1376 строки
30 KiB
C
1376 строки
30 KiB
C
/*
|
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kvm.h>
|
|
#include <trace/events/kvm.h>
|
|
#include <kvm/arm_pmu.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "trace.h"
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/mman.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/virt.h>
|
|
#include <asm/kvm_arm.h>
|
|
#include <asm/kvm_asm.h>
|
|
#include <asm/kvm_mmu.h>
|
|
#include <asm/kvm_emulate.h>
|
|
#include <asm/kvm_coproc.h>
|
|
#include <asm/kvm_psci.h>
|
|
#include <asm/sections.h>
|
|
|
|
#ifdef REQUIRES_VIRT
|
|
__asm__(".arch_extension virt");
|
|
#endif
|
|
|
|
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
|
|
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
|
|
static unsigned long hyp_default_vectors;
|
|
|
|
/* Per-CPU variable containing the currently running vcpu. */
|
|
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
|
|
|
|
/* The VMID used in the VTTBR */
|
|
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
|
|
static u32 kvm_next_vmid;
|
|
static unsigned int kvm_vmid_bits __read_mostly;
|
|
static DEFINE_SPINLOCK(kvm_vmid_lock);
|
|
|
|
static bool vgic_present;
|
|
|
|
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
BUG_ON(preemptible());
|
|
__this_cpu_write(kvm_arm_running_vcpu, vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
|
|
* Must be called from non-preemptible context
|
|
*/
|
|
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
|
|
{
|
|
BUG_ON(preemptible());
|
|
return __this_cpu_read(kvm_arm_running_vcpu);
|
|
}
|
|
|
|
/**
|
|
* kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
|
|
*/
|
|
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
|
|
{
|
|
return &kvm_arm_running_vcpu;
|
|
}
|
|
|
|
int kvm_arch_hardware_enable(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
|
|
}
|
|
|
|
int kvm_arch_hardware_setup(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_check_processor_compat(void *rtn)
|
|
{
|
|
*(int *)rtn = 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_arch_init_vm - initializes a VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (type)
|
|
return -EINVAL;
|
|
|
|
ret = kvm_alloc_stage2_pgd(kvm);
|
|
if (ret)
|
|
goto out_fail_alloc;
|
|
|
|
ret = create_hyp_mappings(kvm, kvm + 1);
|
|
if (ret)
|
|
goto out_free_stage2_pgd;
|
|
|
|
kvm_vgic_early_init(kvm);
|
|
kvm_timer_init(kvm);
|
|
|
|
/* Mark the initial VMID generation invalid */
|
|
kvm->arch.vmid_gen = 0;
|
|
|
|
/* The maximum number of VCPUs is limited by the host's GIC model */
|
|
kvm->arch.max_vcpus = vgic_present ?
|
|
kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
|
|
|
|
return ret;
|
|
out_free_stage2_pgd:
|
|
kvm_free_stage2_pgd(kvm);
|
|
out_fail_alloc:
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
|
|
{
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
|
|
/**
|
|
* kvm_arch_destroy_vm - destroy the VM data structure
|
|
* @kvm: pointer to the KVM struct
|
|
*/
|
|
void kvm_arch_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
|
|
kvm_free_stage2_pgd(kvm);
|
|
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
if (kvm->vcpus[i]) {
|
|
kvm_arch_vcpu_free(kvm->vcpus[i]);
|
|
kvm->vcpus[i] = NULL;
|
|
}
|
|
}
|
|
|
|
kvm_vgic_destroy(kvm);
|
|
}
|
|
|
|
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
|
|
{
|
|
int r;
|
|
switch (ext) {
|
|
case KVM_CAP_IRQCHIP:
|
|
r = vgic_present;
|
|
break;
|
|
case KVM_CAP_IOEVENTFD:
|
|
case KVM_CAP_DEVICE_CTRL:
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_SYNC_MMU:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_ONE_REG:
|
|
case KVM_CAP_ARM_PSCI:
|
|
case KVM_CAP_ARM_PSCI_0_2:
|
|
case KVM_CAP_READONLY_MEM:
|
|
case KVM_CAP_MP_STATE:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_COALESCED_MMIO:
|
|
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
|
|
break;
|
|
case KVM_CAP_ARM_SET_DEVICE_ADDR:
|
|
r = 1;
|
|
break;
|
|
case KVM_CAP_NR_VCPUS:
|
|
r = num_online_cpus();
|
|
break;
|
|
case KVM_CAP_MAX_VCPUS:
|
|
r = KVM_MAX_VCPUS;
|
|
break;
|
|
default:
|
|
r = kvm_arch_dev_ioctl_check_extension(ext);
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
long kvm_arch_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
|
|
|
|
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
|
|
{
|
|
int err;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (id >= kvm->arch.max_vcpus) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!vcpu) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_vcpu;
|
|
|
|
err = create_hyp_mappings(vcpu, vcpu + 1);
|
|
if (err)
|
|
goto vcpu_uninit;
|
|
|
|
return vcpu;
|
|
vcpu_uninit:
|
|
kvm_vcpu_uninit(vcpu);
|
|
free_vcpu:
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_vgic_vcpu_early_init(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_mmu_free_memory_caches(vcpu);
|
|
kvm_timer_vcpu_terminate(vcpu);
|
|
kvm_vgic_vcpu_destroy(vcpu);
|
|
kvm_pmu_vcpu_destroy(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_arch_vcpu_free(vcpu);
|
|
}
|
|
|
|
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
return kvm_timer_should_fire(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_timer_schedule(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_timer_unschedule(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* Force users to call KVM_ARM_VCPU_INIT */
|
|
vcpu->arch.target = -1;
|
|
bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
|
|
|
|
/* Set up the timer */
|
|
kvm_timer_vcpu_init(vcpu);
|
|
|
|
kvm_arm_reset_debug_ptr(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
vcpu->cpu = cpu;
|
|
vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
|
|
|
|
kvm_arm_set_running_vcpu(vcpu);
|
|
}
|
|
|
|
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* The arch-generic KVM code expects the cpu field of a vcpu to be -1
|
|
* if the vcpu is no longer assigned to a cpu. This is used for the
|
|
* optimized make_all_cpus_request path.
|
|
*/
|
|
vcpu->cpu = -1;
|
|
|
|
kvm_arm_set_running_vcpu(NULL);
|
|
kvm_timer_vcpu_put(vcpu);
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
if (vcpu->arch.power_off)
|
|
mp_state->mp_state = KVM_MP_STATE_STOPPED;
|
|
else
|
|
mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
|
|
struct kvm_mp_state *mp_state)
|
|
{
|
|
switch (mp_state->mp_state) {
|
|
case KVM_MP_STATE_RUNNABLE:
|
|
vcpu->arch.power_off = false;
|
|
break;
|
|
case KVM_MP_STATE_STOPPED:
|
|
vcpu->arch.power_off = true;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
|
|
* @v: The VCPU pointer
|
|
*
|
|
* If the guest CPU is not waiting for interrupts or an interrupt line is
|
|
* asserted, the CPU is by definition runnable.
|
|
*/
|
|
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
|
|
{
|
|
return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
|
|
&& !v->arch.power_off && !v->arch.pause);
|
|
}
|
|
|
|
/* Just ensure a guest exit from a particular CPU */
|
|
static void exit_vm_noop(void *info)
|
|
{
|
|
}
|
|
|
|
void force_vm_exit(const cpumask_t *mask)
|
|
{
|
|
preempt_disable();
|
|
smp_call_function_many(mask, exit_vm_noop, NULL, true);
|
|
preempt_enable();
|
|
}
|
|
|
|
/**
|
|
* need_new_vmid_gen - check that the VMID is still valid
|
|
* @kvm: The VM's VMID to checkt
|
|
*
|
|
* return true if there is a new generation of VMIDs being used
|
|
*
|
|
* The hardware supports only 256 values with the value zero reserved for the
|
|
* host, so we check if an assigned value belongs to a previous generation,
|
|
* which which requires us to assign a new value. If we're the first to use a
|
|
* VMID for the new generation, we must flush necessary caches and TLBs on all
|
|
* CPUs.
|
|
*/
|
|
static bool need_new_vmid_gen(struct kvm *kvm)
|
|
{
|
|
return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
|
|
}
|
|
|
|
/**
|
|
* update_vttbr - Update the VTTBR with a valid VMID before the guest runs
|
|
* @kvm The guest that we are about to run
|
|
*
|
|
* Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
|
|
* VM has a valid VMID, otherwise assigns a new one and flushes corresponding
|
|
* caches and TLBs.
|
|
*/
|
|
static void update_vttbr(struct kvm *kvm)
|
|
{
|
|
phys_addr_t pgd_phys;
|
|
u64 vmid;
|
|
|
|
if (!need_new_vmid_gen(kvm))
|
|
return;
|
|
|
|
spin_lock(&kvm_vmid_lock);
|
|
|
|
/*
|
|
* We need to re-check the vmid_gen here to ensure that if another vcpu
|
|
* already allocated a valid vmid for this vm, then this vcpu should
|
|
* use the same vmid.
|
|
*/
|
|
if (!need_new_vmid_gen(kvm)) {
|
|
spin_unlock(&kvm_vmid_lock);
|
|
return;
|
|
}
|
|
|
|
/* First user of a new VMID generation? */
|
|
if (unlikely(kvm_next_vmid == 0)) {
|
|
atomic64_inc(&kvm_vmid_gen);
|
|
kvm_next_vmid = 1;
|
|
|
|
/*
|
|
* On SMP we know no other CPUs can use this CPU's or each
|
|
* other's VMID after force_vm_exit returns since the
|
|
* kvm_vmid_lock blocks them from reentry to the guest.
|
|
*/
|
|
force_vm_exit(cpu_all_mask);
|
|
/*
|
|
* Now broadcast TLB + ICACHE invalidation over the inner
|
|
* shareable domain to make sure all data structures are
|
|
* clean.
|
|
*/
|
|
kvm_call_hyp(__kvm_flush_vm_context);
|
|
}
|
|
|
|
kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
|
|
kvm->arch.vmid = kvm_next_vmid;
|
|
kvm_next_vmid++;
|
|
kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
|
|
|
|
/* update vttbr to be used with the new vmid */
|
|
pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
|
|
BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
|
|
vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
|
|
kvm->arch.vttbr = pgd_phys | vmid;
|
|
|
|
spin_unlock(&kvm_vmid_lock);
|
|
}
|
|
|
|
static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret;
|
|
|
|
if (likely(vcpu->arch.has_run_once))
|
|
return 0;
|
|
|
|
vcpu->arch.has_run_once = true;
|
|
|
|
/*
|
|
* Map the VGIC hardware resources before running a vcpu the first
|
|
* time on this VM.
|
|
*/
|
|
if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
|
|
ret = kvm_vgic_map_resources(kvm);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Enable the arch timers only if we have an in-kernel VGIC
|
|
* and it has been properly initialized, since we cannot handle
|
|
* interrupts from the virtual timer with a userspace gic.
|
|
*/
|
|
if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
|
|
kvm_timer_enable(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool kvm_arch_intc_initialized(struct kvm *kvm)
|
|
{
|
|
return vgic_initialized(kvm);
|
|
}
|
|
|
|
static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
|
|
static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
|
|
|
|
static void kvm_arm_halt_guest(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
vcpu->arch.pause = true;
|
|
force_vm_exit(cpu_all_mask);
|
|
}
|
|
|
|
static void kvm_arm_resume_guest(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
|
|
|
|
vcpu->arch.pause = false;
|
|
swake_up(wq);
|
|
}
|
|
}
|
|
|
|
static void vcpu_sleep(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
|
|
|
|
swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
|
|
(!vcpu->arch.pause)));
|
|
}
|
|
|
|
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
|
|
{
|
|
return vcpu->arch.target >= 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
|
|
* @vcpu: The VCPU pointer
|
|
* @run: The kvm_run structure pointer used for userspace state exchange
|
|
*
|
|
* This function is called through the VCPU_RUN ioctl called from user space. It
|
|
* will execute VM code in a loop until the time slice for the process is used
|
|
* or some emulation is needed from user space in which case the function will
|
|
* return with return value 0 and with the kvm_run structure filled in with the
|
|
* required data for the requested emulation.
|
|
*/
|
|
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
|
|
{
|
|
int ret;
|
|
sigset_t sigsaved;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
ret = kvm_vcpu_first_run_init(vcpu);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (run->exit_reason == KVM_EXIT_MMIO) {
|
|
ret = kvm_handle_mmio_return(vcpu, vcpu->run);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
|
|
|
|
ret = 1;
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
while (ret > 0) {
|
|
/*
|
|
* Check conditions before entering the guest
|
|
*/
|
|
cond_resched();
|
|
|
|
update_vttbr(vcpu->kvm);
|
|
|
|
if (vcpu->arch.power_off || vcpu->arch.pause)
|
|
vcpu_sleep(vcpu);
|
|
|
|
/*
|
|
* Preparing the interrupts to be injected also
|
|
* involves poking the GIC, which must be done in a
|
|
* non-preemptible context.
|
|
*/
|
|
preempt_disable();
|
|
kvm_pmu_flush_hwstate(vcpu);
|
|
kvm_timer_flush_hwstate(vcpu);
|
|
kvm_vgic_flush_hwstate(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
/*
|
|
* Re-check atomic conditions
|
|
*/
|
|
if (signal_pending(current)) {
|
|
ret = -EINTR;
|
|
run->exit_reason = KVM_EXIT_INTR;
|
|
}
|
|
|
|
if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
|
|
vcpu->arch.power_off || vcpu->arch.pause) {
|
|
local_irq_enable();
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
kvm_timer_sync_hwstate(vcpu);
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
preempt_enable();
|
|
continue;
|
|
}
|
|
|
|
kvm_arm_setup_debug(vcpu);
|
|
|
|
/**************************************************************
|
|
* Enter the guest
|
|
*/
|
|
trace_kvm_entry(*vcpu_pc(vcpu));
|
|
__kvm_guest_enter();
|
|
vcpu->mode = IN_GUEST_MODE;
|
|
|
|
ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
|
|
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
vcpu->stat.exits++;
|
|
/*
|
|
* Back from guest
|
|
*************************************************************/
|
|
|
|
kvm_arm_clear_debug(vcpu);
|
|
|
|
/*
|
|
* We may have taken a host interrupt in HYP mode (ie
|
|
* while executing the guest). This interrupt is still
|
|
* pending, as we haven't serviced it yet!
|
|
*
|
|
* We're now back in SVC mode, with interrupts
|
|
* disabled. Enabling the interrupts now will have
|
|
* the effect of taking the interrupt again, in SVC
|
|
* mode this time.
|
|
*/
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* We do local_irq_enable() before calling kvm_guest_exit() so
|
|
* that if a timer interrupt hits while running the guest we
|
|
* account that tick as being spent in the guest. We enable
|
|
* preemption after calling kvm_guest_exit() so that if we get
|
|
* preempted we make sure ticks after that is not counted as
|
|
* guest time.
|
|
*/
|
|
kvm_guest_exit();
|
|
trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
|
|
|
|
/*
|
|
* We must sync the PMU and timer state before the vgic state so
|
|
* that the vgic can properly sample the updated state of the
|
|
* interrupt line.
|
|
*/
|
|
kvm_pmu_sync_hwstate(vcpu);
|
|
kvm_timer_sync_hwstate(vcpu);
|
|
|
|
kvm_vgic_sync_hwstate(vcpu);
|
|
|
|
preempt_enable();
|
|
|
|
ret = handle_exit(vcpu, run, ret);
|
|
}
|
|
|
|
if (vcpu->sigset_active)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
return ret;
|
|
}
|
|
|
|
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
|
|
{
|
|
int bit_index;
|
|
bool set;
|
|
unsigned long *ptr;
|
|
|
|
if (number == KVM_ARM_IRQ_CPU_IRQ)
|
|
bit_index = __ffs(HCR_VI);
|
|
else /* KVM_ARM_IRQ_CPU_FIQ */
|
|
bit_index = __ffs(HCR_VF);
|
|
|
|
ptr = (unsigned long *)&vcpu->arch.irq_lines;
|
|
if (level)
|
|
set = test_and_set_bit(bit_index, ptr);
|
|
else
|
|
set = test_and_clear_bit(bit_index, ptr);
|
|
|
|
/*
|
|
* If we didn't change anything, no need to wake up or kick other CPUs
|
|
*/
|
|
if (set == level)
|
|
return 0;
|
|
|
|
/*
|
|
* The vcpu irq_lines field was updated, wake up sleeping VCPUs and
|
|
* trigger a world-switch round on the running physical CPU to set the
|
|
* virtual IRQ/FIQ fields in the HCR appropriately.
|
|
*/
|
|
kvm_vcpu_kick(vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
|
|
bool line_status)
|
|
{
|
|
u32 irq = irq_level->irq;
|
|
unsigned int irq_type, vcpu_idx, irq_num;
|
|
int nrcpus = atomic_read(&kvm->online_vcpus);
|
|
struct kvm_vcpu *vcpu = NULL;
|
|
bool level = irq_level->level;
|
|
|
|
irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
|
|
vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
|
|
irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
|
|
|
|
trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
|
|
|
|
switch (irq_type) {
|
|
case KVM_ARM_IRQ_TYPE_CPU:
|
|
if (irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
|
|
return -EINVAL;
|
|
|
|
return vcpu_interrupt_line(vcpu, irq_num, level);
|
|
case KVM_ARM_IRQ_TYPE_PPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (vcpu_idx >= nrcpus)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_get_vcpu(kvm, vcpu_idx);
|
|
if (!vcpu)
|
|
return -EINVAL;
|
|
|
|
if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
|
|
case KVM_ARM_IRQ_TYPE_SPI:
|
|
if (!irqchip_in_kernel(kvm))
|
|
return -ENXIO;
|
|
|
|
if (irq_num < VGIC_NR_PRIVATE_IRQS)
|
|
return -EINVAL;
|
|
|
|
return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
|
|
const struct kvm_vcpu_init *init)
|
|
{
|
|
unsigned int i;
|
|
int phys_target = kvm_target_cpu();
|
|
|
|
if (init->target != phys_target)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
|
|
* use the same target.
|
|
*/
|
|
if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
|
|
return -EINVAL;
|
|
|
|
/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
|
|
for (i = 0; i < sizeof(init->features) * 8; i++) {
|
|
bool set = (init->features[i / 32] & (1 << (i % 32)));
|
|
|
|
if (set && i >= KVM_VCPU_MAX_FEATURES)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
|
|
* use the same feature set.
|
|
*/
|
|
if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
|
|
test_bit(i, vcpu->arch.features) != set)
|
|
return -EINVAL;
|
|
|
|
if (set)
|
|
set_bit(i, vcpu->arch.features);
|
|
}
|
|
|
|
vcpu->arch.target = phys_target;
|
|
|
|
/* Now we know what it is, we can reset it. */
|
|
return kvm_reset_vcpu(vcpu);
|
|
}
|
|
|
|
|
|
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
|
|
struct kvm_vcpu_init *init)
|
|
{
|
|
int ret;
|
|
|
|
ret = kvm_vcpu_set_target(vcpu, init);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Ensure a rebooted VM will fault in RAM pages and detect if the
|
|
* guest MMU is turned off and flush the caches as needed.
|
|
*/
|
|
if (vcpu->arch.has_run_once)
|
|
stage2_unmap_vm(vcpu->kvm);
|
|
|
|
vcpu_reset_hcr(vcpu);
|
|
|
|
/*
|
|
* Handle the "start in power-off" case.
|
|
*/
|
|
if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
|
|
vcpu->arch.power_off = true;
|
|
else
|
|
vcpu->arch.power_off = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
|
|
struct kvm_device_attr *attr)
|
|
{
|
|
int ret = -ENXIO;
|
|
|
|
switch (attr->group) {
|
|
default:
|
|
ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
long kvm_arch_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
struct kvm_device_attr attr;
|
|
|
|
switch (ioctl) {
|
|
case KVM_ARM_VCPU_INIT: {
|
|
struct kvm_vcpu_init init;
|
|
|
|
if (copy_from_user(&init, argp, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
|
|
}
|
|
case KVM_SET_ONE_REG:
|
|
case KVM_GET_ONE_REG: {
|
|
struct kvm_one_reg reg;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
if (copy_from_user(®, argp, sizeof(reg)))
|
|
return -EFAULT;
|
|
if (ioctl == KVM_SET_ONE_REG)
|
|
return kvm_arm_set_reg(vcpu, ®);
|
|
else
|
|
return kvm_arm_get_reg(vcpu, ®);
|
|
}
|
|
case KVM_GET_REG_LIST: {
|
|
struct kvm_reg_list __user *user_list = argp;
|
|
struct kvm_reg_list reg_list;
|
|
unsigned n;
|
|
|
|
if (unlikely(!kvm_vcpu_initialized(vcpu)))
|
|
return -ENOEXEC;
|
|
|
|
if (copy_from_user(®_list, user_list, sizeof(reg_list)))
|
|
return -EFAULT;
|
|
n = reg_list.n;
|
|
reg_list.n = kvm_arm_num_regs(vcpu);
|
|
if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
|
|
return -EFAULT;
|
|
if (n < reg_list.n)
|
|
return -E2BIG;
|
|
return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
|
|
}
|
|
case KVM_SET_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
return kvm_arm_vcpu_set_attr(vcpu, &attr);
|
|
}
|
|
case KVM_GET_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
return kvm_arm_vcpu_get_attr(vcpu, &attr);
|
|
}
|
|
case KVM_HAS_DEVICE_ATTR: {
|
|
if (copy_from_user(&attr, argp, sizeof(attr)))
|
|
return -EFAULT;
|
|
return kvm_arm_vcpu_has_attr(vcpu, &attr);
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
|
|
* @kvm: kvm instance
|
|
* @log: slot id and address to which we copy the log
|
|
*
|
|
* Steps 1-4 below provide general overview of dirty page logging. See
|
|
* kvm_get_dirty_log_protect() function description for additional details.
|
|
*
|
|
* We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
|
|
* always flush the TLB (step 4) even if previous step failed and the dirty
|
|
* bitmap may be corrupt. Regardless of previous outcome the KVM logging API
|
|
* does not preclude user space subsequent dirty log read. Flushing TLB ensures
|
|
* writes will be marked dirty for next log read.
|
|
*
|
|
* 1. Take a snapshot of the bit and clear it if needed.
|
|
* 2. Write protect the corresponding page.
|
|
* 3. Copy the snapshot to the userspace.
|
|
* 4. Flush TLB's if needed.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
|
|
{
|
|
bool is_dirty = false;
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
|
|
|
|
if (is_dirty)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
|
|
struct kvm_arm_device_addr *dev_addr)
|
|
{
|
|
unsigned long dev_id, type;
|
|
|
|
dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
|
|
KVM_ARM_DEVICE_ID_SHIFT;
|
|
type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
|
|
KVM_ARM_DEVICE_TYPE_SHIFT;
|
|
|
|
switch (dev_id) {
|
|
case KVM_ARM_DEVICE_VGIC_V2:
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
long kvm_arch_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (ioctl) {
|
|
case KVM_CREATE_IRQCHIP: {
|
|
if (!vgic_present)
|
|
return -ENXIO;
|
|
return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
|
|
}
|
|
case KVM_ARM_SET_DEVICE_ADDR: {
|
|
struct kvm_arm_device_addr dev_addr;
|
|
|
|
if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
|
|
return -EFAULT;
|
|
return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
|
|
}
|
|
case KVM_ARM_PREFERRED_TARGET: {
|
|
int err;
|
|
struct kvm_vcpu_init init;
|
|
|
|
err = kvm_vcpu_preferred_target(&init);
|
|
if (err)
|
|
return err;
|
|
|
|
if (copy_to_user(argp, &init, sizeof(init)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void cpu_init_stage2(void *dummy)
|
|
{
|
|
__cpu_init_stage2();
|
|
}
|
|
|
|
static void cpu_init_hyp_mode(void *dummy)
|
|
{
|
|
phys_addr_t boot_pgd_ptr;
|
|
phys_addr_t pgd_ptr;
|
|
unsigned long hyp_stack_ptr;
|
|
unsigned long stack_page;
|
|
unsigned long vector_ptr;
|
|
|
|
/* Switch from the HYP stub to our own HYP init vector */
|
|
__hyp_set_vectors(kvm_get_idmap_vector());
|
|
|
|
boot_pgd_ptr = kvm_mmu_get_boot_httbr();
|
|
pgd_ptr = kvm_mmu_get_httbr();
|
|
stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
|
|
hyp_stack_ptr = stack_page + PAGE_SIZE;
|
|
vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
|
|
|
|
__cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
|
|
__cpu_init_stage2();
|
|
|
|
kvm_arm_init_debug();
|
|
}
|
|
|
|
static int hyp_init_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *cpu)
|
|
{
|
|
switch (action) {
|
|
case CPU_STARTING:
|
|
case CPU_STARTING_FROZEN:
|
|
if (__hyp_get_vectors() == hyp_default_vectors)
|
|
cpu_init_hyp_mode(NULL);
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block hyp_init_cpu_nb = {
|
|
.notifier_call = hyp_init_cpu_notify,
|
|
};
|
|
|
|
#ifdef CONFIG_CPU_PM
|
|
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
|
|
unsigned long cmd,
|
|
void *v)
|
|
{
|
|
if (cmd == CPU_PM_EXIT &&
|
|
__hyp_get_vectors() == hyp_default_vectors) {
|
|
cpu_init_hyp_mode(NULL);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block hyp_init_cpu_pm_nb = {
|
|
.notifier_call = hyp_init_cpu_pm_notifier,
|
|
};
|
|
|
|
static void __init hyp_cpu_pm_init(void)
|
|
{
|
|
cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
|
|
}
|
|
#else
|
|
static inline void hyp_cpu_pm_init(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void teardown_common_resources(void)
|
|
{
|
|
free_percpu(kvm_host_cpu_state);
|
|
}
|
|
|
|
static int init_common_resources(void)
|
|
{
|
|
kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
|
|
if (!kvm_host_cpu_state) {
|
|
kvm_err("Cannot allocate host CPU state\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_subsystems(void)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* Init HYP view of VGIC
|
|
*/
|
|
err = kvm_vgic_hyp_init();
|
|
switch (err) {
|
|
case 0:
|
|
vgic_present = true;
|
|
break;
|
|
case -ENODEV:
|
|
case -ENXIO:
|
|
vgic_present = false;
|
|
break;
|
|
default:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Init HYP architected timer support
|
|
*/
|
|
err = kvm_timer_hyp_init();
|
|
if (err)
|
|
return err;
|
|
|
|
kvm_perf_init();
|
|
kvm_coproc_table_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void teardown_hyp_mode(void)
|
|
{
|
|
int cpu;
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
return;
|
|
|
|
free_hyp_pgds();
|
|
for_each_possible_cpu(cpu)
|
|
free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
|
|
}
|
|
|
|
static int init_vhe_mode(void)
|
|
{
|
|
/*
|
|
* Execute the init code on each CPU.
|
|
*/
|
|
on_each_cpu(cpu_init_stage2, NULL, 1);
|
|
|
|
/* set size of VMID supported by CPU */
|
|
kvm_vmid_bits = kvm_get_vmid_bits();
|
|
kvm_info("%d-bit VMID\n", kvm_vmid_bits);
|
|
|
|
kvm_info("VHE mode initialized successfully\n");
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Inits Hyp-mode on all online CPUs
|
|
*/
|
|
static int init_hyp_mode(void)
|
|
{
|
|
int cpu;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Allocate Hyp PGD and setup Hyp identity mapping
|
|
*/
|
|
err = kvm_mmu_init();
|
|
if (err)
|
|
goto out_err;
|
|
|
|
/*
|
|
* It is probably enough to obtain the default on one
|
|
* CPU. It's unlikely to be different on the others.
|
|
*/
|
|
hyp_default_vectors = __hyp_get_vectors();
|
|
|
|
/*
|
|
* Allocate stack pages for Hypervisor-mode
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long stack_page;
|
|
|
|
stack_page = __get_free_page(GFP_KERNEL);
|
|
if (!stack_page) {
|
|
err = -ENOMEM;
|
|
goto out_err;
|
|
}
|
|
|
|
per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp-code called directly from the host
|
|
*/
|
|
err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
|
|
kvm_ksym_ref(__hyp_text_end));
|
|
if (err) {
|
|
kvm_err("Cannot map world-switch code\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
|
|
kvm_ksym_ref(__end_rodata));
|
|
if (err) {
|
|
kvm_err("Cannot map rodata section\n");
|
|
goto out_err;
|
|
}
|
|
|
|
/*
|
|
* Map the Hyp stack pages
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
|
|
err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map hyp stack\n");
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
kvm_cpu_context_t *cpu_ctxt;
|
|
|
|
cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
|
|
err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
|
|
|
|
if (err) {
|
|
kvm_err("Cannot map host CPU state: %d\n", err);
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Execute the init code on each CPU.
|
|
*/
|
|
on_each_cpu(cpu_init_hyp_mode, NULL, 1);
|
|
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
free_boot_hyp_pgd();
|
|
#endif
|
|
|
|
cpu_notifier_register_begin();
|
|
|
|
err = __register_cpu_notifier(&hyp_init_cpu_nb);
|
|
|
|
cpu_notifier_register_done();
|
|
|
|
if (err) {
|
|
kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
|
|
goto out_err;
|
|
}
|
|
|
|
hyp_cpu_pm_init();
|
|
|
|
/* set size of VMID supported by CPU */
|
|
kvm_vmid_bits = kvm_get_vmid_bits();
|
|
kvm_info("%d-bit VMID\n", kvm_vmid_bits);
|
|
|
|
kvm_info("Hyp mode initialized successfully\n");
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
teardown_hyp_mode();
|
|
kvm_err("error initializing Hyp mode: %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
static void check_kvm_target_cpu(void *ret)
|
|
{
|
|
*(int *)ret = kvm_target_cpu();
|
|
}
|
|
|
|
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mpidr &= MPIDR_HWID_BITMASK;
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
|
|
return vcpu;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Initialize Hyp-mode and memory mappings on all CPUs.
|
|
*/
|
|
int kvm_arch_init(void *opaque)
|
|
{
|
|
int err;
|
|
int ret, cpu;
|
|
|
|
if (!is_hyp_mode_available()) {
|
|
kvm_err("HYP mode not available\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
|
|
if (ret < 0) {
|
|
kvm_err("Error, CPU %d not supported!\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
err = init_common_resources();
|
|
if (err)
|
|
return err;
|
|
|
|
if (is_kernel_in_hyp_mode())
|
|
err = init_vhe_mode();
|
|
else
|
|
err = init_hyp_mode();
|
|
if (err)
|
|
goto out_err;
|
|
|
|
err = init_subsystems();
|
|
if (err)
|
|
goto out_hyp;
|
|
|
|
return 0;
|
|
|
|
out_hyp:
|
|
teardown_hyp_mode();
|
|
out_err:
|
|
teardown_common_resources();
|
|
return err;
|
|
}
|
|
|
|
/* NOP: Compiling as a module not supported */
|
|
void kvm_arch_exit(void)
|
|
{
|
|
kvm_perf_teardown();
|
|
}
|
|
|
|
static int arm_init(void)
|
|
{
|
|
int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
|
|
return rc;
|
|
}
|
|
|
|
module_init(arm_init);
|