WSL2-Linux-Kernel/drivers/thermal/sprd_thermal.c

555 строки
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2020 Spreadtrum Communications Inc.
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#define SPRD_THM_CTL 0x0
#define SPRD_THM_INT_EN 0x4
#define SPRD_THM_INT_STS 0x8
#define SPRD_THM_INT_RAW_STS 0xc
#define SPRD_THM_DET_PERIOD 0x10
#define SPRD_THM_INT_CLR 0x14
#define SPRD_THM_INT_CLR_ST 0x18
#define SPRD_THM_MON_PERIOD 0x4c
#define SPRD_THM_MON_CTL 0x50
#define SPRD_THM_INTERNAL_STS1 0x54
#define SPRD_THM_RAW_READ_MSK 0x3ff
#define SPRD_THM_OFFSET(id) ((id) * 0x4)
#define SPRD_THM_TEMP(id) (SPRD_THM_OFFSET(id) + 0x5c)
#define SPRD_THM_THRES(id) (SPRD_THM_OFFSET(id) + 0x2c)
#define SPRD_THM_SEN(id) BIT((id) + 2)
#define SPRD_THM_SEN_OVERHEAT_EN(id) BIT((id) + 8)
#define SPRD_THM_SEN_OVERHEAT_ALARM_EN(id) BIT((id) + 0)
/* bits definitions for register THM_CTL */
#define SPRD_THM_SET_RDY_ST BIT(13)
#define SPRD_THM_SET_RDY BIT(12)
#define SPRD_THM_MON_EN BIT(1)
#define SPRD_THM_EN BIT(0)
/* bits definitions for register THM_INT_CTL */
#define SPRD_THM_BIT_INT_EN BIT(26)
#define SPRD_THM_OVERHEAT_EN BIT(25)
#define SPRD_THM_OTP_TRIP_SHIFT 10
/* bits definitions for register SPRD_THM_INTERNAL_STS1 */
#define SPRD_THM_TEMPER_RDY BIT(0)
#define SPRD_THM_DET_PERIOD_DATA 0x800
#define SPRD_THM_DET_PERIOD_MASK GENMASK(19, 0)
#define SPRD_THM_MON_MODE 0x7
#define SPRD_THM_MON_MODE_MASK GENMASK(3, 0)
#define SPRD_THM_MON_PERIOD_DATA 0x10
#define SPRD_THM_MON_PERIOD_MASK GENMASK(15, 0)
#define SPRD_THM_THRES_MASK GENMASK(19, 0)
#define SPRD_THM_INT_CLR_MASK GENMASK(24, 0)
/* thermal sensor calibration parameters */
#define SPRD_THM_TEMP_LOW -40000
#define SPRD_THM_TEMP_HIGH 120000
#define SPRD_THM_OTP_TEMP 120000
#define SPRD_THM_HOT_TEMP 75000
#define SPRD_THM_RAW_DATA_LOW 0
#define SPRD_THM_RAW_DATA_HIGH 1000
#define SPRD_THM_SEN_NUM 8
#define SPRD_THM_DT_OFFSET 24
#define SPRD_THM_RATION_OFFSET 17
#define SPRD_THM_RATION_SIGN 16
#define SPRD_THM_RDYST_POLLING_TIME 10
#define SPRD_THM_RDYST_TIMEOUT 700
#define SPRD_THM_TEMP_READY_POLL_TIME 10000
#define SPRD_THM_TEMP_READY_TIMEOUT 600000
#define SPRD_THM_MAX_SENSOR 8
struct sprd_thermal_sensor {
struct thermal_zone_device *tzd;
struct sprd_thermal_data *data;
struct device *dev;
int cal_slope;
int cal_offset;
int id;
};
struct sprd_thermal_data {
const struct sprd_thm_variant_data *var_data;
struct sprd_thermal_sensor *sensor[SPRD_THM_MAX_SENSOR];
struct clk *clk;
void __iomem *base;
u32 ratio_off;
int ratio_sign;
int nr_sensors;
};
/*
* The conversion between ADC and temperature is based on linear relationship,
* and use idea_k to specify the slope and ideal_b to specify the offset.
*
* Since different Spreadtrum SoCs have different ideal_k and ideal_b,
* we should save ideal_k and ideal_b in the device data structure.
*/
struct sprd_thm_variant_data {
u32 ideal_k;
u32 ideal_b;
};
static const struct sprd_thm_variant_data ums512_data = {
.ideal_k = 262,
.ideal_b = 66400,
};
static inline void sprd_thm_update_bits(void __iomem *reg, u32 mask, u32 val)
{
u32 tmp, orig;
orig = readl(reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, reg);
}
static int sprd_thm_cal_read(struct device_node *np, const char *cell_id,
u32 *val)
{
struct nvmem_cell *cell;
void *buf;
size_t len;
cell = of_nvmem_cell_get(np, cell_id);
if (IS_ERR(cell))
return PTR_ERR(cell);
buf = nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
if (len > sizeof(u32)) {
kfree(buf);
return -EINVAL;
}
memcpy(val, buf, len);
kfree(buf);
return 0;
}
static int sprd_thm_sensor_calibration(struct device_node *np,
struct sprd_thermal_data *thm,
struct sprd_thermal_sensor *sen)
{
int ret;
/*
* According to thermal datasheet, the default calibration offset is 64,
* and the default ratio is 1000.
*/
int dt_offset = 64, ratio = 1000;
ret = sprd_thm_cal_read(np, "sen_delta_cal", &dt_offset);
if (ret)
return ret;
ratio += thm->ratio_sign * thm->ratio_off;
/*
* According to the ideal slope K and ideal offset B, combined with
* calibration value of thermal from efuse, then calibrate the real
* slope k and offset b:
* k_cal = (k * ratio) / 1000.
* b_cal = b + (dt_offset - 64) * 500.
*/
sen->cal_slope = (thm->var_data->ideal_k * ratio) / 1000;
sen->cal_offset = thm->var_data->ideal_b + (dt_offset - 128) * 250;
return 0;
}
static int sprd_thm_rawdata_to_temp(struct sprd_thermal_sensor *sen,
u32 rawdata)
{
clamp(rawdata, (u32)SPRD_THM_RAW_DATA_LOW, (u32)SPRD_THM_RAW_DATA_HIGH);
/*
* According to the thermal datasheet, the formula of converting
* adc value to the temperature value should be:
* T_final = k_cal * x - b_cal.
*/
return sen->cal_slope * rawdata - sen->cal_offset;
}
static int sprd_thm_temp_to_rawdata(int temp, struct sprd_thermal_sensor *sen)
{
u32 val;
clamp(temp, (int)SPRD_THM_TEMP_LOW, (int)SPRD_THM_TEMP_HIGH);
/*
* According to the thermal datasheet, the formula of converting
* adc value to the temperature value should be:
* T_final = k_cal * x - b_cal.
*/
val = (temp + sen->cal_offset) / sen->cal_slope;
return clamp(val, val, (u32)(SPRD_THM_RAW_DATA_HIGH - 1));
}
static int sprd_thm_read_temp(void *devdata, int *temp)
{
struct sprd_thermal_sensor *sen = devdata;
u32 data;
data = readl(sen->data->base + SPRD_THM_TEMP(sen->id)) &
SPRD_THM_RAW_READ_MSK;
*temp = sprd_thm_rawdata_to_temp(sen, data);
return 0;
}
static const struct thermal_zone_of_device_ops sprd_thm_ops = {
.get_temp = sprd_thm_read_temp,
};
static int sprd_thm_poll_ready_status(struct sprd_thermal_data *thm)
{
u32 val;
int ret;
/*
* Wait for thermal ready status before configuring thermal parameters.
*/
ret = readl_poll_timeout(thm->base + SPRD_THM_CTL, val,
!(val & SPRD_THM_SET_RDY_ST),
SPRD_THM_RDYST_POLLING_TIME,
SPRD_THM_RDYST_TIMEOUT);
if (ret)
return ret;
sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_MON_EN,
SPRD_THM_MON_EN);
sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SET_RDY,
SPRD_THM_SET_RDY);
return 0;
}
static int sprd_thm_wait_temp_ready(struct sprd_thermal_data *thm)
{
u32 val;
/* Wait for first temperature data ready before reading temperature */
return readl_poll_timeout(thm->base + SPRD_THM_INTERNAL_STS1, val,
!(val & SPRD_THM_TEMPER_RDY),
SPRD_THM_TEMP_READY_POLL_TIME,
SPRD_THM_TEMP_READY_TIMEOUT);
}
static int sprd_thm_set_ready(struct sprd_thermal_data *thm)
{
int ret;
ret = sprd_thm_poll_ready_status(thm);
if (ret)
return ret;
/*
* Clear interrupt status, enable thermal interrupt and enable thermal.
*
* The SPRD thermal controller integrates a hardware interrupt signal,
* which means if the temperature is overheat, it will generate an
* interrupt and notify the event to PMIC automatically to shutdown the
* system. So here we should enable the interrupt bits, though we have
* not registered an irq handler.
*/
writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
SPRD_THM_BIT_INT_EN, SPRD_THM_BIT_INT_EN);
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_EN, SPRD_THM_EN);
return 0;
}
static void sprd_thm_sensor_init(struct sprd_thermal_data *thm,
struct sprd_thermal_sensor *sen)
{
u32 otp_rawdata, hot_rawdata;
otp_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_OTP_TEMP, sen);
hot_rawdata = sprd_thm_temp_to_rawdata(SPRD_THM_HOT_TEMP, sen);
/* Enable the sensor' overheat temperature protection interrupt */
sprd_thm_update_bits(thm->base + SPRD_THM_INT_EN,
SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id),
SPRD_THM_SEN_OVERHEAT_ALARM_EN(sen->id));
/* Set the sensor' overheat and hot threshold temperature */
sprd_thm_update_bits(thm->base + SPRD_THM_THRES(sen->id),
SPRD_THM_THRES_MASK,
(otp_rawdata << SPRD_THM_OTP_TRIP_SHIFT) |
hot_rawdata);
/* Enable the corresponding sensor */
sprd_thm_update_bits(thm->base + SPRD_THM_CTL, SPRD_THM_SEN(sen->id),
SPRD_THM_SEN(sen->id));
}
static void sprd_thm_para_config(struct sprd_thermal_data *thm)
{
/* Set the period of two valid temperature detection action */
sprd_thm_update_bits(thm->base + SPRD_THM_DET_PERIOD,
SPRD_THM_DET_PERIOD_MASK, SPRD_THM_DET_PERIOD);
/* Set the sensors' monitor mode */
sprd_thm_update_bits(thm->base + SPRD_THM_MON_CTL,
SPRD_THM_MON_MODE_MASK, SPRD_THM_MON_MODE);
/* Set the sensors' monitor period */
sprd_thm_update_bits(thm->base + SPRD_THM_MON_PERIOD,
SPRD_THM_MON_PERIOD_MASK, SPRD_THM_MON_PERIOD);
}
static void sprd_thm_toggle_sensor(struct sprd_thermal_sensor *sen, bool on)
{
struct thermal_zone_device *tzd = sen->tzd;
if (on)
thermal_zone_device_enable(tzd);
else
thermal_zone_device_disable(tzd);
}
static int sprd_thm_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device_node *sen_child;
struct sprd_thermal_data *thm;
struct sprd_thermal_sensor *sen;
const struct sprd_thm_variant_data *pdata;
int ret, i;
u32 val;
pdata = of_device_get_match_data(&pdev->dev);
if (!pdata) {
dev_err(&pdev->dev, "No matching driver data found\n");
return -EINVAL;
}
thm = devm_kzalloc(&pdev->dev, sizeof(*thm), GFP_KERNEL);
if (!thm)
return -ENOMEM;
thm->var_data = pdata;
thm->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(thm->base))
return PTR_ERR(thm->base);
thm->nr_sensors = of_get_child_count(np);
if (thm->nr_sensors == 0 || thm->nr_sensors > SPRD_THM_MAX_SENSOR) {
dev_err(&pdev->dev, "incorrect sensor count\n");
return -EINVAL;
}
thm->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(thm->clk)) {
dev_err(&pdev->dev, "failed to get enable clock\n");
return PTR_ERR(thm->clk);
}
ret = clk_prepare_enable(thm->clk);
if (ret)
return ret;
sprd_thm_para_config(thm);
ret = sprd_thm_cal_read(np, "thm_sign_cal", &val);
if (ret)
goto disable_clk;
if (val > 0)
thm->ratio_sign = -1;
else
thm->ratio_sign = 1;
ret = sprd_thm_cal_read(np, "thm_ratio_cal", &thm->ratio_off);
if (ret)
goto disable_clk;
for_each_child_of_node(np, sen_child) {
sen = devm_kzalloc(&pdev->dev, sizeof(*sen), GFP_KERNEL);
if (!sen) {
ret = -ENOMEM;
goto disable_clk;
}
sen->data = thm;
sen->dev = &pdev->dev;
ret = of_property_read_u32(sen_child, "reg", &sen->id);
if (ret) {
dev_err(&pdev->dev, "get sensor reg failed");
goto disable_clk;
}
ret = sprd_thm_sensor_calibration(sen_child, thm, sen);
if (ret) {
dev_err(&pdev->dev, "efuse cal analysis failed");
goto disable_clk;
}
sprd_thm_sensor_init(thm, sen);
sen->tzd = devm_thermal_zone_of_sensor_register(sen->dev,
sen->id,
sen,
&sprd_thm_ops);
if (IS_ERR(sen->tzd)) {
dev_err(&pdev->dev, "register thermal zone failed %d\n",
sen->id);
ret = PTR_ERR(sen->tzd);
goto disable_clk;
}
thm->sensor[sen->id] = sen;
}
ret = sprd_thm_set_ready(thm);
if (ret)
goto disable_clk;
ret = sprd_thm_wait_temp_ready(thm);
if (ret)
goto disable_clk;
for (i = 0; i < thm->nr_sensors; i++)
sprd_thm_toggle_sensor(thm->sensor[i], true);
platform_set_drvdata(pdev, thm);
return 0;
disable_clk:
clk_disable_unprepare(thm->clk);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static void sprd_thm_hw_suspend(struct sprd_thermal_data *thm)
{
int i;
for (i = 0; i < thm->nr_sensors; i++) {
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_SEN(thm->sensor[i]->id), 0);
}
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_EN, 0x0);
}
static int sprd_thm_suspend(struct device *dev)
{
struct sprd_thermal_data *thm = dev_get_drvdata(dev);
int i;
for (i = 0; i < thm->nr_sensors; i++)
sprd_thm_toggle_sensor(thm->sensor[i], false);
sprd_thm_hw_suspend(thm);
clk_disable_unprepare(thm->clk);
return 0;
}
static int sprd_thm_hw_resume(struct sprd_thermal_data *thm)
{
int ret, i;
for (i = 0; i < thm->nr_sensors; i++) {
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_SEN(thm->sensor[i]->id),
SPRD_THM_SEN(thm->sensor[i]->id));
}
ret = sprd_thm_poll_ready_status(thm);
if (ret)
return ret;
writel(SPRD_THM_INT_CLR_MASK, thm->base + SPRD_THM_INT_CLR);
sprd_thm_update_bits(thm->base + SPRD_THM_CTL,
SPRD_THM_EN, SPRD_THM_EN);
return sprd_thm_wait_temp_ready(thm);
}
static int sprd_thm_resume(struct device *dev)
{
struct sprd_thermal_data *thm = dev_get_drvdata(dev);
int ret, i;
ret = clk_prepare_enable(thm->clk);
if (ret)
return ret;
ret = sprd_thm_hw_resume(thm);
if (ret)
goto disable_clk;
for (i = 0; i < thm->nr_sensors; i++)
sprd_thm_toggle_sensor(thm->sensor[i], true);
return 0;
disable_clk:
clk_disable_unprepare(thm->clk);
return ret;
}
#endif
static int sprd_thm_remove(struct platform_device *pdev)
{
struct sprd_thermal_data *thm = platform_get_drvdata(pdev);
int i;
for (i = 0; i < thm->nr_sensors; i++) {
sprd_thm_toggle_sensor(thm->sensor[i], false);
devm_thermal_zone_of_sensor_unregister(&pdev->dev,
thm->sensor[i]->tzd);
}
clk_disable_unprepare(thm->clk);
return 0;
}
static const struct of_device_id sprd_thermal_of_match[] = {
{ .compatible = "sprd,ums512-thermal", .data = &ums512_data },
{ },
};
static const struct dev_pm_ops sprd_thermal_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sprd_thm_suspend, sprd_thm_resume)
};
static struct platform_driver sprd_thermal_driver = {
.probe = sprd_thm_probe,
.remove = sprd_thm_remove,
.driver = {
.name = "sprd-thermal",
.pm = &sprd_thermal_pm_ops,
.of_match_table = sprd_thermal_of_match,
},
};
module_platform_driver(sprd_thermal_driver);
MODULE_AUTHOR("Freeman Liu <freeman.liu@unisoc.com>");
MODULE_DESCRIPTION("Spreadtrum thermal driver");
MODULE_LICENSE("GPL v2");