
#define CCU_PLL_CTL_CLKF_FLD 8
#define CCU_PLL_CTL_CLKF_MASK GENMASK(20, CCU_PLL_CTL_CLKF_FLD)
#define CCU_PLL_CTL_CLKOD_FLD 21
#define CCU_PLL_CTL_CLKOD_MASK GENMASK(24, CCU_PLL_CTL_CLKOD_FLD)
#define CCU_PLL_CTL_BYPASS BIT(30)
#define CCU_PLL_CTL_LOCK BIT(31)
#define CCU_PLL_CTL1 0x004
#define CCU_PLL_CTL1_BWADJ_FLD 3
#define CCU_PLL_CTL1_BWADJ_MASK GENMASK(14, CCU_PLL_CTL1_BWADJ_FLD)
#define CCU_PLL_LOCK_CHECK_RETRIES 50
#define CCU_PLL_NR_MAX \
((CCU_PLL_CTL_CLKR_MASK >> CCU_PLL_CTL_CLKR_FLD) + 1)
#define CCU_PLL_NF_MAX \
((CCU_PLL_CTL_CLKF_MASK >> (CCU_PLL_CTL_CLKF_FLD + 1)) + 1)
#define CCU_PLL_OD_MAX \
((CCU_PLL_CTL_CLKOD_MASK >> CCU_PLL_CTL_CLKOD_FLD) + 1)
#define CCU_PLL_NB_MAX \
((CCU_PLL_CTL1_BWADJ_MASK >> CCU_PLL_CTL1_BWADJ_FLD) + 1)
#define CCU_PLL_FDIV_MIN 427000UL
#define CCU_PLL_FDIV_MAX 3500000000UL
#define CCU_PLL_FOUT_MIN 200000000UL
#define CCU_PLL_FOUT_MAX 2500000000UL
#define CCU_PLL_FVCO_MIN 700000000UL
#define CCU_PLL_FVCO_MAX 3500000000UL
#define CCU_PLL_CLKOD_FACTOR 2
static inline unsigned long ccu_pll_lock_delay_us(unsigned long ref_clk,
unsigned long nr)
{
u64 us = 500ULL * nr * USEC_PER_SEC;
do_div(us, ref_clk);
return us;
}
static inline unsigned long ccu_pll_calc_freq(unsigned long ref_clk,
unsigned long nr,
unsigned long nf,
unsigned long od)
{
u64 tmp = ref_clk;
do_div(tmp, nr);
tmp *= nf;
do_div(tmp, od);
return tmp;
}
static int ccu_pll_reset(struct ccu_pll *pll, unsigned long ref_clk,
unsigned long nr)
{
unsigned long ud, ut;
u32 val;
ud = ccu_pll_lock_delay_us(ref_clk, nr);
ut = ud * CCU_PLL_LOCK_CHECK_RETRIES;
regmap_update_bits(pll->sys_regs, pll->reg_ctl,
CCU_PLL_CTL_RST, CCU_PLL_CTL_RST);
return regmap_read_poll_timeout_atomic(pll->sys_regs, pll->reg_ctl, val,
val & CCU_PLL_CTL_LOCK, ud, ut);
}
static int ccu_pll_enable(struct clk_hw *hw)
{
struct clk_hw *parent_hw = clk_hw_get_parent(hw);
struct ccu_pll *pll = to_ccu_pll(hw);
unsigned long flags;
u32 val = 0;
int ret;
if (!parent_hw) {
pr_err("Can't enable '%s' with no parent", clk_hw_get_name(hw));
return -EINVAL;
}
regmap_read(pll->sys_regs, pll->reg_ctl, &val);
if (val & CCU_PLL_CTL_EN)
return 0;
spin_lock_irqsave(&pll->lock, flags);
regmap_write(pll->sys_regs, pll->reg_ctl, val | CCU_PLL_CTL_EN);
ret = ccu_pll_reset(pll, clk_hw_get_rate(parent_hw),
FIELD_GET(CCU_PLL_CTL_CLKR_MASK, val) + 1);
spin_unlock_irqrestore(&pll->lock, flags);
if (ret)
pr_err("PLL '%s' reset timed out\n", clk_hw_get_name(hw));
return ret;
}
static void ccu_pll_disable(struct clk_hw *hw)
{
struct ccu_pll *pll = to_ccu_pll(hw);
unsigned long flags;
spin_lock_irqsave(&pll->lock, flags);
regmap_update_bits(pll->sys_regs, pll->reg_ctl, CCU_PLL_CTL_EN, 0);
spin_unlock_irqrestore(&pll->lock, flags);
}
static int ccu_pll_is_enabled(struct clk_hw *hw)
{
struct ccu_pll *pll = to_ccu_pll(hw);
u32 val = 0;
regmap_read(pll->sys_regs, pll->reg_ctl, &val);
return !!(val & CCU_PLL_CTL_EN);
}
static unsigned long ccu_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct ccu_pll *pll = to_ccu_pll(hw);
unsigned long nr, nf, od;
u32 val = 0;
regmap_read(pll->sys_regs, pll->reg_ctl, &val);
nr = FIELD_GET(CCU_PLL_CTL_CLKR_MASK, val) + 1;
nf = FIELD_GET(CCU_PLL_CTL_CLKF_MASK, val) + 1;
od = FIELD_GET(CCU_PLL_CTL_CLKOD_MASK, val) + 1;
return ccu_pll_calc_freq(parent_rate, nr, nf, od);
}
static void ccu_pll_calc_factors(unsigned long rate, unsigned long parent_rate,
unsigned long *nr, unsigned long *nf,
unsigned long *od)
{
unsigned long err, freq, min_err = ULONG_MAX;
unsigned long num, denom, n1, d1, nri;
unsigned long nr_max, nf_max, od_max;
/*
* Make sure PLL is working with valid input signal (Fdiv). If
* you want to speed the function up just reduce CCU_PLL_NR_MAX.
* This will cause a worse approximation though.
*/
nri = (parent_rate / CCU_PLL_FDIV_MAX) + 1;
nr_max = min(parent_rate / CCU_PLL_FDIV_MIN, CCU_PLL_NR_MAX);
/*
* Find a closest [nr;nf;od] vector taking into account the
* limitations like: 1) 700MHz <= Fvco <= 3.5GHz, 2) PLL Od is
* either 1 or even number within the acceptable range (alas 1s
* is also excluded by the next loop).
*/
for (; nri <= nr_max; ++nri) {
/* Use Od factor to fulfill the limitation 2). */
num = CCU_PLL_CLKOD_FACTOR * rate;
denom = parent_rate / nri;
/*
* Make sure Fvco is within the acceptable range to fulfill
* the condition 1). Note due to the CCU_PLL_CLKOD_FACTOR value
* the actual upper limit is also divided by that factor.
* It's not big problem for us since practically there is no
* need in clocks with that high frequency.
*/
nf_max = min(CCU_PLL_FVCO_MAX / denom, CCU_PLL_NF_MAX);
od_max = CCU_PLL_OD_MAX / CCU_PLL_CLKOD_FACTOR;
/*
* Bypass the out-of-bound values, which can't be properly
* handled by the rational fraction approximation algorithm.
*/
if (num / denom >= nf_max) {
n1 = nf_max;
d1 = 1;
} else if (denom / num >= od_max) {
n1 = 1;
d1 = od_max;
} else {
rational_best_approximation(num, denom, nf_max, od_max,
&n1, &d1);
}
/* Select the best approximation of the target rate. */
freq = ccu_pll_calc_freq(parent_rate, nri, n1, d1);
err = abs((int64_t)freq - num);
if (err < min_err) {
min_err = err;
*nr = nri;
*nf = n1;
*od = CCU_PLL_CLKOD_FACTOR * d1;
}
}
}
static long ccu_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long nr = 1, nf = 1, od = 1;
ccu_pll_calc_factors(rate, *parent_rate, &nr, &nf, &od);
return ccu_pll_calc_freq(*parent_rate, nr, nf, od);
}
/*
* This method is used for PLLs, which support the on-the-fly dividers
* adjustment. So there is no need in gating such clocks.
*/
static int ccu_pll_set_rate_reset(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct ccu_pll *pll = to_ccu_pll(hw);
unsigned long nr, nf, od;
unsigned long flags;
u32 mask, val;
int ret;
ccu_pll_calc_factors(rate, parent_rate, &nr, &nf, &od);
mask = CCU_PLL_CTL_CLKR_MASK | CCU_PLL_CTL_CLKF_MASK |
CCU_PLL_CTL_CLKOD_MASK;
val = FIELD_PREP(CCU_PLL_CTL_CLKR_MASK, nr - 1) |
FIELD_PREP(CCU_PLL_CTL_CLKF_MASK, nf - 1) |
FIELD_PREP(CCU_PLL_CTL_CLKOD_MASK, od - 1);
spin_lock_irqsave(&pll->lock, flags);
regmap_update_bits(pll->sys_regs, pll->reg_ctl, mask, val);
ret = ccu_pll_reset(pll, parent_rate, nr);
spin_unlock_irqrestore(&pll->lock, flags);
if (ret)
pr_err("PLL '%s' reset timed out\n", clk_hw_get_name(hw));
return ret;
}
/*
* This method is used for PLLs, which don't support the on-the-fly dividers
* adjustment. So the corresponding clocks are supposed to be gated first.
*/
static int ccu_pll_set_rate_norst(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct ccu_pll *pll = to_ccu_pll(hw);
unsigned long nr, nf, od;
unsigned long flags;
u32 mask, val;
ccu_pll_calc_factors(rate, parent_rate, &nr, &nf, &od);
/*
* Disable PLL if it was enabled by default or left enabled by the
* system bootloader.
*/
mask = CCU_PLL_CTL_CLKR_MASK | CCU_PLL_CTL_CLKF_MASK |
CCU_PLL_CTL_CLKOD_MASK | CCU_PLL_CTL_EN;
val = FIELD_PREP(CCU_PLL_CTL_CLKR_MASK, nr - 1) |
FIELD_PREP(CCU_PLL_CTL_CLKF_MASK, nf - 1) |
FIELD_PREP(CCU_PLL_CTL_CLKOD_MASK, od - 1);
spin_lock_irqsave(&pll->lock, flags);
regmap_update_bits(pll->sys_regs, pll->reg_ctl, mask, val);
spin_unlock_irqrestore(&pll->lock, flags);
return 0;
}
#ifdef CONFIG_DEBUG_FS
struct ccu_pll_dbgfs_bit {
struct ccu_pll *pll;
const char *name;
unsigned int reg;
u32 mask;
};
struct ccu_pll_dbgfs_fld {
struct ccu_pll *pll;
const char *name;
unsigned int reg;
unsigned int lsb;
u32 mask;
u32 min;
u32 max;
};
#define CCU_PLL_DBGFS_BIT_ATTR(_name, _reg, _mask) \
{ \
.name = _name, \
.reg = _reg, \
.mask = _mask \
}
#define CCU_PLL_DBGFS_FLD_ATTR(_name, _reg, _lsb, _mask, _min, _max) \
{ \
.name = _name, \
.reg = _reg, \
.lsb = _lsb, \
.mask = _mask, \
.min = _min, \
.max = _max \
}
static const struct ccu_pll_dbgfs_bit ccu_pll_bits[] = {
CCU_PLL_DBGFS_BIT_ATTR("pll_en", CCU_PLL_CTL, CCU_PLL_CTL_EN),
CCU_PLL_DBGFS_BIT_ATTR("pll_rst", CCU_PLL_CTL, CCU_PLL_CTL_RST),
CCU_PLL_DBGFS_BIT_ATTR("pll_bypass", CCU_PLL_CTL, CCU_PLL_CTL_BYPASS),
CCU_PLL_DBGFS_BIT_ATTR("pll_lock", CCU_PLL_CTL, CCU_PLL_CTL_LOCK)
};
#define CCU_PLL_DBGFS_BIT_NUM ARRAY_SIZE(ccu_pll_bits)
static const struct ccu_pll_dbgfs_fld ccu_pll_flds[] = {
CCU_PLL_DBGFS_FLD_ATTR("pll_nr", CCU_PLL_CTL, CCU_PLL_CTL_CLKR_FLD,
CCU_PLL_CTL_CLKR_MASK, 1, CCU_PLL_NR_MAX),
CCU_PLL_DBGFS_FLD_ATTR("pll_nf", CCU_PLL_CTL, CCU_PLL_CTL_CLKF_FLD,
CCU_PLL_CTL_CLKF_MASK, 1, CCU_PLL_NF_MAX),
CCU_PLL_DBGFS_FLD_ATTR("pll_od", CCU_PLL_CTL, CCU_PLL_CTL_CLKOD_FLD,
CCU_PLL_CTL_CLKOD_MASK, 1, CCU_PLL_OD_MAX),
CCU_PLL_DBGFS_FLD_ATTR("pll_nb", CCU_PLL_CTL1, CCU_PLL_CTL1_BWADJ_FLD,
CCU_PLL_CTL1_BWADJ_MASK, 1, CCU_PLL_NB_MAX)
};
#define CCU_PLL_DBGFS_FLD_NUM ARRAY_SIZE(ccu_pll_flds)
/*
* It can be dangerous to change the PLL settings behind clock framework back,
* therefore we don't provide any kernel config based compile time option for
* this feature to enable.
*/
#undef CCU_PLL_ALLOW_WRITE_DEBUGFS
#ifdef CCU_PLL_ALLOW_WRITE_DEBUGFS
static int ccu_pll_dbgfs_bit_set(void *priv, u64 val)
{
const struct ccu_pll_dbgfs_bit *bit = priv;
struct ccu_pll *pll = bit->pll;
unsigned long flags;
spin_lock_irqsave(&pll->lock, flags);
regmap_update_bits(pll->sys_regs, pll->reg_ctl + bit->reg,
bit->mask, val ? bit->mask : 0);
spin_unlock_irqrestore(&pll->lock, flags);
return 0;
}
static int ccu_pll_dbgfs_fld_set(void *priv, u64 val)
{
struct ccu_pll_dbgfs_fld *fld = priv;
struct ccu_pll *pll = fld->pll;
unsigned long flags;
u32 data;
val = clamp_t(u64, val, fld->min, fld->max);
data = ((val - 1) << fld->lsb) & fld->mask;
spin_lock_irqsave(&pll->lock, flags);
regmap_update_bits(pll->sys_regs, pll->reg_ctl + fld->reg, fld->mask,
data);
spin_unlock_irqrestore(&pll->lock, flags);
return 0;
}
#define ccu_pll_dbgfs_mode 0644
#else /* !CCU_PLL_ALLOW_WRITE_DEBUGFS */
#define ccu_pll_dbgfs_bit_set NULL
#define ccu_pll_dbgfs_fld_set NULL
#define ccu_pll_dbgfs_mode 0444
#endif /* !CCU_PLL_ALLOW_WRITE_DEBUGFS */
static int ccu_pll_dbgfs_bit_get(void *priv, u64 *val)
{
struct ccu_pll_dbgfs_bit *bit = priv;
struct ccu_pll *pll = bit->pll;
u32 data = 0;
regmap_read(pll->sys_regs, pll->reg_ctl + bit->reg, &data);
*val = !!(data & bit->mask);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(ccu_pll_dbgfs_bit_fops,
ccu_pll_dbgfs_bit_get, ccu_pll_dbgfs_bit_set, "%llu\n");
static int ccu_pll_dbgfs_fld_get(void *priv, u64 *val)
{
struct ccu_pll_dbgfs_fld *fld = priv;
struct ccu_pll *pll = fld->pll;
u32 data = 0;
regmap_read(pll->sys_regs, pll->reg_ctl + fld->reg, &data);
*val = ((data & fld->mask) >> fld->lsb) + 1;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(ccu_pll_dbgfs_fld_fops,
ccu_pll_dbgfs_fld_get, ccu_pll_dbgfs_fld_set, "%llu\n");
static void ccu_pll_debug_init(struct clk_hw *hw, struct dentry *dentry)
{
struct ccu_pll *pll = to_ccu_pll(hw);
struct ccu_pll_dbgfs_bit *bits;
struct ccu_pll_dbgfs_fld *flds;
int idx;
bits = kcalloc(CCU_PLL_DBGFS_BIT_NUM, sizeof(*bits), GFP_KERNEL);
if (!bits)
return;
for (idx = 0; idx < CCU_PLL_DBGFS_BIT_NUM; ++idx) {
bits[idx] = ccu_pll_bits[idx];
bits[idx].pll = pll;
debugfs_create_file_unsafe(bits[idx].name, ccu_pll_dbgfs_mode,
dentry, &bits[idx],
&ccu_pll_dbgfs_bit_fops);
}
flds = kcalloc(CCU_PLL_DBGFS_FLD_NUM, sizeof(*flds), GFP_KERNEL);
if (!flds)
return;
for (idx = 0; idx < CCU_PLL_DBGFS_FLD_NUM; ++idx) {
flds[idx] = ccu_pll_flds[idx];
flds[idx].pll = pll;
debugfs_create_file_unsafe(flds[idx].name, ccu_pll_dbgfs_mode,
dentry, &flds[idx],
&ccu_pll_dbgfs_fld_fops);
}
}
#else /* !CONFIG_DEBUG_FS */
#define ccu_pll_debug_init NULL
#endif /* !CONFIG_DEBUG_FS */
static const struct clk_ops ccu_pll_gate_to_set_ops = {
.enable = ccu_pll_enable,
.disable = ccu_pll_disable,
.is_enabled = ccu_pll_is_enabled,
.recalc_rate = ccu_pll_recalc_rate,
.round_rate = ccu_pll_round_rate,
.set_rate = ccu_pll_set_rate_norst,
.debug_init = ccu_pll_debug_init
};
static const struct clk_ops ccu_pll_straight_set_ops = {
.enable = ccu_pll_enable,
.disable = ccu_pll_disable,
.is_enabled = ccu_pll_is_enabled,
.recalc_rate = ccu_pll_recalc_rate,
.round_rate = ccu_pll_round_rate,
.set_rate = ccu_pll_set_rate_reset,
.debug_init = ccu_pll_debug_init
};
struct ccu_pll *ccu_pll_hw_register(const struct ccu_pll_init_data *pll_init)
{
struct clk_parent_data parent_data = { };
struct clk_init_data hw_init = { };
struct ccu_pll *pll;
int ret;
if (!pll_init)
return ERR_PTR(-EINVAL);
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
if (!pll)
return ERR_PTR(-ENOMEM);
/*
* Note since Baikal-T1 System Controller registers are MMIO-backed
* we won't check the regmap IO operations return status, because it
* must be zero anyway.
*/
pll->hw.init = &hw_init;
pll->reg_ctl = pll_init->base + CCU_PLL_CTL;
pll->reg_ctl1 = pll_init->base + CCU_PLL_CTL1;
pll->sys_regs = pll_init->sys_regs;
pll->id = pll_init->id;
spin_lock_init(&pll->lock);
hw_init.name = pll_init->name;
hw_init.flags = pll_init->flags;
if (hw_init.flags & CLK_SET_RATE_GATE)
hw_init.ops = &ccu_pll_gate_to_set_ops;
else
hw_init.ops = &ccu_pll_straight_set_ops;
if (!pll_init->parent_name) {
ret = -EINVAL;
goto err_free_pll;
}
parent_data.fw_name = pll_init->parent_name;
hw_init.parent_data = &parent_data;
hw_init.num_parents = 1;
ret = of_clk_hw_register(pll_init->np, &pll->hw);
if (ret)
goto err_free_pll;
return pll;
err_free_pll:
kfree(pll);
return ERR_PTR(ret);
}
void ccu_pll_hw_unregister(struct ccu_pll *pll)
{
clk_hw_unregister(&pll->hw);
kfree(pll);
}