1453 строки
37 KiB
C
1453 строки
37 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SH RSPI driver
|
|
*
|
|
* Copyright (C) 2012, 2013 Renesas Solutions Corp.
|
|
* Copyright (C) 2014 Glider bvba
|
|
*
|
|
* Based on spi-sh.c:
|
|
* Copyright (C) 2011 Renesas Solutions Corp.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/of.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/reset.h>
|
|
#include <linux/sh_dma.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/rspi.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#define RSPI_SPCR 0x00 /* Control Register */
|
|
#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
|
|
#define RSPI_SPPCR 0x02 /* Pin Control Register */
|
|
#define RSPI_SPSR 0x03 /* Status Register */
|
|
#define RSPI_SPDR 0x04 /* Data Register */
|
|
#define RSPI_SPSCR 0x08 /* Sequence Control Register */
|
|
#define RSPI_SPSSR 0x09 /* Sequence Status Register */
|
|
#define RSPI_SPBR 0x0a /* Bit Rate Register */
|
|
#define RSPI_SPDCR 0x0b /* Data Control Register */
|
|
#define RSPI_SPCKD 0x0c /* Clock Delay Register */
|
|
#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
|
|
#define RSPI_SPND 0x0e /* Next-Access Delay Register */
|
|
#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
|
|
#define RSPI_SPCMD0 0x10 /* Command Register 0 */
|
|
#define RSPI_SPCMD1 0x12 /* Command Register 1 */
|
|
#define RSPI_SPCMD2 0x14 /* Command Register 2 */
|
|
#define RSPI_SPCMD3 0x16 /* Command Register 3 */
|
|
#define RSPI_SPCMD4 0x18 /* Command Register 4 */
|
|
#define RSPI_SPCMD5 0x1a /* Command Register 5 */
|
|
#define RSPI_SPCMD6 0x1c /* Command Register 6 */
|
|
#define RSPI_SPCMD7 0x1e /* Command Register 7 */
|
|
#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
|
|
#define RSPI_NUM_SPCMD 8
|
|
#define RSPI_RZ_NUM_SPCMD 4
|
|
#define QSPI_NUM_SPCMD 4
|
|
|
|
/* RSPI on RZ only */
|
|
#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
|
|
#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
|
|
|
|
/* QSPI only */
|
|
#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
|
|
#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
|
|
#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
|
|
#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
|
|
#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
|
|
#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
|
|
#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
|
|
|
|
/* SPCR - Control Register */
|
|
#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
|
|
#define SPCR_SPE 0x40 /* Function Enable */
|
|
#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
|
|
#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
|
|
#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
|
|
#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
|
|
/* RSPI on SH only */
|
|
#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
|
|
#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
|
|
/* QSPI on R-Car Gen2 only */
|
|
#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
|
|
#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
|
|
|
|
/* SSLP - Slave Select Polarity Register */
|
|
#define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
|
|
|
|
/* SPPCR - Pin Control Register */
|
|
#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
|
|
#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
|
|
#define SPPCR_SPOM 0x04
|
|
#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
|
|
#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
|
|
|
|
#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
|
|
#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
|
|
|
|
/* SPSR - Status Register */
|
|
#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
|
|
#define SPSR_TEND 0x40 /* Transmit End */
|
|
#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
|
|
#define SPSR_PERF 0x08 /* Parity Error Flag */
|
|
#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
|
|
#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
|
|
#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
|
|
|
|
/* SPSCR - Sequence Control Register */
|
|
#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
|
|
|
|
/* SPSSR - Sequence Status Register */
|
|
#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
|
|
#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
|
|
|
|
/* SPDCR - Data Control Register */
|
|
#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
|
|
#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
|
|
#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
|
|
#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
|
|
#define SPDCR_SPLWORD SPDCR_SPLW1
|
|
#define SPDCR_SPLBYTE SPDCR_SPLW0
|
|
#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
|
|
#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
|
|
#define SPDCR_SLSEL1 0x08
|
|
#define SPDCR_SLSEL0 0x04
|
|
#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
|
|
#define SPDCR_SPFC1 0x02
|
|
#define SPDCR_SPFC0 0x01
|
|
#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
|
|
|
|
/* SPCKD - Clock Delay Register */
|
|
#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
|
|
|
|
/* SSLND - Slave Select Negation Delay Register */
|
|
#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
|
|
|
|
/* SPND - Next-Access Delay Register */
|
|
#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
|
|
|
|
/* SPCR2 - Control Register 2 */
|
|
#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
|
|
#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
|
|
#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
|
|
#define SPCR2_SPPE 0x01 /* Parity Enable */
|
|
|
|
/* SPCMDn - Command Registers */
|
|
#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
|
|
#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
|
|
#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
|
|
#define SPCMD_LSBF 0x1000 /* LSB First */
|
|
#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
|
|
#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
|
|
#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
|
|
#define SPCMD_SPB_16BIT 0x0100
|
|
#define SPCMD_SPB_20BIT 0x0000
|
|
#define SPCMD_SPB_24BIT 0x0100
|
|
#define SPCMD_SPB_32BIT 0x0200
|
|
#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
|
|
#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
|
|
#define SPCMD_SPIMOD1 0x0040
|
|
#define SPCMD_SPIMOD0 0x0020
|
|
#define SPCMD_SPIMOD_SINGLE 0
|
|
#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
|
|
#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
|
|
#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
|
|
#define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
|
|
#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
|
|
#define SPCMD_BRDV(brdv) ((brdv) << 2)
|
|
#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
|
|
#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
|
|
|
|
/* SPBFCR - Buffer Control Register */
|
|
#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
|
|
#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
|
|
#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
|
|
#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
|
|
/* QSPI on R-Car Gen2 */
|
|
#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
|
|
#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
|
|
#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
|
|
#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
|
|
|
|
#define QSPI_BUFFER_SIZE 32u
|
|
|
|
struct rspi_data {
|
|
void __iomem *addr;
|
|
u32 speed_hz;
|
|
struct spi_controller *ctlr;
|
|
struct platform_device *pdev;
|
|
wait_queue_head_t wait;
|
|
spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
|
|
struct clk *clk;
|
|
u16 spcmd;
|
|
u8 spsr;
|
|
u8 sppcr;
|
|
int rx_irq, tx_irq;
|
|
const struct spi_ops *ops;
|
|
|
|
unsigned dma_callbacked:1;
|
|
unsigned byte_access:1;
|
|
};
|
|
|
|
static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
|
|
{
|
|
iowrite8(data, rspi->addr + offset);
|
|
}
|
|
|
|
static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
|
|
{
|
|
iowrite16(data, rspi->addr + offset);
|
|
}
|
|
|
|
static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
|
|
{
|
|
iowrite32(data, rspi->addr + offset);
|
|
}
|
|
|
|
static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
|
|
{
|
|
return ioread8(rspi->addr + offset);
|
|
}
|
|
|
|
static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
|
|
{
|
|
return ioread16(rspi->addr + offset);
|
|
}
|
|
|
|
static void rspi_write_data(const struct rspi_data *rspi, u16 data)
|
|
{
|
|
if (rspi->byte_access)
|
|
rspi_write8(rspi, data, RSPI_SPDR);
|
|
else /* 16 bit */
|
|
rspi_write16(rspi, data, RSPI_SPDR);
|
|
}
|
|
|
|
static u16 rspi_read_data(const struct rspi_data *rspi)
|
|
{
|
|
if (rspi->byte_access)
|
|
return rspi_read8(rspi, RSPI_SPDR);
|
|
else /* 16 bit */
|
|
return rspi_read16(rspi, RSPI_SPDR);
|
|
}
|
|
|
|
/* optional functions */
|
|
struct spi_ops {
|
|
int (*set_config_register)(struct rspi_data *rspi, int access_size);
|
|
int (*transfer_one)(struct spi_controller *ctlr,
|
|
struct spi_device *spi, struct spi_transfer *xfer);
|
|
u16 extra_mode_bits;
|
|
u16 min_div;
|
|
u16 max_div;
|
|
u16 flags;
|
|
u16 fifo_size;
|
|
u8 num_hw_ss;
|
|
};
|
|
|
|
static void rspi_set_rate(struct rspi_data *rspi)
|
|
{
|
|
unsigned long clksrc;
|
|
int brdv = 0, spbr;
|
|
|
|
clksrc = clk_get_rate(rspi->clk);
|
|
spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
|
|
while (spbr > 255 && brdv < 3) {
|
|
brdv++;
|
|
spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
|
|
}
|
|
|
|
rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
|
|
rspi->spcmd |= SPCMD_BRDV(brdv);
|
|
rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
|
|
}
|
|
|
|
/*
|
|
* functions for RSPI on legacy SH
|
|
*/
|
|
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
|
|
{
|
|
/* Sets output mode, MOSI signal, and (optionally) loopback */
|
|
rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
|
|
|
|
/* Sets transfer bit rate */
|
|
rspi_set_rate(rspi);
|
|
|
|
/* Disable dummy transmission, set 16-bit word access, 1 frame */
|
|
rspi_write8(rspi, 0, RSPI_SPDCR);
|
|
rspi->byte_access = 0;
|
|
|
|
/* Sets RSPCK, SSL, next-access delay value */
|
|
rspi_write8(rspi, 0x00, RSPI_SPCKD);
|
|
rspi_write8(rspi, 0x00, RSPI_SSLND);
|
|
rspi_write8(rspi, 0x00, RSPI_SPND);
|
|
|
|
/* Sets parity, interrupt mask */
|
|
rspi_write8(rspi, 0x00, RSPI_SPCR2);
|
|
|
|
/* Resets sequencer */
|
|
rspi_write8(rspi, 0, RSPI_SPSCR);
|
|
rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
|
|
rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
|
|
|
|
/* Sets RSPI mode */
|
|
rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* functions for RSPI on RZ
|
|
*/
|
|
static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
|
|
{
|
|
/* Sets output mode, MOSI signal, and (optionally) loopback */
|
|
rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
|
|
|
|
/* Sets transfer bit rate */
|
|
rspi_set_rate(rspi);
|
|
|
|
/* Disable dummy transmission, set byte access */
|
|
rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
|
|
rspi->byte_access = 1;
|
|
|
|
/* Sets RSPCK, SSL, next-access delay value */
|
|
rspi_write8(rspi, 0x00, RSPI_SPCKD);
|
|
rspi_write8(rspi, 0x00, RSPI_SSLND);
|
|
rspi_write8(rspi, 0x00, RSPI_SPND);
|
|
|
|
/* Resets sequencer */
|
|
rspi_write8(rspi, 0, RSPI_SPSCR);
|
|
rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
|
|
rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
|
|
|
|
/* Sets RSPI mode */
|
|
rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* functions for QSPI
|
|
*/
|
|
static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
|
|
{
|
|
unsigned long clksrc;
|
|
int brdv = 0, spbr;
|
|
|
|
/* Sets output mode, MOSI signal, and (optionally) loopback */
|
|
rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
|
|
|
|
/* Sets transfer bit rate */
|
|
clksrc = clk_get_rate(rspi->clk);
|
|
if (rspi->speed_hz >= clksrc) {
|
|
spbr = 0;
|
|
rspi->speed_hz = clksrc;
|
|
} else {
|
|
spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
|
|
while (spbr > 255 && brdv < 3) {
|
|
brdv++;
|
|
spbr = DIV_ROUND_UP(spbr, 2);
|
|
}
|
|
spbr = clamp(spbr, 0, 255);
|
|
rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
|
|
}
|
|
rspi_write8(rspi, spbr, RSPI_SPBR);
|
|
rspi->spcmd |= SPCMD_BRDV(brdv);
|
|
|
|
/* Disable dummy transmission, set byte access */
|
|
rspi_write8(rspi, 0, RSPI_SPDCR);
|
|
rspi->byte_access = 1;
|
|
|
|
/* Sets RSPCK, SSL, next-access delay value */
|
|
rspi_write8(rspi, 0x00, RSPI_SPCKD);
|
|
rspi_write8(rspi, 0x00, RSPI_SSLND);
|
|
rspi_write8(rspi, 0x00, RSPI_SPND);
|
|
|
|
/* Data Length Setting */
|
|
if (access_size == 8)
|
|
rspi->spcmd |= SPCMD_SPB_8BIT;
|
|
else if (access_size == 16)
|
|
rspi->spcmd |= SPCMD_SPB_16BIT;
|
|
else
|
|
rspi->spcmd |= SPCMD_SPB_32BIT;
|
|
|
|
rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
|
|
|
|
/* Resets transfer data length */
|
|
rspi_write32(rspi, 0, QSPI_SPBMUL0);
|
|
|
|
/* Resets transmit and receive buffer */
|
|
rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
|
|
/* Sets buffer to allow normal operation */
|
|
rspi_write8(rspi, 0x00, QSPI_SPBFCR);
|
|
|
|
/* Resets sequencer */
|
|
rspi_write8(rspi, 0, RSPI_SPSCR);
|
|
rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
|
|
|
|
/* Sets RSPI mode */
|
|
rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
|
|
{
|
|
u8 data;
|
|
|
|
data = rspi_read8(rspi, reg);
|
|
data &= ~mask;
|
|
data |= (val & mask);
|
|
rspi_write8(rspi, data, reg);
|
|
}
|
|
|
|
static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
|
|
unsigned int len)
|
|
{
|
|
unsigned int n;
|
|
|
|
n = min(len, QSPI_BUFFER_SIZE);
|
|
|
|
if (len >= QSPI_BUFFER_SIZE) {
|
|
/* sets triggering number to 32 bytes */
|
|
qspi_update(rspi, SPBFCR_TXTRG_MASK,
|
|
SPBFCR_TXTRG_32B, QSPI_SPBFCR);
|
|
} else {
|
|
/* sets triggering number to 1 byte */
|
|
qspi_update(rspi, SPBFCR_TXTRG_MASK,
|
|
SPBFCR_TXTRG_1B, QSPI_SPBFCR);
|
|
}
|
|
|
|
return n;
|
|
}
|
|
|
|
static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
|
|
{
|
|
unsigned int n;
|
|
|
|
n = min(len, QSPI_BUFFER_SIZE);
|
|
|
|
if (len >= QSPI_BUFFER_SIZE) {
|
|
/* sets triggering number to 32 bytes */
|
|
qspi_update(rspi, SPBFCR_RXTRG_MASK,
|
|
SPBFCR_RXTRG_32B, QSPI_SPBFCR);
|
|
} else {
|
|
/* sets triggering number to 1 byte */
|
|
qspi_update(rspi, SPBFCR_RXTRG_MASK,
|
|
SPBFCR_RXTRG_1B, QSPI_SPBFCR);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
|
|
{
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
|
|
}
|
|
|
|
static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
|
|
{
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
|
|
}
|
|
|
|
static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
|
|
u8 enable_bit)
|
|
{
|
|
int ret;
|
|
|
|
rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (rspi->spsr & wait_mask)
|
|
return 0;
|
|
|
|
rspi_enable_irq(rspi, enable_bit);
|
|
ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
|
|
if (ret == 0 && !(rspi->spsr & wait_mask))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
|
|
{
|
|
return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
|
|
}
|
|
|
|
static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
|
|
{
|
|
return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
|
|
}
|
|
|
|
static int rspi_data_out(struct rspi_data *rspi, u8 data)
|
|
{
|
|
int error = rspi_wait_for_tx_empty(rspi);
|
|
if (error < 0) {
|
|
dev_err(&rspi->ctlr->dev, "transmit timeout\n");
|
|
return error;
|
|
}
|
|
rspi_write_data(rspi, data);
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_data_in(struct rspi_data *rspi)
|
|
{
|
|
int error;
|
|
u8 data;
|
|
|
|
error = rspi_wait_for_rx_full(rspi);
|
|
if (error < 0) {
|
|
dev_err(&rspi->ctlr->dev, "receive timeout\n");
|
|
return error;
|
|
}
|
|
data = rspi_read_data(rspi);
|
|
return data;
|
|
}
|
|
|
|
static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
|
|
unsigned int n)
|
|
{
|
|
while (n-- > 0) {
|
|
if (tx) {
|
|
int ret = rspi_data_out(rspi, *tx++);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
if (rx) {
|
|
int ret = rspi_data_in(rspi);
|
|
if (ret < 0)
|
|
return ret;
|
|
*rx++ = ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rspi_dma_complete(void *arg)
|
|
{
|
|
struct rspi_data *rspi = arg;
|
|
|
|
rspi->dma_callbacked = 1;
|
|
wake_up_interruptible(&rspi->wait);
|
|
}
|
|
|
|
static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
|
|
struct sg_table *rx)
|
|
{
|
|
struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
|
|
u8 irq_mask = 0;
|
|
unsigned int other_irq = 0;
|
|
dma_cookie_t cookie;
|
|
int ret;
|
|
|
|
/* First prepare and submit the DMA request(s), as this may fail */
|
|
if (rx) {
|
|
desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
|
|
rx->nents, DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc_rx) {
|
|
ret = -EAGAIN;
|
|
goto no_dma_rx;
|
|
}
|
|
|
|
desc_rx->callback = rspi_dma_complete;
|
|
desc_rx->callback_param = rspi;
|
|
cookie = dmaengine_submit(desc_rx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = cookie;
|
|
goto no_dma_rx;
|
|
}
|
|
|
|
irq_mask |= SPCR_SPRIE;
|
|
}
|
|
|
|
if (tx) {
|
|
desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
|
|
tx->nents, DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc_tx) {
|
|
ret = -EAGAIN;
|
|
goto no_dma_tx;
|
|
}
|
|
|
|
if (rx) {
|
|
/* No callback */
|
|
desc_tx->callback = NULL;
|
|
} else {
|
|
desc_tx->callback = rspi_dma_complete;
|
|
desc_tx->callback_param = rspi;
|
|
}
|
|
cookie = dmaengine_submit(desc_tx);
|
|
if (dma_submit_error(cookie)) {
|
|
ret = cookie;
|
|
goto no_dma_tx;
|
|
}
|
|
|
|
irq_mask |= SPCR_SPTIE;
|
|
}
|
|
|
|
/*
|
|
* DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
|
|
* called. So, this driver disables the IRQ while DMA transfer.
|
|
*/
|
|
if (tx)
|
|
disable_irq(other_irq = rspi->tx_irq);
|
|
if (rx && rspi->rx_irq != other_irq)
|
|
disable_irq(rspi->rx_irq);
|
|
|
|
rspi_enable_irq(rspi, irq_mask);
|
|
rspi->dma_callbacked = 0;
|
|
|
|
/* Now start DMA */
|
|
if (rx)
|
|
dma_async_issue_pending(rspi->ctlr->dma_rx);
|
|
if (tx)
|
|
dma_async_issue_pending(rspi->ctlr->dma_tx);
|
|
|
|
ret = wait_event_interruptible_timeout(rspi->wait,
|
|
rspi->dma_callbacked, HZ);
|
|
if (ret > 0 && rspi->dma_callbacked) {
|
|
ret = 0;
|
|
if (tx)
|
|
dmaengine_synchronize(rspi->ctlr->dma_tx);
|
|
if (rx)
|
|
dmaengine_synchronize(rspi->ctlr->dma_rx);
|
|
} else {
|
|
if (!ret) {
|
|
dev_err(&rspi->ctlr->dev, "DMA timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
if (tx)
|
|
dmaengine_terminate_sync(rspi->ctlr->dma_tx);
|
|
if (rx)
|
|
dmaengine_terminate_sync(rspi->ctlr->dma_rx);
|
|
}
|
|
|
|
rspi_disable_irq(rspi, irq_mask);
|
|
|
|
if (tx)
|
|
enable_irq(rspi->tx_irq);
|
|
if (rx && rspi->rx_irq != other_irq)
|
|
enable_irq(rspi->rx_irq);
|
|
|
|
return ret;
|
|
|
|
no_dma_tx:
|
|
if (rx)
|
|
dmaengine_terminate_sync(rspi->ctlr->dma_rx);
|
|
no_dma_rx:
|
|
if (ret == -EAGAIN) {
|
|
dev_warn_once(&rspi->ctlr->dev,
|
|
"DMA not available, falling back to PIO\n");
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void rspi_receive_init(const struct rspi_data *rspi)
|
|
{
|
|
u8 spsr;
|
|
|
|
spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPRF)
|
|
rspi_read_data(rspi); /* dummy read */
|
|
if (spsr & SPSR_OVRF)
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
|
|
RSPI_SPSR);
|
|
}
|
|
|
|
static void rspi_rz_receive_init(const struct rspi_data *rspi)
|
|
{
|
|
rspi_receive_init(rspi);
|
|
rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
|
|
rspi_write8(rspi, 0, RSPI_SPBFCR);
|
|
}
|
|
|
|
static void qspi_receive_init(const struct rspi_data *rspi)
|
|
{
|
|
u8 spsr;
|
|
|
|
spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPRF)
|
|
rspi_read_data(rspi); /* dummy read */
|
|
rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
|
|
rspi_write8(rspi, 0, QSPI_SPBFCR);
|
|
}
|
|
|
|
static bool __rspi_can_dma(const struct rspi_data *rspi,
|
|
const struct spi_transfer *xfer)
|
|
{
|
|
return xfer->len > rspi->ops->fifo_size;
|
|
}
|
|
|
|
static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
|
|
|
|
return __rspi_can_dma(rspi, xfer);
|
|
}
|
|
|
|
static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
|
|
return -EAGAIN;
|
|
|
|
/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
|
|
return rspi_dma_transfer(rspi, &xfer->tx_sg,
|
|
xfer->rx_buf ? &xfer->rx_sg : NULL);
|
|
}
|
|
|
|
static int rspi_common_transfer(struct rspi_data *rspi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int ret;
|
|
|
|
xfer->effective_speed_hz = rspi->speed_hz;
|
|
|
|
ret = rspi_dma_check_then_transfer(rspi, xfer);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
|
|
ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the last transmission */
|
|
rspi_wait_for_tx_empty(rspi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_transfer_one(struct spi_controller *ctlr,
|
|
struct spi_device *spi, struct spi_transfer *xfer)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
|
|
u8 spcr;
|
|
|
|
spcr = rspi_read8(rspi, RSPI_SPCR);
|
|
if (xfer->rx_buf) {
|
|
rspi_receive_init(rspi);
|
|
spcr &= ~SPCR_TXMD;
|
|
} else {
|
|
spcr |= SPCR_TXMD;
|
|
}
|
|
rspi_write8(rspi, spcr, RSPI_SPCR);
|
|
|
|
return rspi_common_transfer(rspi, xfer);
|
|
}
|
|
|
|
static int rspi_rz_transfer_one(struct spi_controller *ctlr,
|
|
struct spi_device *spi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
|
|
|
|
rspi_rz_receive_init(rspi);
|
|
|
|
return rspi_common_transfer(rspi, xfer);
|
|
}
|
|
|
|
static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
|
|
u8 *rx, unsigned int len)
|
|
{
|
|
unsigned int i, n;
|
|
int ret;
|
|
|
|
while (len > 0) {
|
|
n = qspi_set_send_trigger(rspi, len);
|
|
qspi_set_receive_trigger(rspi, len);
|
|
ret = rspi_wait_for_tx_empty(rspi);
|
|
if (ret < 0) {
|
|
dev_err(&rspi->ctlr->dev, "transmit timeout\n");
|
|
return ret;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
rspi_write_data(rspi, *tx++);
|
|
|
|
ret = rspi_wait_for_rx_full(rspi);
|
|
if (ret < 0) {
|
|
dev_err(&rspi->ctlr->dev, "receive timeout\n");
|
|
return ret;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
*rx++ = rspi_read_data(rspi);
|
|
|
|
len -= n;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qspi_transfer_out_in(struct rspi_data *rspi,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int ret;
|
|
|
|
qspi_receive_init(rspi);
|
|
|
|
ret = rspi_dma_check_then_transfer(rspi, xfer);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
|
|
return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
|
|
xfer->rx_buf, xfer->len);
|
|
}
|
|
|
|
static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
|
|
{
|
|
const u8 *tx = xfer->tx_buf;
|
|
unsigned int n = xfer->len;
|
|
unsigned int i, len;
|
|
int ret;
|
|
|
|
if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
|
|
ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
}
|
|
|
|
while (n > 0) {
|
|
len = qspi_set_send_trigger(rspi, n);
|
|
ret = rspi_wait_for_tx_empty(rspi);
|
|
if (ret < 0) {
|
|
dev_err(&rspi->ctlr->dev, "transmit timeout\n");
|
|
return ret;
|
|
}
|
|
for (i = 0; i < len; i++)
|
|
rspi_write_data(rspi, *tx++);
|
|
|
|
n -= len;
|
|
}
|
|
|
|
/* Wait for the last transmission */
|
|
rspi_wait_for_tx_empty(rspi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
|
|
{
|
|
u8 *rx = xfer->rx_buf;
|
|
unsigned int n = xfer->len;
|
|
unsigned int i, len;
|
|
int ret;
|
|
|
|
if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
|
|
ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
|
|
if (ret != -EAGAIN)
|
|
return ret;
|
|
}
|
|
|
|
while (n > 0) {
|
|
len = qspi_set_receive_trigger(rspi, n);
|
|
ret = rspi_wait_for_rx_full(rspi);
|
|
if (ret < 0) {
|
|
dev_err(&rspi->ctlr->dev, "receive timeout\n");
|
|
return ret;
|
|
}
|
|
for (i = 0; i < len; i++)
|
|
*rx++ = rspi_read_data(rspi);
|
|
|
|
n -= len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qspi_transfer_one(struct spi_controller *ctlr,
|
|
struct spi_device *spi, struct spi_transfer *xfer)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
|
|
|
|
xfer->effective_speed_hz = rspi->speed_hz;
|
|
if (spi->mode & SPI_LOOP) {
|
|
return qspi_transfer_out_in(rspi, xfer);
|
|
} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
|
|
/* Quad or Dual SPI Write */
|
|
return qspi_transfer_out(rspi, xfer);
|
|
} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
|
|
/* Quad or Dual SPI Read */
|
|
return qspi_transfer_in(rspi, xfer);
|
|
} else {
|
|
/* Single SPI Transfer */
|
|
return qspi_transfer_out_in(rspi, xfer);
|
|
}
|
|
}
|
|
|
|
static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
|
|
{
|
|
if (xfer->tx_buf)
|
|
switch (xfer->tx_nbits) {
|
|
case SPI_NBITS_QUAD:
|
|
return SPCMD_SPIMOD_QUAD;
|
|
case SPI_NBITS_DUAL:
|
|
return SPCMD_SPIMOD_DUAL;
|
|
default:
|
|
return 0;
|
|
}
|
|
if (xfer->rx_buf)
|
|
switch (xfer->rx_nbits) {
|
|
case SPI_NBITS_QUAD:
|
|
return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
|
|
case SPI_NBITS_DUAL:
|
|
return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int qspi_setup_sequencer(struct rspi_data *rspi,
|
|
const struct spi_message *msg)
|
|
{
|
|
const struct spi_transfer *xfer;
|
|
unsigned int i = 0, len = 0;
|
|
u16 current_mode = 0xffff, mode;
|
|
|
|
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
|
|
mode = qspi_transfer_mode(xfer);
|
|
if (mode == current_mode) {
|
|
len += xfer->len;
|
|
continue;
|
|
}
|
|
|
|
/* Transfer mode change */
|
|
if (i) {
|
|
/* Set transfer data length of previous transfer */
|
|
rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
|
|
}
|
|
|
|
if (i >= QSPI_NUM_SPCMD) {
|
|
dev_err(&msg->spi->dev,
|
|
"Too many different transfer modes");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Program transfer mode for this transfer */
|
|
rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
|
|
current_mode = mode;
|
|
len = xfer->len;
|
|
i++;
|
|
}
|
|
if (i) {
|
|
/* Set final transfer data length and sequence length */
|
|
rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
|
|
rspi_write8(rspi, i - 1, RSPI_SPSCR);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_setup(struct spi_device *spi)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
|
|
u8 sslp;
|
|
|
|
if (spi_get_csgpiod(spi, 0))
|
|
return 0;
|
|
|
|
pm_runtime_get_sync(&rspi->pdev->dev);
|
|
spin_lock_irq(&rspi->lock);
|
|
|
|
sslp = rspi_read8(rspi, RSPI_SSLP);
|
|
if (spi->mode & SPI_CS_HIGH)
|
|
sslp |= SSLP_SSLP(spi_get_chipselect(spi, 0));
|
|
else
|
|
sslp &= ~SSLP_SSLP(spi_get_chipselect(spi, 0));
|
|
rspi_write8(rspi, sslp, RSPI_SSLP);
|
|
|
|
spin_unlock_irq(&rspi->lock);
|
|
pm_runtime_put(&rspi->pdev->dev);
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_prepare_message(struct spi_controller *ctlr,
|
|
struct spi_message *msg)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
|
|
struct spi_device *spi = msg->spi;
|
|
const struct spi_transfer *xfer;
|
|
int ret;
|
|
|
|
/*
|
|
* As the Bit Rate Register must not be changed while the device is
|
|
* active, all transfers in a message must use the same bit rate.
|
|
* In theory, the sequencer could be enabled, and each Command Register
|
|
* could divide the base bit rate by a different value.
|
|
* However, most RSPI variants do not have Transfer Data Length
|
|
* Multiplier Setting Registers, so each sequence step would be limited
|
|
* to a single word, making this feature unsuitable for large
|
|
* transfers, which would gain most from it.
|
|
*/
|
|
rspi->speed_hz = spi->max_speed_hz;
|
|
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
|
|
if (xfer->speed_hz < rspi->speed_hz)
|
|
rspi->speed_hz = xfer->speed_hz;
|
|
}
|
|
|
|
rspi->spcmd = SPCMD_SSLKP;
|
|
if (spi->mode & SPI_CPOL)
|
|
rspi->spcmd |= SPCMD_CPOL;
|
|
if (spi->mode & SPI_CPHA)
|
|
rspi->spcmd |= SPCMD_CPHA;
|
|
if (spi->mode & SPI_LSB_FIRST)
|
|
rspi->spcmd |= SPCMD_LSBF;
|
|
|
|
/* Configure slave signal to assert */
|
|
rspi->spcmd |= SPCMD_SSLA(spi_get_csgpiod(spi, 0) ? rspi->ctlr->unused_native_cs
|
|
: spi_get_chipselect(spi, 0));
|
|
|
|
/* CMOS output mode and MOSI signal from previous transfer */
|
|
rspi->sppcr = 0;
|
|
if (spi->mode & SPI_LOOP)
|
|
rspi->sppcr |= SPPCR_SPLP;
|
|
|
|
rspi->ops->set_config_register(rspi, 8);
|
|
|
|
if (msg->spi->mode &
|
|
(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
|
|
/* Setup sequencer for messages with multiple transfer modes */
|
|
ret = qspi_setup_sequencer(rspi, msg);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Enable SPI function in master mode */
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_unprepare_message(struct spi_controller *ctlr,
|
|
struct spi_message *msg)
|
|
{
|
|
struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
|
|
|
|
/* Disable SPI function */
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
|
|
|
|
/* Reset sequencer for Single SPI Transfers */
|
|
rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
|
|
rspi_write8(rspi, 0, RSPI_SPSCR);
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t rspi_irq_mux(int irq, void *_sr)
|
|
{
|
|
struct rspi_data *rspi = _sr;
|
|
u8 spsr;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u8 disable_irq = 0;
|
|
|
|
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPRF)
|
|
disable_irq |= SPCR_SPRIE;
|
|
if (spsr & SPSR_SPTEF)
|
|
disable_irq |= SPCR_SPTIE;
|
|
|
|
if (disable_irq) {
|
|
ret = IRQ_HANDLED;
|
|
rspi_disable_irq(rspi, disable_irq);
|
|
wake_up(&rspi->wait);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t rspi_irq_rx(int irq, void *_sr)
|
|
{
|
|
struct rspi_data *rspi = _sr;
|
|
u8 spsr;
|
|
|
|
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPRF) {
|
|
rspi_disable_irq(rspi, SPCR_SPRIE);
|
|
wake_up(&rspi->wait);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t rspi_irq_tx(int irq, void *_sr)
|
|
{
|
|
struct rspi_data *rspi = _sr;
|
|
u8 spsr;
|
|
|
|
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPTEF) {
|
|
rspi_disable_irq(rspi, SPCR_SPTIE);
|
|
wake_up(&rspi->wait);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct dma_chan *rspi_request_dma_chan(struct device *dev,
|
|
enum dma_transfer_direction dir,
|
|
unsigned int id,
|
|
dma_addr_t port_addr)
|
|
{
|
|
dma_cap_mask_t mask;
|
|
struct dma_chan *chan;
|
|
struct dma_slave_config cfg;
|
|
int ret;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
|
|
(void *)(unsigned long)id, dev,
|
|
dir == DMA_MEM_TO_DEV ? "tx" : "rx");
|
|
if (!chan) {
|
|
dev_warn(dev, "dma_request_slave_channel_compat failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
cfg.dst_addr = port_addr + RSPI_SPDR;
|
|
cfg.src_addr = port_addr + RSPI_SPDR;
|
|
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
cfg.direction = dir;
|
|
|
|
ret = dmaengine_slave_config(chan, &cfg);
|
|
if (ret) {
|
|
dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
|
|
dma_release_channel(chan);
|
|
return NULL;
|
|
}
|
|
|
|
return chan;
|
|
}
|
|
|
|
static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
|
|
const struct resource *res)
|
|
{
|
|
const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
|
|
unsigned int dma_tx_id, dma_rx_id;
|
|
|
|
if (dev->of_node) {
|
|
/* In the OF case we will get the slave IDs from the DT */
|
|
dma_tx_id = 0;
|
|
dma_rx_id = 0;
|
|
} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
|
|
dma_tx_id = rspi_pd->dma_tx_id;
|
|
dma_rx_id = rspi_pd->dma_rx_id;
|
|
} else {
|
|
/* The driver assumes no error. */
|
|
return 0;
|
|
}
|
|
|
|
ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
|
|
res->start);
|
|
if (!ctlr->dma_tx)
|
|
return -ENODEV;
|
|
|
|
ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
|
|
res->start);
|
|
if (!ctlr->dma_rx) {
|
|
dma_release_channel(ctlr->dma_tx);
|
|
ctlr->dma_tx = NULL;
|
|
return -ENODEV;
|
|
}
|
|
|
|
ctlr->can_dma = rspi_can_dma;
|
|
dev_info(dev, "DMA available");
|
|
return 0;
|
|
}
|
|
|
|
static void rspi_release_dma(struct spi_controller *ctlr)
|
|
{
|
|
if (ctlr->dma_tx)
|
|
dma_release_channel(ctlr->dma_tx);
|
|
if (ctlr->dma_rx)
|
|
dma_release_channel(ctlr->dma_rx);
|
|
}
|
|
|
|
static void rspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct rspi_data *rspi = platform_get_drvdata(pdev);
|
|
|
|
rspi_release_dma(rspi->ctlr);
|
|
pm_runtime_disable(&pdev->dev);
|
|
}
|
|
|
|
static const struct spi_ops rspi_ops = {
|
|
.set_config_register = rspi_set_config_register,
|
|
.transfer_one = rspi_transfer_one,
|
|
.min_div = 2,
|
|
.max_div = 4096,
|
|
.flags = SPI_CONTROLLER_MUST_TX,
|
|
.fifo_size = 8,
|
|
.num_hw_ss = 2,
|
|
};
|
|
|
|
static const struct spi_ops rspi_rz_ops __maybe_unused = {
|
|
.set_config_register = rspi_rz_set_config_register,
|
|
.transfer_one = rspi_rz_transfer_one,
|
|
.min_div = 2,
|
|
.max_div = 4096,
|
|
.flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
|
|
.fifo_size = 8, /* 8 for TX, 32 for RX */
|
|
.num_hw_ss = 1,
|
|
};
|
|
|
|
static const struct spi_ops qspi_ops __maybe_unused = {
|
|
.set_config_register = qspi_set_config_register,
|
|
.transfer_one = qspi_transfer_one,
|
|
.extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
|
|
SPI_RX_DUAL | SPI_RX_QUAD,
|
|
.min_div = 1,
|
|
.max_div = 4080,
|
|
.flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
|
|
.fifo_size = 32,
|
|
.num_hw_ss = 1,
|
|
};
|
|
|
|
static const struct of_device_id rspi_of_match[] __maybe_unused = {
|
|
/* RSPI on legacy SH */
|
|
{ .compatible = "renesas,rspi", .data = &rspi_ops },
|
|
/* RSPI on RZ/A1H */
|
|
{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
|
|
/* QSPI on R-Car Gen2 */
|
|
{ .compatible = "renesas,qspi", .data = &qspi_ops },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, rspi_of_match);
|
|
|
|
#ifdef CONFIG_OF
|
|
static void rspi_reset_control_assert(void *data)
|
|
{
|
|
reset_control_assert(data);
|
|
}
|
|
|
|
static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
|
|
{
|
|
struct reset_control *rstc;
|
|
u32 num_cs;
|
|
int error;
|
|
|
|
/* Parse DT properties */
|
|
error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
|
|
if (error) {
|
|
dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
|
|
return error;
|
|
}
|
|
|
|
ctlr->num_chipselect = num_cs;
|
|
|
|
rstc = devm_reset_control_get_optional_exclusive(dev, NULL);
|
|
if (IS_ERR(rstc))
|
|
return dev_err_probe(dev, PTR_ERR(rstc),
|
|
"failed to get reset ctrl\n");
|
|
|
|
error = reset_control_deassert(rstc);
|
|
if (error) {
|
|
dev_err(dev, "failed to deassert reset %d\n", error);
|
|
return error;
|
|
}
|
|
|
|
error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc);
|
|
if (error) {
|
|
dev_err(dev, "failed to register assert devm action, %d\n", error);
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define rspi_of_match NULL
|
|
static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif /* CONFIG_OF */
|
|
|
|
static int rspi_request_irq(struct device *dev, unsigned int irq,
|
|
irq_handler_t handler, const char *suffix,
|
|
void *dev_id)
|
|
{
|
|
const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
|
|
dev_name(dev), suffix);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
|
|
return devm_request_irq(dev, irq, handler, 0, name, dev_id);
|
|
}
|
|
|
|
static int rspi_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
struct spi_controller *ctlr;
|
|
struct rspi_data *rspi;
|
|
int ret;
|
|
const struct rspi_plat_data *rspi_pd;
|
|
const struct spi_ops *ops;
|
|
unsigned long clksrc;
|
|
|
|
ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rspi_data));
|
|
if (ctlr == NULL)
|
|
return -ENOMEM;
|
|
|
|
ops = of_device_get_match_data(&pdev->dev);
|
|
if (ops) {
|
|
ret = rspi_parse_dt(&pdev->dev, ctlr);
|
|
if (ret)
|
|
goto error1;
|
|
} else {
|
|
ops = (struct spi_ops *)pdev->id_entry->driver_data;
|
|
rspi_pd = dev_get_platdata(&pdev->dev);
|
|
if (rspi_pd && rspi_pd->num_chipselect)
|
|
ctlr->num_chipselect = rspi_pd->num_chipselect;
|
|
else
|
|
ctlr->num_chipselect = 2; /* default */
|
|
}
|
|
|
|
rspi = spi_controller_get_devdata(ctlr);
|
|
platform_set_drvdata(pdev, rspi);
|
|
rspi->ops = ops;
|
|
rspi->ctlr = ctlr;
|
|
|
|
rspi->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
|
|
if (IS_ERR(rspi->addr)) {
|
|
ret = PTR_ERR(rspi->addr);
|
|
goto error1;
|
|
}
|
|
|
|
rspi->clk = devm_clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(rspi->clk)) {
|
|
dev_err(&pdev->dev, "cannot get clock\n");
|
|
ret = PTR_ERR(rspi->clk);
|
|
goto error1;
|
|
}
|
|
|
|
rspi->pdev = pdev;
|
|
pm_runtime_enable(&pdev->dev);
|
|
|
|
init_waitqueue_head(&rspi->wait);
|
|
spin_lock_init(&rspi->lock);
|
|
|
|
ctlr->bus_num = pdev->id;
|
|
ctlr->setup = rspi_setup;
|
|
ctlr->auto_runtime_pm = true;
|
|
ctlr->transfer_one = ops->transfer_one;
|
|
ctlr->prepare_message = rspi_prepare_message;
|
|
ctlr->unprepare_message = rspi_unprepare_message;
|
|
ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
|
|
SPI_LOOP | ops->extra_mode_bits;
|
|
clksrc = clk_get_rate(rspi->clk);
|
|
ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
|
|
ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
|
|
ctlr->flags = ops->flags;
|
|
ctlr->dev.of_node = pdev->dev.of_node;
|
|
ctlr->use_gpio_descriptors = true;
|
|
ctlr->max_native_cs = rspi->ops->num_hw_ss;
|
|
|
|
ret = platform_get_irq_byname_optional(pdev, "rx");
|
|
if (ret < 0) {
|
|
ret = platform_get_irq_byname_optional(pdev, "mux");
|
|
if (ret < 0)
|
|
ret = platform_get_irq(pdev, 0);
|
|
if (ret >= 0)
|
|
rspi->rx_irq = rspi->tx_irq = ret;
|
|
} else {
|
|
rspi->rx_irq = ret;
|
|
ret = platform_get_irq_byname(pdev, "tx");
|
|
if (ret >= 0)
|
|
rspi->tx_irq = ret;
|
|
}
|
|
|
|
if (rspi->rx_irq == rspi->tx_irq) {
|
|
/* Single multiplexed interrupt */
|
|
ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
|
|
"mux", rspi);
|
|
} else {
|
|
/* Multi-interrupt mode, only SPRI and SPTI are used */
|
|
ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
|
|
"rx", rspi);
|
|
if (!ret)
|
|
ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
|
|
rspi_irq_tx, "tx", rspi);
|
|
}
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "request_irq error\n");
|
|
goto error2;
|
|
}
|
|
|
|
ret = rspi_request_dma(&pdev->dev, ctlr, res);
|
|
if (ret < 0)
|
|
dev_warn(&pdev->dev, "DMA not available, using PIO\n");
|
|
|
|
ret = devm_spi_register_controller(&pdev->dev, ctlr);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
|
|
goto error3;
|
|
}
|
|
|
|
dev_info(&pdev->dev, "probed\n");
|
|
|
|
return 0;
|
|
|
|
error3:
|
|
rspi_release_dma(ctlr);
|
|
error2:
|
|
pm_runtime_disable(&pdev->dev);
|
|
error1:
|
|
spi_controller_put(ctlr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct platform_device_id spi_driver_ids[] = {
|
|
{ "rspi", (kernel_ulong_t)&rspi_ops },
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int rspi_suspend(struct device *dev)
|
|
{
|
|
struct rspi_data *rspi = dev_get_drvdata(dev);
|
|
|
|
return spi_controller_suspend(rspi->ctlr);
|
|
}
|
|
|
|
static int rspi_resume(struct device *dev)
|
|
{
|
|
struct rspi_data *rspi = dev_get_drvdata(dev);
|
|
|
|
return spi_controller_resume(rspi->ctlr);
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
|
|
#define DEV_PM_OPS &rspi_pm_ops
|
|
#else
|
|
#define DEV_PM_OPS NULL
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static struct platform_driver rspi_driver = {
|
|
.probe = rspi_probe,
|
|
.remove_new = rspi_remove,
|
|
.id_table = spi_driver_ids,
|
|
.driver = {
|
|
.name = "renesas_spi",
|
|
.pm = DEV_PM_OPS,
|
|
.of_match_table = of_match_ptr(rspi_of_match),
|
|
},
|
|
};
|
|
module_platform_driver(rspi_driver);
|
|
|
|
MODULE_DESCRIPTION("Renesas RSPI bus driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Yoshihiro Shimoda");
|