WSL2-Linux-Kernel/drivers/spi/spi-sprd.c

1083 строки
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Spreadtrum Communications Inc.
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/sprd-dma.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#define SPRD_SPI_TXD 0x0
#define SPRD_SPI_CLKD 0x4
#define SPRD_SPI_CTL0 0x8
#define SPRD_SPI_CTL1 0xc
#define SPRD_SPI_CTL2 0x10
#define SPRD_SPI_CTL3 0x14
#define SPRD_SPI_CTL4 0x18
#define SPRD_SPI_CTL5 0x1c
#define SPRD_SPI_INT_EN 0x20
#define SPRD_SPI_INT_CLR 0x24
#define SPRD_SPI_INT_RAW_STS 0x28
#define SPRD_SPI_INT_MASK_STS 0x2c
#define SPRD_SPI_STS1 0x30
#define SPRD_SPI_STS2 0x34
#define SPRD_SPI_DSP_WAIT 0x38
#define SPRD_SPI_STS3 0x3c
#define SPRD_SPI_CTL6 0x40
#define SPRD_SPI_STS4 0x44
#define SPRD_SPI_FIFO_RST 0x48
#define SPRD_SPI_CTL7 0x4c
#define SPRD_SPI_STS5 0x50
#define SPRD_SPI_CTL8 0x54
#define SPRD_SPI_CTL9 0x58
#define SPRD_SPI_CTL10 0x5c
#define SPRD_SPI_CTL11 0x60
#define SPRD_SPI_CTL12 0x64
#define SPRD_SPI_STS6 0x68
#define SPRD_SPI_STS7 0x6c
#define SPRD_SPI_STS8 0x70
#define SPRD_SPI_STS9 0x74
/* Bits & mask definition for register CTL0 */
#define SPRD_SPI_SCK_REV BIT(13)
#define SPRD_SPI_NG_TX BIT(1)
#define SPRD_SPI_NG_RX BIT(0)
#define SPRD_SPI_CHNL_LEN_MASK GENMASK(4, 0)
#define SPRD_SPI_CSN_MASK GENMASK(11, 8)
#define SPRD_SPI_CS0_VALID BIT(8)
/* Bits & mask definition for register SPI_INT_EN */
#define SPRD_SPI_TX_END_INT_EN BIT(8)
#define SPRD_SPI_RX_END_INT_EN BIT(9)
/* Bits & mask definition for register SPI_INT_RAW_STS */
#define SPRD_SPI_TX_END_RAW BIT(8)
#define SPRD_SPI_RX_END_RAW BIT(9)
/* Bits & mask definition for register SPI_INT_CLR */
#define SPRD_SPI_TX_END_CLR BIT(8)
#define SPRD_SPI_RX_END_CLR BIT(9)
/* Bits & mask definition for register INT_MASK_STS */
#define SPRD_SPI_MASK_RX_END BIT(9)
#define SPRD_SPI_MASK_TX_END BIT(8)
/* Bits & mask definition for register STS2 */
#define SPRD_SPI_TX_BUSY BIT(8)
/* Bits & mask definition for register CTL1 */
#define SPRD_SPI_RX_MODE BIT(12)
#define SPRD_SPI_TX_MODE BIT(13)
#define SPRD_SPI_RTX_MD_MASK GENMASK(13, 12)
/* Bits & mask definition for register CTL2 */
#define SPRD_SPI_DMA_EN BIT(6)
/* Bits & mask definition for register CTL4 */
#define SPRD_SPI_START_RX BIT(9)
#define SPRD_SPI_ONLY_RECV_MASK GENMASK(8, 0)
/* Bits & mask definition for register SPI_INT_CLR */
#define SPRD_SPI_RX_END_INT_CLR BIT(9)
#define SPRD_SPI_TX_END_INT_CLR BIT(8)
/* Bits & mask definition for register SPI_INT_RAW */
#define SPRD_SPI_RX_END_IRQ BIT(9)
#define SPRD_SPI_TX_END_IRQ BIT(8)
/* Bits & mask definition for register CTL12 */
#define SPRD_SPI_SW_RX_REQ BIT(0)
#define SPRD_SPI_SW_TX_REQ BIT(1)
/* Bits & mask definition for register CTL7 */
#define SPRD_SPI_DATA_LINE2_EN BIT(15)
#define SPRD_SPI_MODE_MASK GENMASK(5, 3)
#define SPRD_SPI_MODE_OFFSET 3
#define SPRD_SPI_3WIRE_MODE 4
#define SPRD_SPI_4WIRE_MODE 0
/* Bits & mask definition for register CTL8 */
#define SPRD_SPI_TX_MAX_LEN_MASK GENMASK(19, 0)
#define SPRD_SPI_TX_LEN_H_MASK GENMASK(3, 0)
#define SPRD_SPI_TX_LEN_H_OFFSET 16
/* Bits & mask definition for register CTL9 */
#define SPRD_SPI_TX_LEN_L_MASK GENMASK(15, 0)
/* Bits & mask definition for register CTL10 */
#define SPRD_SPI_RX_MAX_LEN_MASK GENMASK(19, 0)
#define SPRD_SPI_RX_LEN_H_MASK GENMASK(3, 0)
#define SPRD_SPI_RX_LEN_H_OFFSET 16
/* Bits & mask definition for register CTL11 */
#define SPRD_SPI_RX_LEN_L_MASK GENMASK(15, 0)
/* Default & maximum word delay cycles */
#define SPRD_SPI_MIN_DELAY_CYCLE 14
#define SPRD_SPI_MAX_DELAY_CYCLE 130
#define SPRD_SPI_FIFO_SIZE 32
#define SPRD_SPI_CHIP_CS_NUM 0x4
#define SPRD_SPI_CHNL_LEN 2
#define SPRD_SPI_DEFAULT_SOURCE 26000000
#define SPRD_SPI_MAX_SPEED_HZ 48000000
#define SPRD_SPI_AUTOSUSPEND_DELAY 100
#define SPRD_SPI_DMA_STEP 8
enum sprd_spi_dma_channel {
SPRD_SPI_RX,
SPRD_SPI_TX,
SPRD_SPI_MAX,
};
struct sprd_spi_dma {
bool enable;
struct dma_chan *dma_chan[SPRD_SPI_MAX];
enum dma_slave_buswidth width;
u32 fragmens_len;
u32 rx_len;
};
struct sprd_spi {
void __iomem *base;
phys_addr_t phy_base;
struct device *dev;
struct clk *clk;
int irq;
u32 src_clk;
u32 hw_mode;
u32 trans_len;
u32 trans_mode;
u32 word_delay;
u32 hw_speed_hz;
u32 len;
int status;
struct sprd_spi_dma dma;
struct completion xfer_completion;
const void *tx_buf;
void *rx_buf;
int (*read_bufs)(struct sprd_spi *ss, u32 len);
int (*write_bufs)(struct sprd_spi *ss, u32 len);
};
static u32 sprd_spi_transfer_max_timeout(struct sprd_spi *ss,
struct spi_transfer *t)
{
/*
* The time spent on transmission of the full FIFO data is the maximum
* SPI transmission time.
*/
u32 size = t->bits_per_word * SPRD_SPI_FIFO_SIZE;
u32 bit_time_us = DIV_ROUND_UP(USEC_PER_SEC, ss->hw_speed_hz);
u32 total_time_us = size * bit_time_us;
/*
* There is an interval between data and the data in our SPI hardware,
* so the total transmission time need add the interval time.
*/
u32 interval_cycle = SPRD_SPI_FIFO_SIZE * ss->word_delay;
u32 interval_time_us = DIV_ROUND_UP(interval_cycle * USEC_PER_SEC,
ss->src_clk);
return total_time_us + interval_time_us;
}
static int sprd_spi_wait_for_tx_end(struct sprd_spi *ss, struct spi_transfer *t)
{
u32 val, us;
int ret;
us = sprd_spi_transfer_max_timeout(ss, t);
ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
val & SPRD_SPI_TX_END_IRQ, 0, us);
if (ret) {
dev_err(ss->dev, "SPI error, spi send timeout!\n");
return ret;
}
ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_STS2, val,
!(val & SPRD_SPI_TX_BUSY), 0, us);
if (ret) {
dev_err(ss->dev, "SPI error, spi busy timeout!\n");
return ret;
}
writel_relaxed(SPRD_SPI_TX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
return 0;
}
static int sprd_spi_wait_for_rx_end(struct sprd_spi *ss, struct spi_transfer *t)
{
u32 val, us;
int ret;
us = sprd_spi_transfer_max_timeout(ss, t);
ret = readl_relaxed_poll_timeout(ss->base + SPRD_SPI_INT_RAW_STS, val,
val & SPRD_SPI_RX_END_IRQ, 0, us);
if (ret) {
dev_err(ss->dev, "SPI error, spi rx timeout!\n");
return ret;
}
writel_relaxed(SPRD_SPI_RX_END_INT_CLR, ss->base + SPRD_SPI_INT_CLR);
return 0;
}
static void sprd_spi_tx_req(struct sprd_spi *ss)
{
writel_relaxed(SPRD_SPI_SW_TX_REQ, ss->base + SPRD_SPI_CTL12);
}
static void sprd_spi_rx_req(struct sprd_spi *ss)
{
writel_relaxed(SPRD_SPI_SW_RX_REQ, ss->base + SPRD_SPI_CTL12);
}
static void sprd_spi_enter_idle(struct sprd_spi *ss)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
val &= ~SPRD_SPI_RTX_MD_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL1);
}
static void sprd_spi_set_transfer_bits(struct sprd_spi *ss, u32 bits)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
/* Set the valid bits for every transaction */
val &= ~(SPRD_SPI_CHNL_LEN_MASK << SPRD_SPI_CHNL_LEN);
val |= bits << SPRD_SPI_CHNL_LEN;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
}
static void sprd_spi_set_tx_length(struct sprd_spi *ss, u32 length)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL8);
length &= SPRD_SPI_TX_MAX_LEN_MASK;
val &= ~SPRD_SPI_TX_LEN_H_MASK;
val |= length >> SPRD_SPI_TX_LEN_H_OFFSET;
writel_relaxed(val, ss->base + SPRD_SPI_CTL8);
val = length & SPRD_SPI_TX_LEN_L_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL9);
}
static void sprd_spi_set_rx_length(struct sprd_spi *ss, u32 length)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL10);
length &= SPRD_SPI_RX_MAX_LEN_MASK;
val &= ~SPRD_SPI_RX_LEN_H_MASK;
val |= length >> SPRD_SPI_RX_LEN_H_OFFSET;
writel_relaxed(val, ss->base + SPRD_SPI_CTL10);
val = length & SPRD_SPI_RX_LEN_L_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL11);
}
static void sprd_spi_chipselect(struct spi_device *sdev, bool cs)
{
struct spi_controller *sctlr = sdev->controller;
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
u32 val;
val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
/* The SPI controller will pull down CS pin if cs is 0 */
if (!cs) {
val &= ~SPRD_SPI_CS0_VALID;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
} else {
val |= SPRD_SPI_CSN_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
}
}
static int sprd_spi_write_only_receive(struct sprd_spi *ss, u32 len)
{
u32 val;
/* Clear the start receive bit and reset receive data number */
val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
val &= ~(SPRD_SPI_START_RX | SPRD_SPI_ONLY_RECV_MASK);
writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
/* Set the receive data length */
val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
val |= len & SPRD_SPI_ONLY_RECV_MASK;
writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
/* Trigger to receive data */
val = readl_relaxed(ss->base + SPRD_SPI_CTL4);
val |= SPRD_SPI_START_RX;
writel_relaxed(val, ss->base + SPRD_SPI_CTL4);
return len;
}
static int sprd_spi_write_bufs_u8(struct sprd_spi *ss, u32 len)
{
u8 *tx_p = (u8 *)ss->tx_buf;
int i;
for (i = 0; i < len; i++)
writeb_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
ss->tx_buf += i;
return i;
}
static int sprd_spi_write_bufs_u16(struct sprd_spi *ss, u32 len)
{
u16 *tx_p = (u16 *)ss->tx_buf;
int i;
for (i = 0; i < len; i++)
writew_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
ss->tx_buf += i << 1;
return i << 1;
}
static int sprd_spi_write_bufs_u32(struct sprd_spi *ss, u32 len)
{
u32 *tx_p = (u32 *)ss->tx_buf;
int i;
for (i = 0; i < len; i++)
writel_relaxed(tx_p[i], ss->base + SPRD_SPI_TXD);
ss->tx_buf += i << 2;
return i << 2;
}
static int sprd_spi_read_bufs_u8(struct sprd_spi *ss, u32 len)
{
u8 *rx_p = (u8 *)ss->rx_buf;
int i;
for (i = 0; i < len; i++)
rx_p[i] = readb_relaxed(ss->base + SPRD_SPI_TXD);
ss->rx_buf += i;
return i;
}
static int sprd_spi_read_bufs_u16(struct sprd_spi *ss, u32 len)
{
u16 *rx_p = (u16 *)ss->rx_buf;
int i;
for (i = 0; i < len; i++)
rx_p[i] = readw_relaxed(ss->base + SPRD_SPI_TXD);
ss->rx_buf += i << 1;
return i << 1;
}
static int sprd_spi_read_bufs_u32(struct sprd_spi *ss, u32 len)
{
u32 *rx_p = (u32 *)ss->rx_buf;
int i;
for (i = 0; i < len; i++)
rx_p[i] = readl_relaxed(ss->base + SPRD_SPI_TXD);
ss->rx_buf += i << 2;
return i << 2;
}
static int sprd_spi_txrx_bufs(struct spi_device *sdev, struct spi_transfer *t)
{
struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
u32 trans_len = ss->trans_len, len;
int ret, write_size = 0, read_size = 0;
while (trans_len) {
len = trans_len > SPRD_SPI_FIFO_SIZE ? SPRD_SPI_FIFO_SIZE :
trans_len;
if (ss->trans_mode & SPRD_SPI_TX_MODE) {
sprd_spi_set_tx_length(ss, len);
write_size += ss->write_bufs(ss, len);
/*
* For our 3 wires mode or dual TX line mode, we need
* to request the controller to transfer.
*/
if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
sprd_spi_tx_req(ss);
ret = sprd_spi_wait_for_tx_end(ss, t);
} else {
sprd_spi_set_rx_length(ss, len);
/*
* For our 3 wires mode or dual TX line mode, we need
* to request the controller to read.
*/
if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
sprd_spi_rx_req(ss);
else
write_size += ss->write_bufs(ss, len);
ret = sprd_spi_wait_for_rx_end(ss, t);
}
if (ret)
goto complete;
if (ss->trans_mode & SPRD_SPI_RX_MODE)
read_size += ss->read_bufs(ss, len);
trans_len -= len;
}
if (ss->trans_mode & SPRD_SPI_TX_MODE)
ret = write_size;
else
ret = read_size;
complete:
sprd_spi_enter_idle(ss);
return ret;
}
static void sprd_spi_irq_enable(struct sprd_spi *ss)
{
u32 val;
/* Clear interrupt status before enabling interrupt. */
writel_relaxed(SPRD_SPI_TX_END_CLR | SPRD_SPI_RX_END_CLR,
ss->base + SPRD_SPI_INT_CLR);
/* Enable SPI interrupt only in DMA mode. */
val = readl_relaxed(ss->base + SPRD_SPI_INT_EN);
writel_relaxed(val | SPRD_SPI_TX_END_INT_EN |
SPRD_SPI_RX_END_INT_EN,
ss->base + SPRD_SPI_INT_EN);
}
static void sprd_spi_irq_disable(struct sprd_spi *ss)
{
writel_relaxed(0, ss->base + SPRD_SPI_INT_EN);
}
static void sprd_spi_dma_enable(struct sprd_spi *ss, bool enable)
{
u32 val = readl_relaxed(ss->base + SPRD_SPI_CTL2);
if (enable)
val |= SPRD_SPI_DMA_EN;
else
val &= ~SPRD_SPI_DMA_EN;
writel_relaxed(val, ss->base + SPRD_SPI_CTL2);
}
static int sprd_spi_dma_submit(struct dma_chan *dma_chan,
struct dma_slave_config *c,
struct sg_table *sg,
enum dma_transfer_direction dir)
{
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
unsigned long flags;
int ret;
ret = dmaengine_slave_config(dma_chan, c);
if (ret < 0)
return ret;
flags = SPRD_DMA_FLAGS(SPRD_DMA_CHN_MODE_NONE, SPRD_DMA_NO_TRG,
SPRD_DMA_FRAG_REQ, SPRD_DMA_TRANS_INT);
desc = dmaengine_prep_slave_sg(dma_chan, sg->sgl, sg->nents, dir, flags);
if (!desc)
return -ENODEV;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie))
return dma_submit_error(cookie);
dma_async_issue_pending(dma_chan);
return 0;
}
static int sprd_spi_dma_rx_config(struct sprd_spi *ss, struct spi_transfer *t)
{
struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_RX];
struct dma_slave_config config = {
.src_addr = ss->phy_base,
.src_addr_width = ss->dma.width,
.dst_addr_width = ss->dma.width,
.dst_maxburst = ss->dma.fragmens_len,
};
int ret;
ret = sprd_spi_dma_submit(dma_chan, &config, &t->rx_sg, DMA_DEV_TO_MEM);
if (ret)
return ret;
return ss->dma.rx_len;
}
static int sprd_spi_dma_tx_config(struct sprd_spi *ss, struct spi_transfer *t)
{
struct dma_chan *dma_chan = ss->dma.dma_chan[SPRD_SPI_TX];
struct dma_slave_config config = {
.dst_addr = ss->phy_base,
.src_addr_width = ss->dma.width,
.dst_addr_width = ss->dma.width,
.src_maxburst = ss->dma.fragmens_len,
};
int ret;
ret = sprd_spi_dma_submit(dma_chan, &config, &t->tx_sg, DMA_MEM_TO_DEV);
if (ret)
return ret;
return t->len;
}
static int sprd_spi_dma_request(struct sprd_spi *ss)
{
ss->dma.dma_chan[SPRD_SPI_RX] = dma_request_chan(ss->dev, "rx_chn");
if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_RX]))
return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_RX]),
"request RX DMA channel failed!\n");
ss->dma.dma_chan[SPRD_SPI_TX] = dma_request_chan(ss->dev, "tx_chn");
if (IS_ERR_OR_NULL(ss->dma.dma_chan[SPRD_SPI_TX])) {
dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
return dev_err_probe(ss->dev, PTR_ERR(ss->dma.dma_chan[SPRD_SPI_TX]),
"request TX DMA channel failed!\n");
}
return 0;
}
static void sprd_spi_dma_release(struct sprd_spi *ss)
{
if (ss->dma.dma_chan[SPRD_SPI_RX])
dma_release_channel(ss->dma.dma_chan[SPRD_SPI_RX]);
if (ss->dma.dma_chan[SPRD_SPI_TX])
dma_release_channel(ss->dma.dma_chan[SPRD_SPI_TX]);
}
static int sprd_spi_dma_txrx_bufs(struct spi_device *sdev,
struct spi_transfer *t)
{
struct sprd_spi *ss = spi_master_get_devdata(sdev->master);
u32 trans_len = ss->trans_len;
int ret, write_size = 0;
reinit_completion(&ss->xfer_completion);
sprd_spi_irq_enable(ss);
if (ss->trans_mode & SPRD_SPI_TX_MODE) {
write_size = sprd_spi_dma_tx_config(ss, t);
sprd_spi_set_tx_length(ss, trans_len);
/*
* For our 3 wires mode or dual TX line mode, we need
* to request the controller to transfer.
*/
if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
sprd_spi_tx_req(ss);
} else {
sprd_spi_set_rx_length(ss, trans_len);
/*
* For our 3 wires mode or dual TX line mode, we need
* to request the controller to read.
*/
if (ss->hw_mode & SPI_3WIRE || ss->hw_mode & SPI_TX_DUAL)
sprd_spi_rx_req(ss);
else
write_size = ss->write_bufs(ss, trans_len);
}
if (write_size < 0) {
ret = write_size;
dev_err(ss->dev, "failed to write, ret = %d\n", ret);
goto trans_complete;
}
if (ss->trans_mode & SPRD_SPI_RX_MODE) {
/*
* Set up the DMA receive data length, which must be an
* integral multiple of fragment length. But when the length
* of received data is less than fragment length, DMA can be
* configured to receive data according to the actual length
* of received data.
*/
ss->dma.rx_len = t->len > ss->dma.fragmens_len ?
(t->len - t->len % ss->dma.fragmens_len) :
t->len;
ret = sprd_spi_dma_rx_config(ss, t);
if (ret < 0) {
dev_err(&sdev->dev,
"failed to configure rx DMA, ret = %d\n", ret);
goto trans_complete;
}
}
sprd_spi_dma_enable(ss, true);
wait_for_completion(&(ss->xfer_completion));
if (ss->trans_mode & SPRD_SPI_TX_MODE)
ret = write_size;
else
ret = ss->dma.rx_len;
trans_complete:
sprd_spi_dma_enable(ss, false);
sprd_spi_enter_idle(ss);
sprd_spi_irq_disable(ss);
return ret;
}
static void sprd_spi_set_speed(struct sprd_spi *ss, u32 speed_hz)
{
/*
* From SPI datasheet, the prescale calculation formula:
* prescale = SPI source clock / (2 * SPI_freq) - 1;
*/
u32 clk_div = DIV_ROUND_UP(ss->src_clk, speed_hz << 1) - 1;
/* Save the real hardware speed */
ss->hw_speed_hz = (ss->src_clk >> 1) / (clk_div + 1);
writel_relaxed(clk_div, ss->base + SPRD_SPI_CLKD);
}
static int sprd_spi_init_hw(struct sprd_spi *ss, struct spi_transfer *t)
{
struct spi_delay *d = &t->word_delay;
u16 word_delay, interval;
u32 val;
if (d->unit != SPI_DELAY_UNIT_SCK)
return -EINVAL;
val = readl_relaxed(ss->base + SPRD_SPI_CTL0);
val &= ~(SPRD_SPI_SCK_REV | SPRD_SPI_NG_TX | SPRD_SPI_NG_RX);
/* Set default chip selection, clock phase and clock polarity */
val |= ss->hw_mode & SPI_CPHA ? SPRD_SPI_NG_RX : SPRD_SPI_NG_TX;
val |= ss->hw_mode & SPI_CPOL ? SPRD_SPI_SCK_REV : 0;
writel_relaxed(val, ss->base + SPRD_SPI_CTL0);
/*
* Set the intervals of two SPI frames, and the inteval calculation
* formula as below per datasheet:
* interval time (source clock cycles) = interval * 4 + 10.
*/
word_delay = clamp_t(u16, d->value, SPRD_SPI_MIN_DELAY_CYCLE,
SPRD_SPI_MAX_DELAY_CYCLE);
interval = DIV_ROUND_UP(word_delay - 10, 4);
ss->word_delay = interval * 4 + 10;
writel_relaxed(interval, ss->base + SPRD_SPI_CTL5);
/* Reset SPI fifo */
writel_relaxed(1, ss->base + SPRD_SPI_FIFO_RST);
writel_relaxed(0, ss->base + SPRD_SPI_FIFO_RST);
/* Set SPI work mode */
val = readl_relaxed(ss->base + SPRD_SPI_CTL7);
val &= ~SPRD_SPI_MODE_MASK;
if (ss->hw_mode & SPI_3WIRE)
val |= SPRD_SPI_3WIRE_MODE << SPRD_SPI_MODE_OFFSET;
else
val |= SPRD_SPI_4WIRE_MODE << SPRD_SPI_MODE_OFFSET;
if (ss->hw_mode & SPI_TX_DUAL)
val |= SPRD_SPI_DATA_LINE2_EN;
else
val &= ~SPRD_SPI_DATA_LINE2_EN;
writel_relaxed(val, ss->base + SPRD_SPI_CTL7);
return 0;
}
static int sprd_spi_setup_transfer(struct spi_device *sdev,
struct spi_transfer *t)
{
struct sprd_spi *ss = spi_controller_get_devdata(sdev->controller);
u8 bits_per_word = t->bits_per_word;
u32 val, mode = 0;
int ret;
ss->len = t->len;
ss->tx_buf = t->tx_buf;
ss->rx_buf = t->rx_buf;
ss->hw_mode = sdev->mode;
ret = sprd_spi_init_hw(ss, t);
if (ret)
return ret;
/* Set tansfer speed and valid bits */
sprd_spi_set_speed(ss, t->speed_hz);
sprd_spi_set_transfer_bits(ss, bits_per_word);
if (bits_per_word > 16)
bits_per_word = round_up(bits_per_word, 16);
else
bits_per_word = round_up(bits_per_word, 8);
switch (bits_per_word) {
case 8:
ss->trans_len = t->len;
ss->read_bufs = sprd_spi_read_bufs_u8;
ss->write_bufs = sprd_spi_write_bufs_u8;
ss->dma.width = DMA_SLAVE_BUSWIDTH_1_BYTE;
ss->dma.fragmens_len = SPRD_SPI_DMA_STEP;
break;
case 16:
ss->trans_len = t->len >> 1;
ss->read_bufs = sprd_spi_read_bufs_u16;
ss->write_bufs = sprd_spi_write_bufs_u16;
ss->dma.width = DMA_SLAVE_BUSWIDTH_2_BYTES;
ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 1;
break;
case 32:
ss->trans_len = t->len >> 2;
ss->read_bufs = sprd_spi_read_bufs_u32;
ss->write_bufs = sprd_spi_write_bufs_u32;
ss->dma.width = DMA_SLAVE_BUSWIDTH_4_BYTES;
ss->dma.fragmens_len = SPRD_SPI_DMA_STEP << 2;
break;
default:
return -EINVAL;
}
/* Set transfer read or write mode */
val = readl_relaxed(ss->base + SPRD_SPI_CTL1);
val &= ~SPRD_SPI_RTX_MD_MASK;
if (t->tx_buf)
mode |= SPRD_SPI_TX_MODE;
if (t->rx_buf)
mode |= SPRD_SPI_RX_MODE;
writel_relaxed(val | mode, ss->base + SPRD_SPI_CTL1);
ss->trans_mode = mode;
/*
* If in only receive mode, we need to trigger the SPI controller to
* receive data automatically.
*/
if (ss->trans_mode == SPRD_SPI_RX_MODE)
ss->write_bufs = sprd_spi_write_only_receive;
return 0;
}
static int sprd_spi_transfer_one(struct spi_controller *sctlr,
struct spi_device *sdev,
struct spi_transfer *t)
{
int ret;
ret = sprd_spi_setup_transfer(sdev, t);
if (ret)
goto setup_err;
if (sctlr->can_dma(sctlr, sdev, t))
ret = sprd_spi_dma_txrx_bufs(sdev, t);
else
ret = sprd_spi_txrx_bufs(sdev, t);
if (ret == t->len)
ret = 0;
else if (ret >= 0)
ret = -EREMOTEIO;
setup_err:
spi_finalize_current_transfer(sctlr);
return ret;
}
static irqreturn_t sprd_spi_handle_irq(int irq, void *data)
{
struct sprd_spi *ss = (struct sprd_spi *)data;
u32 val = readl_relaxed(ss->base + SPRD_SPI_INT_MASK_STS);
if (val & SPRD_SPI_MASK_TX_END) {
writel_relaxed(SPRD_SPI_TX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
if (!(ss->trans_mode & SPRD_SPI_RX_MODE))
complete(&ss->xfer_completion);
return IRQ_HANDLED;
}
if (val & SPRD_SPI_MASK_RX_END) {
writel_relaxed(SPRD_SPI_RX_END_CLR, ss->base + SPRD_SPI_INT_CLR);
if (ss->dma.rx_len < ss->len) {
ss->rx_buf += ss->dma.rx_len;
ss->dma.rx_len +=
ss->read_bufs(ss, ss->len - ss->dma.rx_len);
}
complete(&ss->xfer_completion);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int sprd_spi_irq_init(struct platform_device *pdev, struct sprd_spi *ss)
{
int ret;
ss->irq = platform_get_irq(pdev, 0);
if (ss->irq < 0)
return ss->irq;
ret = devm_request_irq(&pdev->dev, ss->irq, sprd_spi_handle_irq,
0, pdev->name, ss);
if (ret)
dev_err(&pdev->dev, "failed to request spi irq %d, ret = %d\n",
ss->irq, ret);
return ret;
}
static int sprd_spi_clk_init(struct platform_device *pdev, struct sprd_spi *ss)
{
struct clk *clk_spi, *clk_parent;
clk_spi = devm_clk_get(&pdev->dev, "spi");
if (IS_ERR(clk_spi)) {
dev_warn(&pdev->dev, "can't get the spi clock\n");
clk_spi = NULL;
}
clk_parent = devm_clk_get(&pdev->dev, "source");
if (IS_ERR(clk_parent)) {
dev_warn(&pdev->dev, "can't get the source clock\n");
clk_parent = NULL;
}
ss->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(ss->clk)) {
dev_err(&pdev->dev, "can't get the enable clock\n");
return PTR_ERR(ss->clk);
}
if (!clk_set_parent(clk_spi, clk_parent))
ss->src_clk = clk_get_rate(clk_spi);
else
ss->src_clk = SPRD_SPI_DEFAULT_SOURCE;
return 0;
}
static bool sprd_spi_can_dma(struct spi_controller *sctlr,
struct spi_device *spi, struct spi_transfer *t)
{
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
return ss->dma.enable && (t->len > SPRD_SPI_FIFO_SIZE);
}
static int sprd_spi_dma_init(struct platform_device *pdev, struct sprd_spi *ss)
{
int ret;
ret = sprd_spi_dma_request(ss);
if (ret) {
if (ret == -EPROBE_DEFER)
return ret;
dev_warn(&pdev->dev,
"failed to request dma, enter no dma mode, ret = %d\n",
ret);
return 0;
}
ss->dma.enable = true;
return 0;
}
static int sprd_spi_probe(struct platform_device *pdev)
{
struct spi_controller *sctlr;
struct resource *res;
struct sprd_spi *ss;
int ret;
pdev->id = of_alias_get_id(pdev->dev.of_node, "spi");
sctlr = spi_alloc_master(&pdev->dev, sizeof(*ss));
if (!sctlr)
return -ENOMEM;
ss = spi_controller_get_devdata(sctlr);
ss->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(ss->base)) {
ret = PTR_ERR(ss->base);
goto free_controller;
}
ss->phy_base = res->start;
ss->dev = &pdev->dev;
sctlr->dev.of_node = pdev->dev.of_node;
sctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_3WIRE | SPI_TX_DUAL;
sctlr->bus_num = pdev->id;
sctlr->set_cs = sprd_spi_chipselect;
sctlr->transfer_one = sprd_spi_transfer_one;
sctlr->can_dma = sprd_spi_can_dma;
sctlr->auto_runtime_pm = true;
sctlr->max_speed_hz = min_t(u32, ss->src_clk >> 1,
SPRD_SPI_MAX_SPEED_HZ);
init_completion(&ss->xfer_completion);
platform_set_drvdata(pdev, sctlr);
ret = sprd_spi_clk_init(pdev, ss);
if (ret)
goto free_controller;
ret = sprd_spi_irq_init(pdev, ss);
if (ret)
goto free_controller;
ret = sprd_spi_dma_init(pdev, ss);
if (ret)
goto free_controller;
ret = clk_prepare_enable(ss->clk);
if (ret)
goto release_dma;
ret = pm_runtime_set_active(&pdev->dev);
if (ret < 0)
goto disable_clk;
pm_runtime_set_autosuspend_delay(&pdev->dev,
SPRD_SPI_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed to resume SPI controller\n");
goto err_rpm_put;
}
ret = devm_spi_register_controller(&pdev->dev, sctlr);
if (ret)
goto err_rpm_put;
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
err_rpm_put:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
disable_clk:
clk_disable_unprepare(ss->clk);
release_dma:
sprd_spi_dma_release(ss);
free_controller:
spi_controller_put(sctlr);
return ret;
}
static void sprd_spi_remove(struct platform_device *pdev)
{
struct spi_controller *sctlr = platform_get_drvdata(pdev);
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
int ret;
ret = pm_runtime_get_sync(ss->dev);
if (ret < 0)
dev_err(ss->dev, "failed to resume SPI controller\n");
spi_controller_suspend(sctlr);
if (ret >= 0) {
if (ss->dma.enable)
sprd_spi_dma_release(ss);
clk_disable_unprepare(ss->clk);
}
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused sprd_spi_runtime_suspend(struct device *dev)
{
struct spi_controller *sctlr = dev_get_drvdata(dev);
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
if (ss->dma.enable)
sprd_spi_dma_release(ss);
clk_disable_unprepare(ss->clk);
return 0;
}
static int __maybe_unused sprd_spi_runtime_resume(struct device *dev)
{
struct spi_controller *sctlr = dev_get_drvdata(dev);
struct sprd_spi *ss = spi_controller_get_devdata(sctlr);
int ret;
ret = clk_prepare_enable(ss->clk);
if (ret)
return ret;
if (!ss->dma.enable)
return 0;
ret = sprd_spi_dma_request(ss);
if (ret)
clk_disable_unprepare(ss->clk);
return ret;
}
static const struct dev_pm_ops sprd_spi_pm_ops = {
SET_RUNTIME_PM_OPS(sprd_spi_runtime_suspend,
sprd_spi_runtime_resume, NULL)
};
static const struct of_device_id sprd_spi_of_match[] = {
{ .compatible = "sprd,sc9860-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sprd_spi_of_match);
static struct platform_driver sprd_spi_driver = {
.driver = {
.name = "sprd-spi",
.of_match_table = sprd_spi_of_match,
.pm = &sprd_spi_pm_ops,
},
.probe = sprd_spi_probe,
.remove_new = sprd_spi_remove,
};
module_platform_driver(sprd_spi_driver);
MODULE_DESCRIPTION("Spreadtrum SPI Controller driver");
MODULE_AUTHOR("Lanqing Liu <lanqing.liu@spreadtrum.com>");
MODULE_LICENSE("GPL v2");