424 строки
10 KiB
C
424 строки
10 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* This file contains common routines for dealing with free of page tables
|
|
* Along with common page table handling code
|
|
*
|
|
* Derived from arch/powerpc/mm/tlb_64.c:
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* Dave Engebretsen <engebret@us.ibm.com>
|
|
* Rework for PPC64 port.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/hugetlb.h>
|
|
|
|
static inline int is_exec_fault(void)
|
|
{
|
|
return current->thread.regs && TRAP(current->thread.regs) == 0x400;
|
|
}
|
|
|
|
/* We only try to do i/d cache coherency on stuff that looks like
|
|
* reasonably "normal" PTEs. We currently require a PTE to be present
|
|
* and we avoid _PAGE_SPECIAL and cache inhibited pte. We also only do that
|
|
* on userspace PTEs
|
|
*/
|
|
static inline int pte_looks_normal(pte_t pte)
|
|
{
|
|
|
|
if (pte_present(pte) && !pte_special(pte)) {
|
|
if (pte_ci(pte))
|
|
return 0;
|
|
if (pte_user(pte))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct page *maybe_pte_to_page(pte_t pte)
|
|
{
|
|
unsigned long pfn = pte_pfn(pte);
|
|
struct page *page;
|
|
|
|
if (unlikely(!pfn_valid(pfn)))
|
|
return NULL;
|
|
page = pfn_to_page(pfn);
|
|
if (PageReserved(page))
|
|
return NULL;
|
|
return page;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
/* Server-style MMU handles coherency when hashing if HW exec permission
|
|
* is supposed per page (currently 64-bit only). If not, then, we always
|
|
* flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
|
|
* support falls into the same category.
|
|
*/
|
|
|
|
static pte_t set_pte_filter_hash(pte_t pte)
|
|
{
|
|
if (radix_enabled())
|
|
return pte;
|
|
|
|
pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
|
|
if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
|
|
cpu_has_feature(CPU_FTR_NOEXECUTE))) {
|
|
struct page *pg = maybe_pte_to_page(pte);
|
|
if (!pg)
|
|
return pte;
|
|
if (!test_bit(PG_arch_1, &pg->flags)) {
|
|
flush_dcache_icache_page(pg);
|
|
set_bit(PG_arch_1, &pg->flags);
|
|
}
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
#else /* CONFIG_PPC_BOOK3S */
|
|
|
|
static pte_t set_pte_filter_hash(pte_t pte) { return pte; }
|
|
|
|
#endif /* CONFIG_PPC_BOOK3S */
|
|
|
|
/* Embedded type MMU with HW exec support. This is a bit more complicated
|
|
* as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
|
|
* instead we "filter out" the exec permission for non clean pages.
|
|
*/
|
|
static pte_t set_pte_filter(pte_t pte)
|
|
{
|
|
struct page *pg;
|
|
|
|
if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
|
|
return set_pte_filter_hash(pte);
|
|
|
|
/* No exec permission in the first place, move on */
|
|
if (!pte_exec(pte) || !pte_looks_normal(pte))
|
|
return pte;
|
|
|
|
/* If you set _PAGE_EXEC on weird pages you're on your own */
|
|
pg = maybe_pte_to_page(pte);
|
|
if (unlikely(!pg))
|
|
return pte;
|
|
|
|
/* If the page clean, we move on */
|
|
if (test_bit(PG_arch_1, &pg->flags))
|
|
return pte;
|
|
|
|
/* If it's an exec fault, we flush the cache and make it clean */
|
|
if (is_exec_fault()) {
|
|
flush_dcache_icache_page(pg);
|
|
set_bit(PG_arch_1, &pg->flags);
|
|
return pte;
|
|
}
|
|
|
|
/* Else, we filter out _PAGE_EXEC */
|
|
return pte_exprotect(pte);
|
|
}
|
|
|
|
static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
|
|
int dirty)
|
|
{
|
|
struct page *pg;
|
|
|
|
if (mmu_has_feature(MMU_FTR_HPTE_TABLE))
|
|
return pte;
|
|
|
|
/* So here, we only care about exec faults, as we use them
|
|
* to recover lost _PAGE_EXEC and perform I$/D$ coherency
|
|
* if necessary. Also if _PAGE_EXEC is already set, same deal,
|
|
* we just bail out
|
|
*/
|
|
if (dirty || pte_exec(pte) || !is_exec_fault())
|
|
return pte;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
/* So this is an exec fault, _PAGE_EXEC is not set. If it was
|
|
* an error we would have bailed out earlier in do_page_fault()
|
|
* but let's make sure of it
|
|
*/
|
|
if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
|
|
return pte;
|
|
#endif /* CONFIG_DEBUG_VM */
|
|
|
|
/* If you set _PAGE_EXEC on weird pages you're on your own */
|
|
pg = maybe_pte_to_page(pte);
|
|
if (unlikely(!pg))
|
|
goto bail;
|
|
|
|
/* If the page is already clean, we move on */
|
|
if (test_bit(PG_arch_1, &pg->flags))
|
|
goto bail;
|
|
|
|
/* Clean the page and set PG_arch_1 */
|
|
flush_dcache_icache_page(pg);
|
|
set_bit(PG_arch_1, &pg->flags);
|
|
|
|
bail:
|
|
return pte_mkexec(pte);
|
|
}
|
|
|
|
/*
|
|
* set_pte stores a linux PTE into the linux page table.
|
|
*/
|
|
void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
|
|
pte_t pte)
|
|
{
|
|
/*
|
|
* Make sure hardware valid bit is not set. We don't do
|
|
* tlb flush for this update.
|
|
*/
|
|
VM_WARN_ON(pte_hw_valid(*ptep) && !pte_protnone(*ptep));
|
|
|
|
/* Add the pte bit when trying to set a pte */
|
|
pte = pte_mkpte(pte);
|
|
|
|
/* Note: mm->context.id might not yet have been assigned as
|
|
* this context might not have been activated yet when this
|
|
* is called.
|
|
*/
|
|
pte = set_pte_filter(pte);
|
|
|
|
/* Perform the setting of the PTE */
|
|
__set_pte_at(mm, addr, ptep, pte, 0);
|
|
}
|
|
|
|
/*
|
|
* This is called when relaxing access to a PTE. It's also called in the page
|
|
* fault path when we don't hit any of the major fault cases, ie, a minor
|
|
* update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
|
|
* handled those two for us, we additionally deal with missing execute
|
|
* permission here on some processors
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pte_t *ptep, pte_t entry, int dirty)
|
|
{
|
|
int changed;
|
|
entry = set_access_flags_filter(entry, vma, dirty);
|
|
changed = !pte_same(*(ptep), entry);
|
|
if (changed) {
|
|
assert_pte_locked(vma->vm_mm, address);
|
|
__ptep_set_access_flags(vma, ptep, entry,
|
|
address, mmu_virtual_psize);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
int huge_ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t pte, int dirty)
|
|
{
|
|
#ifdef HUGETLB_NEED_PRELOAD
|
|
/*
|
|
* The "return 1" forces a call of update_mmu_cache, which will write a
|
|
* TLB entry. Without this, platforms that don't do a write of the TLB
|
|
* entry in the TLB miss handler asm will fault ad infinitum.
|
|
*/
|
|
ptep_set_access_flags(vma, addr, ptep, pte, dirty);
|
|
return 1;
|
|
#else
|
|
int changed, psize;
|
|
|
|
pte = set_access_flags_filter(pte, vma, dirty);
|
|
changed = !pte_same(*(ptep), pte);
|
|
if (changed) {
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct hstate *h = hstate_vma(vma);
|
|
|
|
psize = hstate_get_psize(h);
|
|
#ifdef CONFIG_DEBUG_VM
|
|
assert_spin_locked(huge_pte_lockptr(h, vma->vm_mm, ptep));
|
|
#endif
|
|
|
|
#else
|
|
/*
|
|
* Not used on non book3s64 platforms. But 8xx
|
|
* can possibly use tsize derived from hstate.
|
|
*/
|
|
psize = 0;
|
|
#endif
|
|
__ptep_set_access_flags(vma, ptep, pte, addr, psize);
|
|
}
|
|
return changed;
|
|
#endif
|
|
}
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
if (mm == &init_mm)
|
|
return;
|
|
pgd = mm->pgd + pgd_index(addr);
|
|
BUG_ON(pgd_none(*pgd));
|
|
pud = pud_offset(pgd, addr);
|
|
BUG_ON(pud_none(*pud));
|
|
pmd = pmd_offset(pud, addr);
|
|
/*
|
|
* khugepaged to collapse normal pages to hugepage, first set
|
|
* pmd to none to force page fault/gup to take mmap_sem. After
|
|
* pmd is set to none, we do a pte_clear which does this assertion
|
|
* so if we find pmd none, return.
|
|
*/
|
|
if (pmd_none(*pmd))
|
|
return;
|
|
BUG_ON(!pmd_present(*pmd));
|
|
assert_spin_locked(pte_lockptr(mm, pmd));
|
|
}
|
|
#endif /* CONFIG_DEBUG_VM */
|
|
|
|
unsigned long vmalloc_to_phys(void *va)
|
|
{
|
|
unsigned long pfn = vmalloc_to_pfn(va);
|
|
|
|
BUG_ON(!pfn);
|
|
return __pa(pfn_to_kaddr(pfn)) + offset_in_page(va);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmalloc_to_phys);
|
|
|
|
/*
|
|
* We have 4 cases for pgds and pmds:
|
|
* (1) invalid (all zeroes)
|
|
* (2) pointer to next table, as normal; bottom 6 bits == 0
|
|
* (3) leaf pte for huge page _PAGE_PTE set
|
|
* (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
|
|
*
|
|
* So long as we atomically load page table pointers we are safe against teardown,
|
|
* we can follow the address down to the the page and take a ref on it.
|
|
* This function need to be called with interrupts disabled. We use this variant
|
|
* when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
|
|
*/
|
|
pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
|
|
bool *is_thp, unsigned *hpage_shift)
|
|
{
|
|
pgd_t pgd, *pgdp;
|
|
pud_t pud, *pudp;
|
|
pmd_t pmd, *pmdp;
|
|
pte_t *ret_pte;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
|
|
if (hpage_shift)
|
|
*hpage_shift = 0;
|
|
|
|
if (is_thp)
|
|
*is_thp = false;
|
|
|
|
pgdp = pgdir + pgd_index(ea);
|
|
pgd = READ_ONCE(*pgdp);
|
|
/*
|
|
* Always operate on the local stack value. This make sure the
|
|
* value don't get updated by a parallel THP split/collapse,
|
|
* page fault or a page unmap. The return pte_t * is still not
|
|
* stable. So should be checked there for above conditions.
|
|
*/
|
|
if (pgd_none(pgd))
|
|
return NULL;
|
|
|
|
if (pgd_is_leaf(pgd)) {
|
|
ret_pte = (pte_t *)pgdp;
|
|
goto out;
|
|
}
|
|
|
|
if (is_hugepd(__hugepd(pgd_val(pgd)))) {
|
|
hpdp = (hugepd_t *)&pgd;
|
|
goto out_huge;
|
|
}
|
|
|
|
/*
|
|
* Even if we end up with an unmap, the pgtable will not
|
|
* be freed, because we do an rcu free and here we are
|
|
* irq disabled
|
|
*/
|
|
pdshift = PUD_SHIFT;
|
|
pudp = pud_offset(&pgd, ea);
|
|
pud = READ_ONCE(*pudp);
|
|
|
|
if (pud_none(pud))
|
|
return NULL;
|
|
|
|
if (pud_is_leaf(pud)) {
|
|
ret_pte = (pte_t *)pudp;
|
|
goto out;
|
|
}
|
|
|
|
if (is_hugepd(__hugepd(pud_val(pud)))) {
|
|
hpdp = (hugepd_t *)&pud;
|
|
goto out_huge;
|
|
}
|
|
|
|
pdshift = PMD_SHIFT;
|
|
pmdp = pmd_offset(&pud, ea);
|
|
pmd = READ_ONCE(*pmdp);
|
|
|
|
/*
|
|
* A hugepage collapse is captured by this condition, see
|
|
* pmdp_collapse_flush.
|
|
*/
|
|
if (pmd_none(pmd))
|
|
return NULL;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* A hugepage split is captured by this condition, see
|
|
* pmdp_invalidate.
|
|
*
|
|
* Huge page modification can be caught here too.
|
|
*/
|
|
if (pmd_is_serializing(pmd))
|
|
return NULL;
|
|
#endif
|
|
|
|
if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
|
|
if (is_thp)
|
|
*is_thp = true;
|
|
ret_pte = (pte_t *)pmdp;
|
|
goto out;
|
|
}
|
|
|
|
if (pmd_is_leaf(pmd)) {
|
|
ret_pte = (pte_t *)pmdp;
|
|
goto out;
|
|
}
|
|
|
|
if (is_hugepd(__hugepd(pmd_val(pmd)))) {
|
|
hpdp = (hugepd_t *)&pmd;
|
|
goto out_huge;
|
|
}
|
|
|
|
return pte_offset_kernel(&pmd, ea);
|
|
|
|
out_huge:
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
ret_pte = hugepte_offset(*hpdp, ea, pdshift);
|
|
pdshift = hugepd_shift(*hpdp);
|
|
out:
|
|
if (hpage_shift)
|
|
*hpage_shift = pdshift;
|
|
return ret_pte;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__find_linux_pte);
|