1165 строки
30 KiB
C
1165 строки
30 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* BPF JIT compiler for ARM64
|
|
*
|
|
* Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "bpf_jit: " fmt
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/set_memory.h>
|
|
|
|
#include "bpf_jit.h"
|
|
|
|
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
|
|
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
|
|
#define TCALL_CNT (MAX_BPF_JIT_REG + 2)
|
|
#define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
|
|
|
|
/* Map BPF registers to A64 registers */
|
|
static const int bpf2a64[] = {
|
|
/* return value from in-kernel function, and exit value from eBPF */
|
|
[BPF_REG_0] = A64_R(7),
|
|
/* arguments from eBPF program to in-kernel function */
|
|
[BPF_REG_1] = A64_R(0),
|
|
[BPF_REG_2] = A64_R(1),
|
|
[BPF_REG_3] = A64_R(2),
|
|
[BPF_REG_4] = A64_R(3),
|
|
[BPF_REG_5] = A64_R(4),
|
|
/* callee saved registers that in-kernel function will preserve */
|
|
[BPF_REG_6] = A64_R(19),
|
|
[BPF_REG_7] = A64_R(20),
|
|
[BPF_REG_8] = A64_R(21),
|
|
[BPF_REG_9] = A64_R(22),
|
|
/* read-only frame pointer to access stack */
|
|
[BPF_REG_FP] = A64_R(25),
|
|
/* temporary registers for internal BPF JIT */
|
|
[TMP_REG_1] = A64_R(10),
|
|
[TMP_REG_2] = A64_R(11),
|
|
[TMP_REG_3] = A64_R(12),
|
|
/* tail_call_cnt */
|
|
[TCALL_CNT] = A64_R(26),
|
|
/* temporary register for blinding constants */
|
|
[BPF_REG_AX] = A64_R(9),
|
|
};
|
|
|
|
struct jit_ctx {
|
|
const struct bpf_prog *prog;
|
|
int idx;
|
|
int epilogue_offset;
|
|
int *offset;
|
|
int exentry_idx;
|
|
__le32 *image;
|
|
u32 stack_size;
|
|
};
|
|
|
|
static inline void emit(const u32 insn, struct jit_ctx *ctx)
|
|
{
|
|
if (ctx->image != NULL)
|
|
ctx->image[ctx->idx] = cpu_to_le32(insn);
|
|
|
|
ctx->idx++;
|
|
}
|
|
|
|
static inline void emit_a64_mov_i(const int is64, const int reg,
|
|
const s32 val, struct jit_ctx *ctx)
|
|
{
|
|
u16 hi = val >> 16;
|
|
u16 lo = val & 0xffff;
|
|
|
|
if (hi & 0x8000) {
|
|
if (hi == 0xffff) {
|
|
emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
|
|
} else {
|
|
emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
|
|
if (lo != 0xffff)
|
|
emit(A64_MOVK(is64, reg, lo, 0), ctx);
|
|
}
|
|
} else {
|
|
emit(A64_MOVZ(is64, reg, lo, 0), ctx);
|
|
if (hi)
|
|
emit(A64_MOVK(is64, reg, hi, 16), ctx);
|
|
}
|
|
}
|
|
|
|
static int i64_i16_blocks(const u64 val, bool inverse)
|
|
{
|
|
return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
|
|
(((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
|
|
(((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
|
|
(((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
|
|
}
|
|
|
|
static inline void emit_a64_mov_i64(const int reg, const u64 val,
|
|
struct jit_ctx *ctx)
|
|
{
|
|
u64 nrm_tmp = val, rev_tmp = ~val;
|
|
bool inverse;
|
|
int shift;
|
|
|
|
if (!(nrm_tmp >> 32))
|
|
return emit_a64_mov_i(0, reg, (u32)val, ctx);
|
|
|
|
inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
|
|
shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
|
|
(fls64(nrm_tmp) - 1)), 16), 0);
|
|
if (inverse)
|
|
emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
|
|
else
|
|
emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
|
|
shift -= 16;
|
|
while (shift >= 0) {
|
|
if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
|
|
emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
|
|
shift -= 16;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kernel addresses in the vmalloc space use at most 48 bits, and the
|
|
* remaining bits are guaranteed to be 0x1. So we can compose the address
|
|
* with a fixed length movn/movk/movk sequence.
|
|
*/
|
|
static inline void emit_addr_mov_i64(const int reg, const u64 val,
|
|
struct jit_ctx *ctx)
|
|
{
|
|
u64 tmp = val;
|
|
int shift = 0;
|
|
|
|
emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
|
|
while (shift < 32) {
|
|
tmp >>= 16;
|
|
shift += 16;
|
|
emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
|
|
}
|
|
}
|
|
|
|
static inline int bpf2a64_offset(int bpf_insn, int off,
|
|
const struct jit_ctx *ctx)
|
|
{
|
|
/* BPF JMP offset is relative to the next instruction */
|
|
bpf_insn++;
|
|
/*
|
|
* Whereas arm64 branch instructions encode the offset
|
|
* from the branch itself, so we must subtract 1 from the
|
|
* instruction offset.
|
|
*/
|
|
return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
|
|
}
|
|
|
|
static void jit_fill_hole(void *area, unsigned int size)
|
|
{
|
|
__le32 *ptr;
|
|
/* We are guaranteed to have aligned memory. */
|
|
for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
|
|
*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
|
|
}
|
|
|
|
static inline int epilogue_offset(const struct jit_ctx *ctx)
|
|
{
|
|
int to = ctx->epilogue_offset;
|
|
int from = ctx->idx;
|
|
|
|
return to - from;
|
|
}
|
|
|
|
static bool is_addsub_imm(u32 imm)
|
|
{
|
|
/* Either imm12 or shifted imm12. */
|
|
return !(imm & ~0xfff) || !(imm & ~0xfff000);
|
|
}
|
|
|
|
/* Tail call offset to jump into */
|
|
#if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
|
|
#define PROLOGUE_OFFSET 8
|
|
#else
|
|
#define PROLOGUE_OFFSET 7
|
|
#endif
|
|
|
|
static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
|
|
{
|
|
const struct bpf_prog *prog = ctx->prog;
|
|
const u8 r6 = bpf2a64[BPF_REG_6];
|
|
const u8 r7 = bpf2a64[BPF_REG_7];
|
|
const u8 r8 = bpf2a64[BPF_REG_8];
|
|
const u8 r9 = bpf2a64[BPF_REG_9];
|
|
const u8 fp = bpf2a64[BPF_REG_FP];
|
|
const u8 tcc = bpf2a64[TCALL_CNT];
|
|
const int idx0 = ctx->idx;
|
|
int cur_offset;
|
|
|
|
/*
|
|
* BPF prog stack layout
|
|
*
|
|
* high
|
|
* original A64_SP => 0:+-----+ BPF prologue
|
|
* |FP/LR|
|
|
* current A64_FP => -16:+-----+
|
|
* | ... | callee saved registers
|
|
* BPF fp register => -64:+-----+ <= (BPF_FP)
|
|
* | |
|
|
* | ... | BPF prog stack
|
|
* | |
|
|
* +-----+ <= (BPF_FP - prog->aux->stack_depth)
|
|
* |RSVD | padding
|
|
* current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size)
|
|
* | |
|
|
* | ... | Function call stack
|
|
* | |
|
|
* +-----+
|
|
* low
|
|
*
|
|
*/
|
|
|
|
/* BTI landing pad */
|
|
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
|
|
emit(A64_BTI_C, ctx);
|
|
|
|
/* Save FP and LR registers to stay align with ARM64 AAPCS */
|
|
emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
|
|
emit(A64_MOV(1, A64_FP, A64_SP), ctx);
|
|
|
|
/* Save callee-saved registers */
|
|
emit(A64_PUSH(r6, r7, A64_SP), ctx);
|
|
emit(A64_PUSH(r8, r9, A64_SP), ctx);
|
|
emit(A64_PUSH(fp, tcc, A64_SP), ctx);
|
|
|
|
/* Set up BPF prog stack base register */
|
|
emit(A64_MOV(1, fp, A64_SP), ctx);
|
|
|
|
if (!ebpf_from_cbpf) {
|
|
/* Initialize tail_call_cnt */
|
|
emit(A64_MOVZ(1, tcc, 0, 0), ctx);
|
|
|
|
cur_offset = ctx->idx - idx0;
|
|
if (cur_offset != PROLOGUE_OFFSET) {
|
|
pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
|
|
cur_offset, PROLOGUE_OFFSET);
|
|
return -1;
|
|
}
|
|
|
|
/* BTI landing pad for the tail call, done with a BR */
|
|
if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
|
|
emit(A64_BTI_J, ctx);
|
|
}
|
|
|
|
/* Stack must be multiples of 16B */
|
|
ctx->stack_size = round_up(prog->aux->stack_depth, 16);
|
|
|
|
/* Set up function call stack */
|
|
emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
|
|
return 0;
|
|
}
|
|
|
|
static int out_offset = -1; /* initialized on the first pass of build_body() */
|
|
static int emit_bpf_tail_call(struct jit_ctx *ctx)
|
|
{
|
|
/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
|
|
const u8 r2 = bpf2a64[BPF_REG_2];
|
|
const u8 r3 = bpf2a64[BPF_REG_3];
|
|
|
|
const u8 tmp = bpf2a64[TMP_REG_1];
|
|
const u8 prg = bpf2a64[TMP_REG_2];
|
|
const u8 tcc = bpf2a64[TCALL_CNT];
|
|
const int idx0 = ctx->idx;
|
|
#define cur_offset (ctx->idx - idx0)
|
|
#define jmp_offset (out_offset - (cur_offset))
|
|
size_t off;
|
|
|
|
/* if (index >= array->map.max_entries)
|
|
* goto out;
|
|
*/
|
|
off = offsetof(struct bpf_array, map.max_entries);
|
|
emit_a64_mov_i64(tmp, off, ctx);
|
|
emit(A64_LDR32(tmp, r2, tmp), ctx);
|
|
emit(A64_MOV(0, r3, r3), ctx);
|
|
emit(A64_CMP(0, r3, tmp), ctx);
|
|
emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
|
|
|
|
/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
|
|
* goto out;
|
|
* tail_call_cnt++;
|
|
*/
|
|
emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
|
|
emit(A64_CMP(1, tcc, tmp), ctx);
|
|
emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
|
|
emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
|
|
|
|
/* prog = array->ptrs[index];
|
|
* if (prog == NULL)
|
|
* goto out;
|
|
*/
|
|
off = offsetof(struct bpf_array, ptrs);
|
|
emit_a64_mov_i64(tmp, off, ctx);
|
|
emit(A64_ADD(1, tmp, r2, tmp), ctx);
|
|
emit(A64_LSL(1, prg, r3, 3), ctx);
|
|
emit(A64_LDR64(prg, tmp, prg), ctx);
|
|
emit(A64_CBZ(1, prg, jmp_offset), ctx);
|
|
|
|
/* goto *(prog->bpf_func + prologue_offset); */
|
|
off = offsetof(struct bpf_prog, bpf_func);
|
|
emit_a64_mov_i64(tmp, off, ctx);
|
|
emit(A64_LDR64(tmp, prg, tmp), ctx);
|
|
emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
|
|
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
|
|
emit(A64_BR(tmp), ctx);
|
|
|
|
/* out: */
|
|
if (out_offset == -1)
|
|
out_offset = cur_offset;
|
|
if (cur_offset != out_offset) {
|
|
pr_err_once("tail_call out_offset = %d, expected %d!\n",
|
|
cur_offset, out_offset);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#undef cur_offset
|
|
#undef jmp_offset
|
|
}
|
|
|
|
static void build_epilogue(struct jit_ctx *ctx)
|
|
{
|
|
const u8 r0 = bpf2a64[BPF_REG_0];
|
|
const u8 r6 = bpf2a64[BPF_REG_6];
|
|
const u8 r7 = bpf2a64[BPF_REG_7];
|
|
const u8 r8 = bpf2a64[BPF_REG_8];
|
|
const u8 r9 = bpf2a64[BPF_REG_9];
|
|
const u8 fp = bpf2a64[BPF_REG_FP];
|
|
|
|
/* We're done with BPF stack */
|
|
emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
|
|
|
|
/* Restore fs (x25) and x26 */
|
|
emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
|
|
|
|
/* Restore callee-saved register */
|
|
emit(A64_POP(r8, r9, A64_SP), ctx);
|
|
emit(A64_POP(r6, r7, A64_SP), ctx);
|
|
|
|
/* Restore FP/LR registers */
|
|
emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
|
|
|
|
/* Set return value */
|
|
emit(A64_MOV(1, A64_R(0), r0), ctx);
|
|
|
|
emit(A64_RET(A64_LR), ctx);
|
|
}
|
|
|
|
#define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0)
|
|
#define BPF_FIXUP_REG_MASK GENMASK(31, 27)
|
|
|
|
int arm64_bpf_fixup_exception(const struct exception_table_entry *ex,
|
|
struct pt_regs *regs)
|
|
{
|
|
off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
|
|
int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
|
|
|
|
regs->regs[dst_reg] = 0;
|
|
regs->pc = (unsigned long)&ex->fixup - offset;
|
|
return 1;
|
|
}
|
|
|
|
/* For accesses to BTF pointers, add an entry to the exception table */
|
|
static int add_exception_handler(const struct bpf_insn *insn,
|
|
struct jit_ctx *ctx,
|
|
int dst_reg)
|
|
{
|
|
off_t offset;
|
|
unsigned long pc;
|
|
struct exception_table_entry *ex;
|
|
|
|
if (!ctx->image)
|
|
/* First pass */
|
|
return 0;
|
|
|
|
if (BPF_MODE(insn->code) != BPF_PROBE_MEM)
|
|
return 0;
|
|
|
|
if (!ctx->prog->aux->extable ||
|
|
WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
|
|
return -EINVAL;
|
|
|
|
ex = &ctx->prog->aux->extable[ctx->exentry_idx];
|
|
pc = (unsigned long)&ctx->image[ctx->idx - 1];
|
|
|
|
offset = pc - (long)&ex->insn;
|
|
if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
|
|
return -ERANGE;
|
|
ex->insn = offset;
|
|
|
|
/*
|
|
* Since the extable follows the program, the fixup offset is always
|
|
* negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
|
|
* to keep things simple, and put the destination register in the upper
|
|
* bits. We don't need to worry about buildtime or runtime sort
|
|
* modifying the upper bits because the table is already sorted, and
|
|
* isn't part of the main exception table.
|
|
*/
|
|
offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
|
|
if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, offset))
|
|
return -ERANGE;
|
|
|
|
ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, offset) |
|
|
FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
|
|
|
|
ctx->exentry_idx++;
|
|
return 0;
|
|
}
|
|
|
|
/* JITs an eBPF instruction.
|
|
* Returns:
|
|
* 0 - successfully JITed an 8-byte eBPF instruction.
|
|
* >0 - successfully JITed a 16-byte eBPF instruction.
|
|
* <0 - failed to JIT.
|
|
*/
|
|
static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
|
|
bool extra_pass)
|
|
{
|
|
const u8 code = insn->code;
|
|
const u8 dst = bpf2a64[insn->dst_reg];
|
|
const u8 src = bpf2a64[insn->src_reg];
|
|
const u8 tmp = bpf2a64[TMP_REG_1];
|
|
const u8 tmp2 = bpf2a64[TMP_REG_2];
|
|
const u8 tmp3 = bpf2a64[TMP_REG_3];
|
|
const s16 off = insn->off;
|
|
const s32 imm = insn->imm;
|
|
const int i = insn - ctx->prog->insnsi;
|
|
const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
|
|
BPF_CLASS(code) == BPF_JMP;
|
|
const bool isdw = BPF_SIZE(code) == BPF_DW;
|
|
u8 jmp_cond, reg;
|
|
s32 jmp_offset;
|
|
u32 a64_insn;
|
|
int ret;
|
|
|
|
#define check_imm(bits, imm) do { \
|
|
if ((((imm) > 0) && ((imm) >> (bits))) || \
|
|
(((imm) < 0) && (~(imm) >> (bits)))) { \
|
|
pr_info("[%2d] imm=%d(0x%x) out of range\n", \
|
|
i, imm, imm); \
|
|
return -EINVAL; \
|
|
} \
|
|
} while (0)
|
|
#define check_imm19(imm) check_imm(19, imm)
|
|
#define check_imm26(imm) check_imm(26, imm)
|
|
|
|
switch (code) {
|
|
/* dst = src */
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
emit(A64_MOV(is64, dst, src), ctx);
|
|
break;
|
|
/* dst = dst OP src */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
emit(A64_ADD(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
emit(A64_SUB(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
emit(A64_AND(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
emit(A64_ORR(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
emit(A64_EOR(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
emit(A64_MUL(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
emit(A64_UDIV(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
emit(A64_UDIV(is64, tmp, dst, src), ctx);
|
|
emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
emit(A64_LSLV(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
emit(A64_LSRV(is64, dst, dst, src), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
emit(A64_ASRV(is64, dst, dst, src), ctx);
|
|
break;
|
|
/* dst = -dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
case BPF_ALU64 | BPF_NEG:
|
|
emit(A64_NEG(is64, dst, dst), ctx);
|
|
break;
|
|
/* dst = BSWAP##imm(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
#ifdef CONFIG_CPU_BIG_ENDIAN
|
|
if (BPF_SRC(code) == BPF_FROM_BE)
|
|
goto emit_bswap_uxt;
|
|
#else /* !CONFIG_CPU_BIG_ENDIAN */
|
|
if (BPF_SRC(code) == BPF_FROM_LE)
|
|
goto emit_bswap_uxt;
|
|
#endif
|
|
switch (imm) {
|
|
case 16:
|
|
emit(A64_REV16(is64, dst, dst), ctx);
|
|
/* zero-extend 16 bits into 64 bits */
|
|
emit(A64_UXTH(is64, dst, dst), ctx);
|
|
break;
|
|
case 32:
|
|
emit(A64_REV32(is64, dst, dst), ctx);
|
|
/* upper 32 bits already cleared */
|
|
break;
|
|
case 64:
|
|
emit(A64_REV64(dst, dst), ctx);
|
|
break;
|
|
}
|
|
break;
|
|
emit_bswap_uxt:
|
|
switch (imm) {
|
|
case 16:
|
|
/* zero-extend 16 bits into 64 bits */
|
|
emit(A64_UXTH(is64, dst, dst), ctx);
|
|
break;
|
|
case 32:
|
|
/* zero-extend 32 bits into 64 bits */
|
|
emit(A64_UXTW(is64, dst, dst), ctx);
|
|
break;
|
|
case 64:
|
|
/* nop */
|
|
break;
|
|
}
|
|
break;
|
|
/* dst = imm */
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
emit_a64_mov_i(is64, dst, imm, ctx);
|
|
break;
|
|
/* dst = dst OP imm */
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
if (is_addsub_imm(imm)) {
|
|
emit(A64_ADD_I(is64, dst, dst, imm), ctx);
|
|
} else if (is_addsub_imm(-imm)) {
|
|
emit(A64_SUB_I(is64, dst, dst, -imm), ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_ADD(is64, dst, dst, tmp), ctx);
|
|
}
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
if (is_addsub_imm(imm)) {
|
|
emit(A64_SUB_I(is64, dst, dst, imm), ctx);
|
|
} else if (is_addsub_imm(-imm)) {
|
|
emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_SUB(is64, dst, dst, tmp), ctx);
|
|
}
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
a64_insn = A64_AND_I(is64, dst, dst, imm);
|
|
if (a64_insn != AARCH64_BREAK_FAULT) {
|
|
emit(a64_insn, ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_AND(is64, dst, dst, tmp), ctx);
|
|
}
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
a64_insn = A64_ORR_I(is64, dst, dst, imm);
|
|
if (a64_insn != AARCH64_BREAK_FAULT) {
|
|
emit(a64_insn, ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_ORR(is64, dst, dst, tmp), ctx);
|
|
}
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
a64_insn = A64_EOR_I(is64, dst, dst, imm);
|
|
if (a64_insn != AARCH64_BREAK_FAULT) {
|
|
emit(a64_insn, ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_EOR(is64, dst, dst, tmp), ctx);
|
|
}
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_MUL(is64, dst, dst, tmp), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_UDIV(is64, dst, dst, tmp), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
emit_a64_mov_i(is64, tmp2, imm, ctx);
|
|
emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
|
|
emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
emit(A64_LSL(is64, dst, dst, imm), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
emit(A64_LSR(is64, dst, dst, imm), ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
emit(A64_ASR(is64, dst, dst, imm), ctx);
|
|
break;
|
|
|
|
/* JUMP off */
|
|
case BPF_JMP | BPF_JA:
|
|
jmp_offset = bpf2a64_offset(i, off, ctx);
|
|
check_imm26(jmp_offset);
|
|
emit(A64_B(jmp_offset), ctx);
|
|
break;
|
|
/* IF (dst COND src) JUMP off */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
emit(A64_CMP(is64, dst, src), ctx);
|
|
emit_cond_jmp:
|
|
jmp_offset = bpf2a64_offset(i, off, ctx);
|
|
check_imm19(jmp_offset);
|
|
switch (BPF_OP(code)) {
|
|
case BPF_JEQ:
|
|
jmp_cond = A64_COND_EQ;
|
|
break;
|
|
case BPF_JGT:
|
|
jmp_cond = A64_COND_HI;
|
|
break;
|
|
case BPF_JLT:
|
|
jmp_cond = A64_COND_CC;
|
|
break;
|
|
case BPF_JGE:
|
|
jmp_cond = A64_COND_CS;
|
|
break;
|
|
case BPF_JLE:
|
|
jmp_cond = A64_COND_LS;
|
|
break;
|
|
case BPF_JSET:
|
|
case BPF_JNE:
|
|
jmp_cond = A64_COND_NE;
|
|
break;
|
|
case BPF_JSGT:
|
|
jmp_cond = A64_COND_GT;
|
|
break;
|
|
case BPF_JSLT:
|
|
jmp_cond = A64_COND_LT;
|
|
break;
|
|
case BPF_JSGE:
|
|
jmp_cond = A64_COND_GE;
|
|
break;
|
|
case BPF_JSLE:
|
|
jmp_cond = A64_COND_LE;
|
|
break;
|
|
default:
|
|
return -EFAULT;
|
|
}
|
|
emit(A64_B_(jmp_cond, jmp_offset), ctx);
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
emit(A64_TST(is64, dst, src), ctx);
|
|
goto emit_cond_jmp;
|
|
/* IF (dst COND imm) JUMP off */
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
if (is_addsub_imm(imm)) {
|
|
emit(A64_CMP_I(is64, dst, imm), ctx);
|
|
} else if (is_addsub_imm(-imm)) {
|
|
emit(A64_CMN_I(is64, dst, -imm), ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_CMP(is64, dst, tmp), ctx);
|
|
}
|
|
goto emit_cond_jmp;
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
a64_insn = A64_TST_I(is64, dst, imm);
|
|
if (a64_insn != AARCH64_BREAK_FAULT) {
|
|
emit(a64_insn, ctx);
|
|
} else {
|
|
emit_a64_mov_i(is64, tmp, imm, ctx);
|
|
emit(A64_TST(is64, dst, tmp), ctx);
|
|
}
|
|
goto emit_cond_jmp;
|
|
/* function call */
|
|
case BPF_JMP | BPF_CALL:
|
|
{
|
|
const u8 r0 = bpf2a64[BPF_REG_0];
|
|
bool func_addr_fixed;
|
|
u64 func_addr;
|
|
|
|
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
|
|
&func_addr, &func_addr_fixed);
|
|
if (ret < 0)
|
|
return ret;
|
|
emit_addr_mov_i64(tmp, func_addr, ctx);
|
|
emit(A64_BLR(tmp), ctx);
|
|
emit(A64_MOV(1, r0, A64_R(0)), ctx);
|
|
break;
|
|
}
|
|
/* tail call */
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
if (emit_bpf_tail_call(ctx))
|
|
return -EFAULT;
|
|
break;
|
|
/* function return */
|
|
case BPF_JMP | BPF_EXIT:
|
|
/* Optimization: when last instruction is EXIT,
|
|
simply fallthrough to epilogue. */
|
|
if (i == ctx->prog->len - 1)
|
|
break;
|
|
jmp_offset = epilogue_offset(ctx);
|
|
check_imm26(jmp_offset);
|
|
emit(A64_B(jmp_offset), ctx);
|
|
break;
|
|
|
|
/* dst = imm64 */
|
|
case BPF_LD | BPF_IMM | BPF_DW:
|
|
{
|
|
const struct bpf_insn insn1 = insn[1];
|
|
u64 imm64;
|
|
|
|
imm64 = (u64)insn1.imm << 32 | (u32)imm;
|
|
if (bpf_pseudo_func(insn))
|
|
emit_addr_mov_i64(dst, imm64, ctx);
|
|
else
|
|
emit_a64_mov_i64(dst, imm64, ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* LDX: dst = *(size *)(src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
|
|
emit_a64_mov_i(1, tmp, off, ctx);
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
emit(A64_LDR32(dst, src, tmp), ctx);
|
|
break;
|
|
case BPF_H:
|
|
emit(A64_LDRH(dst, src, tmp), ctx);
|
|
break;
|
|
case BPF_B:
|
|
emit(A64_LDRB(dst, src, tmp), ctx);
|
|
break;
|
|
case BPF_DW:
|
|
emit(A64_LDR64(dst, src, tmp), ctx);
|
|
break;
|
|
}
|
|
|
|
ret = add_exception_handler(insn, ctx, dst);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
|
|
/* speculation barrier */
|
|
case BPF_ST | BPF_NOSPEC:
|
|
/*
|
|
* Nothing required here.
|
|
*
|
|
* In case of arm64, we rely on the firmware mitigation of
|
|
* Speculative Store Bypass as controlled via the ssbd kernel
|
|
* parameter. Whenever the mitigation is enabled, it works
|
|
* for all of the kernel code with no need to provide any
|
|
* additional instructions.
|
|
*/
|
|
break;
|
|
|
|
/* ST: *(size *)(dst + off) = imm */
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
/* Load imm to a register then store it */
|
|
emit_a64_mov_i(1, tmp2, off, ctx);
|
|
emit_a64_mov_i(1, tmp, imm, ctx);
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
emit(A64_STR32(tmp, dst, tmp2), ctx);
|
|
break;
|
|
case BPF_H:
|
|
emit(A64_STRH(tmp, dst, tmp2), ctx);
|
|
break;
|
|
case BPF_B:
|
|
emit(A64_STRB(tmp, dst, tmp2), ctx);
|
|
break;
|
|
case BPF_DW:
|
|
emit(A64_STR64(tmp, dst, tmp2), ctx);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* STX: *(size *)(dst + off) = src */
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
emit_a64_mov_i(1, tmp, off, ctx);
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_W:
|
|
emit(A64_STR32(src, dst, tmp), ctx);
|
|
break;
|
|
case BPF_H:
|
|
emit(A64_STRH(src, dst, tmp), ctx);
|
|
break;
|
|
case BPF_B:
|
|
emit(A64_STRB(src, dst, tmp), ctx);
|
|
break;
|
|
case BPF_DW:
|
|
emit(A64_STR64(src, dst, tmp), ctx);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case BPF_STX | BPF_ATOMIC | BPF_W:
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW:
|
|
if (insn->imm != BPF_ADD) {
|
|
pr_err_once("unknown atomic op code %02x\n", insn->imm);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* STX XADD: lock *(u32 *)(dst + off) += src
|
|
* and
|
|
* STX XADD: lock *(u64 *)(dst + off) += src
|
|
*/
|
|
|
|
if (!off) {
|
|
reg = dst;
|
|
} else {
|
|
emit_a64_mov_i(1, tmp, off, ctx);
|
|
emit(A64_ADD(1, tmp, tmp, dst), ctx);
|
|
reg = tmp;
|
|
}
|
|
if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) {
|
|
emit(A64_STADD(isdw, reg, src), ctx);
|
|
} else {
|
|
emit(A64_LDXR(isdw, tmp2, reg), ctx);
|
|
emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
|
|
emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
|
|
jmp_offset = -3;
|
|
check_imm19(jmp_offset);
|
|
emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
pr_err_once("unknown opcode %02x\n", code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int build_body(struct jit_ctx *ctx, bool extra_pass)
|
|
{
|
|
const struct bpf_prog *prog = ctx->prog;
|
|
int i;
|
|
|
|
/*
|
|
* - offset[0] offset of the end of prologue,
|
|
* start of the 1st instruction.
|
|
* - offset[1] - offset of the end of 1st instruction,
|
|
* start of the 2nd instruction
|
|
* [....]
|
|
* - offset[3] - offset of the end of 3rd instruction,
|
|
* start of 4th instruction
|
|
*/
|
|
for (i = 0; i < prog->len; i++) {
|
|
const struct bpf_insn *insn = &prog->insnsi[i];
|
|
int ret;
|
|
|
|
if (ctx->image == NULL)
|
|
ctx->offset[i] = ctx->idx;
|
|
ret = build_insn(insn, ctx, extra_pass);
|
|
if (ret > 0) {
|
|
i++;
|
|
if (ctx->image == NULL)
|
|
ctx->offset[i] = ctx->idx;
|
|
continue;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
/*
|
|
* offset is allocated with prog->len + 1 so fill in
|
|
* the last element with the offset after the last
|
|
* instruction (end of program)
|
|
*/
|
|
if (ctx->image == NULL)
|
|
ctx->offset[i] = ctx->idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int validate_code(struct jit_ctx *ctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ctx->idx; i++) {
|
|
u32 a64_insn = le32_to_cpu(ctx->image[i]);
|
|
|
|
if (a64_insn == AARCH64_BREAK_FAULT)
|
|
return -1;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void bpf_flush_icache(void *start, void *end)
|
|
{
|
|
flush_icache_range((unsigned long)start, (unsigned long)end);
|
|
}
|
|
|
|
struct arm64_jit_data {
|
|
struct bpf_binary_header *header;
|
|
u8 *image;
|
|
struct jit_ctx ctx;
|
|
};
|
|
|
|
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
|
|
{
|
|
int image_size, prog_size, extable_size;
|
|
struct bpf_prog *tmp, *orig_prog = prog;
|
|
struct bpf_binary_header *header;
|
|
struct arm64_jit_data *jit_data;
|
|
bool was_classic = bpf_prog_was_classic(prog);
|
|
bool tmp_blinded = false;
|
|
bool extra_pass = false;
|
|
struct jit_ctx ctx;
|
|
u8 *image_ptr;
|
|
|
|
if (!prog->jit_requested)
|
|
return orig_prog;
|
|
|
|
tmp = bpf_jit_blind_constants(prog);
|
|
/* If blinding was requested and we failed during blinding,
|
|
* we must fall back to the interpreter.
|
|
*/
|
|
if (IS_ERR(tmp))
|
|
return orig_prog;
|
|
if (tmp != prog) {
|
|
tmp_blinded = true;
|
|
prog = tmp;
|
|
}
|
|
|
|
jit_data = prog->aux->jit_data;
|
|
if (!jit_data) {
|
|
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
|
|
if (!jit_data) {
|
|
prog = orig_prog;
|
|
goto out;
|
|
}
|
|
prog->aux->jit_data = jit_data;
|
|
}
|
|
if (jit_data->ctx.offset) {
|
|
ctx = jit_data->ctx;
|
|
image_ptr = jit_data->image;
|
|
header = jit_data->header;
|
|
extra_pass = true;
|
|
prog_size = sizeof(u32) * ctx.idx;
|
|
goto skip_init_ctx;
|
|
}
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ctx.prog = prog;
|
|
|
|
ctx.offset = kcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
|
|
if (ctx.offset == NULL) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
/*
|
|
* 1. Initial fake pass to compute ctx->idx and ctx->offset.
|
|
*
|
|
* BPF line info needs ctx->offset[i] to be the offset of
|
|
* instruction[i] in jited image, so build prologue first.
|
|
*/
|
|
if (build_prologue(&ctx, was_classic)) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
if (build_body(&ctx, extra_pass)) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
ctx.epilogue_offset = ctx.idx;
|
|
build_epilogue(&ctx);
|
|
|
|
extable_size = prog->aux->num_exentries *
|
|
sizeof(struct exception_table_entry);
|
|
|
|
/* Now we know the actual image size. */
|
|
prog_size = sizeof(u32) * ctx.idx;
|
|
image_size = prog_size + extable_size;
|
|
header = bpf_jit_binary_alloc(image_size, &image_ptr,
|
|
sizeof(u32), jit_fill_hole);
|
|
if (header == NULL) {
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
/* 2. Now, the actual pass. */
|
|
|
|
ctx.image = (__le32 *)image_ptr;
|
|
if (extable_size)
|
|
prog->aux->extable = (void *)image_ptr + prog_size;
|
|
skip_init_ctx:
|
|
ctx.idx = 0;
|
|
ctx.exentry_idx = 0;
|
|
|
|
build_prologue(&ctx, was_classic);
|
|
|
|
if (build_body(&ctx, extra_pass)) {
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
build_epilogue(&ctx);
|
|
|
|
/* 3. Extra pass to validate JITed code. */
|
|
if (validate_code(&ctx)) {
|
|
bpf_jit_binary_free(header);
|
|
prog = orig_prog;
|
|
goto out_off;
|
|
}
|
|
|
|
/* And we're done. */
|
|
if (bpf_jit_enable > 1)
|
|
bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
|
|
|
|
bpf_flush_icache(header, ctx.image + ctx.idx);
|
|
|
|
if (!prog->is_func || extra_pass) {
|
|
if (extra_pass && ctx.idx != jit_data->ctx.idx) {
|
|
pr_err_once("multi-func JIT bug %d != %d\n",
|
|
ctx.idx, jit_data->ctx.idx);
|
|
bpf_jit_binary_free(header);
|
|
prog->bpf_func = NULL;
|
|
prog->jited = 0;
|
|
prog->jited_len = 0;
|
|
goto out_off;
|
|
}
|
|
bpf_jit_binary_lock_ro(header);
|
|
} else {
|
|
jit_data->ctx = ctx;
|
|
jit_data->image = image_ptr;
|
|
jit_data->header = header;
|
|
}
|
|
prog->bpf_func = (void *)ctx.image;
|
|
prog->jited = 1;
|
|
prog->jited_len = prog_size;
|
|
|
|
if (!prog->is_func || extra_pass) {
|
|
int i;
|
|
|
|
/* offset[prog->len] is the size of program */
|
|
for (i = 0; i <= prog->len; i++)
|
|
ctx.offset[i] *= AARCH64_INSN_SIZE;
|
|
bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
|
|
out_off:
|
|
kfree(ctx.offset);
|
|
kfree(jit_data);
|
|
prog->aux->jit_data = NULL;
|
|
}
|
|
out:
|
|
if (tmp_blinded)
|
|
bpf_jit_prog_release_other(prog, prog == orig_prog ?
|
|
tmp : orig_prog);
|
|
return prog;
|
|
}
|
|
|
|
u64 bpf_jit_alloc_exec_limit(void)
|
|
{
|
|
return VMALLOC_END - VMALLOC_START;
|
|
}
|
|
|
|
void *bpf_jit_alloc_exec(unsigned long size)
|
|
{
|
|
return vmalloc(size);
|
|
}
|
|
|
|
void bpf_jit_free_exec(void *addr)
|
|
{
|
|
return vfree(addr);
|
|
}
|