1453 строки
36 KiB
C
1453 строки
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Driver for high-speed SCC boards (those with DMA support)
|
|
* Copyright (C) 1997-2000 Klaus Kudielka
|
|
*
|
|
* S5SCC/DMA support by Janko Koleznik S52HI
|
|
*/
|
|
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/if_arp.h>
|
|
#include <linux/in.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <linux/uaccess.h>
|
|
#include <net/ax25.h>
|
|
#include "z8530.h"
|
|
|
|
|
|
/* Number of buffers per channel */
|
|
|
|
#define NUM_TX_BUF 2 /* NUM_TX_BUF >= 1 (min. 2 recommended) */
|
|
#define NUM_RX_BUF 6 /* NUM_RX_BUF >= 1 (min. 2 recommended) */
|
|
#define BUF_SIZE 1576 /* BUF_SIZE >= mtu + hard_header_len */
|
|
|
|
|
|
/* Cards supported */
|
|
|
|
#define HW_PI { "Ottawa PI", 0x300, 0x20, 0x10, 8, \
|
|
0, 8, 1843200, 3686400 }
|
|
#define HW_PI2 { "Ottawa PI2", 0x300, 0x20, 0x10, 8, \
|
|
0, 8, 3686400, 7372800 }
|
|
#define HW_TWIN { "Gracilis PackeTwin", 0x200, 0x10, 0x10, 32, \
|
|
0, 4, 6144000, 6144000 }
|
|
#define HW_S5 { "S5SCC/DMA", 0x200, 0x10, 0x10, 32, \
|
|
0, 8, 4915200, 9830400 }
|
|
|
|
#define HARDWARE { HW_PI, HW_PI2, HW_TWIN, HW_S5 }
|
|
|
|
#define TMR_0_HZ 25600 /* Frequency of timer 0 */
|
|
|
|
#define TYPE_PI 0
|
|
#define TYPE_PI2 1
|
|
#define TYPE_TWIN 2
|
|
#define TYPE_S5 3
|
|
#define NUM_TYPES 4
|
|
|
|
#define MAX_NUM_DEVS 32
|
|
|
|
|
|
/* SCC chips supported */
|
|
|
|
#define Z8530 0
|
|
#define Z85C30 1
|
|
#define Z85230 2
|
|
|
|
#define CHIPNAMES { "Z8530", "Z85C30", "Z85230" }
|
|
|
|
|
|
/* I/O registers */
|
|
|
|
/* 8530 registers relative to card base */
|
|
#define SCCB_CMD 0x00
|
|
#define SCCB_DATA 0x01
|
|
#define SCCA_CMD 0x02
|
|
#define SCCA_DATA 0x03
|
|
|
|
/* 8253/8254 registers relative to card base */
|
|
#define TMR_CNT0 0x00
|
|
#define TMR_CNT1 0x01
|
|
#define TMR_CNT2 0x02
|
|
#define TMR_CTRL 0x03
|
|
|
|
/* Additional PI/PI2 registers relative to card base */
|
|
#define PI_DREQ_MASK 0x04
|
|
|
|
/* Additional PackeTwin registers relative to card base */
|
|
#define TWIN_INT_REG 0x08
|
|
#define TWIN_CLR_TMR1 0x09
|
|
#define TWIN_CLR_TMR2 0x0a
|
|
#define TWIN_SPARE_1 0x0b
|
|
#define TWIN_DMA_CFG 0x08
|
|
#define TWIN_SERIAL_CFG 0x09
|
|
#define TWIN_DMA_CLR_FF 0x0a
|
|
#define TWIN_SPARE_2 0x0b
|
|
|
|
|
|
/* PackeTwin I/O register values */
|
|
|
|
/* INT_REG */
|
|
#define TWIN_SCC_MSK 0x01
|
|
#define TWIN_TMR1_MSK 0x02
|
|
#define TWIN_TMR2_MSK 0x04
|
|
#define TWIN_INT_MSK 0x07
|
|
|
|
/* SERIAL_CFG */
|
|
#define TWIN_DTRA_ON 0x01
|
|
#define TWIN_DTRB_ON 0x02
|
|
#define TWIN_EXTCLKA 0x04
|
|
#define TWIN_EXTCLKB 0x08
|
|
#define TWIN_LOOPA_ON 0x10
|
|
#define TWIN_LOOPB_ON 0x20
|
|
#define TWIN_EI 0x80
|
|
|
|
/* DMA_CFG */
|
|
#define TWIN_DMA_HDX_T1 0x08
|
|
#define TWIN_DMA_HDX_R1 0x0a
|
|
#define TWIN_DMA_HDX_T3 0x14
|
|
#define TWIN_DMA_HDX_R3 0x16
|
|
#define TWIN_DMA_FDX_T3R1 0x1b
|
|
#define TWIN_DMA_FDX_T1R3 0x1d
|
|
|
|
|
|
/* Status values */
|
|
|
|
#define IDLE 0
|
|
#define TX_HEAD 1
|
|
#define TX_DATA 2
|
|
#define TX_PAUSE 3
|
|
#define TX_TAIL 4
|
|
#define RTS_OFF 5
|
|
#define WAIT 6
|
|
#define DCD_ON 7
|
|
#define RX_ON 8
|
|
#define DCD_OFF 9
|
|
|
|
|
|
/* Ioctls */
|
|
|
|
#define SIOCGSCCPARAM SIOCDEVPRIVATE
|
|
#define SIOCSSCCPARAM (SIOCDEVPRIVATE+1)
|
|
|
|
|
|
/* Data types */
|
|
|
|
struct scc_param {
|
|
int pclk_hz; /* frequency of BRG input (don't change) */
|
|
int brg_tc; /* BRG terminal count; BRG disabled if < 0 */
|
|
int nrzi; /* 0 (nrz), 1 (nrzi) */
|
|
int clocks; /* see dmascc_cfg documentation */
|
|
int txdelay; /* [1/TMR_0_HZ] */
|
|
int txtimeout; /* [1/HZ] */
|
|
int txtail; /* [1/TMR_0_HZ] */
|
|
int waittime; /* [1/TMR_0_HZ] */
|
|
int slottime; /* [1/TMR_0_HZ] */
|
|
int persist; /* 1 ... 256 */
|
|
int dma; /* -1 (disable), 0, 1, 3 */
|
|
int txpause; /* [1/TMR_0_HZ] */
|
|
int rtsoff; /* [1/TMR_0_HZ] */
|
|
int dcdon; /* [1/TMR_0_HZ] */
|
|
int dcdoff; /* [1/TMR_0_HZ] */
|
|
};
|
|
|
|
struct scc_hardware {
|
|
char *name;
|
|
int io_region;
|
|
int io_delta;
|
|
int io_size;
|
|
int num_devs;
|
|
int scc_offset;
|
|
int tmr_offset;
|
|
int tmr_hz;
|
|
int pclk_hz;
|
|
};
|
|
|
|
struct scc_priv {
|
|
int type;
|
|
int chip;
|
|
struct net_device *dev;
|
|
struct scc_info *info;
|
|
|
|
int channel;
|
|
int card_base, scc_cmd, scc_data;
|
|
int tmr_cnt, tmr_ctrl, tmr_mode;
|
|
struct scc_param param;
|
|
char rx_buf[NUM_RX_BUF][BUF_SIZE];
|
|
int rx_len[NUM_RX_BUF];
|
|
int rx_ptr;
|
|
struct work_struct rx_work;
|
|
int rx_head, rx_tail, rx_count;
|
|
int rx_over;
|
|
char tx_buf[NUM_TX_BUF][BUF_SIZE];
|
|
int tx_len[NUM_TX_BUF];
|
|
int tx_ptr;
|
|
int tx_head, tx_tail, tx_count;
|
|
int state;
|
|
unsigned long tx_start;
|
|
int rr0;
|
|
spinlock_t *register_lock; /* Per scc_info */
|
|
spinlock_t ring_lock;
|
|
};
|
|
|
|
struct scc_info {
|
|
int irq_used;
|
|
int twin_serial_cfg;
|
|
struct net_device *dev[2];
|
|
struct scc_priv priv[2];
|
|
struct scc_info *next;
|
|
spinlock_t register_lock; /* Per device register lock */
|
|
};
|
|
|
|
|
|
/* Function declarations */
|
|
static int setup_adapter(int card_base, int type, int n) __init;
|
|
|
|
static void write_scc(struct scc_priv *priv, int reg, int val);
|
|
static void write_scc_data(struct scc_priv *priv, int val, int fast);
|
|
static int read_scc(struct scc_priv *priv, int reg);
|
|
static int read_scc_data(struct scc_priv *priv);
|
|
|
|
static int scc_open(struct net_device *dev);
|
|
static int scc_close(struct net_device *dev);
|
|
static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
|
|
static int scc_send_packet(struct sk_buff *skb, struct net_device *dev);
|
|
static int scc_set_mac_address(struct net_device *dev, void *sa);
|
|
|
|
static inline void tx_on(struct scc_priv *priv);
|
|
static inline void rx_on(struct scc_priv *priv);
|
|
static inline void rx_off(struct scc_priv *priv);
|
|
static void start_timer(struct scc_priv *priv, int t, int r15);
|
|
static inline unsigned char random(void);
|
|
|
|
static inline void z8530_isr(struct scc_info *info);
|
|
static irqreturn_t scc_isr(int irq, void *dev_id);
|
|
static void rx_isr(struct scc_priv *priv);
|
|
static void special_condition(struct scc_priv *priv, int rc);
|
|
static void rx_bh(struct work_struct *);
|
|
static void tx_isr(struct scc_priv *priv);
|
|
static void es_isr(struct scc_priv *priv);
|
|
static void tm_isr(struct scc_priv *priv);
|
|
|
|
|
|
/* Initialization variables */
|
|
|
|
static int io[MAX_NUM_DEVS] __initdata = { 0, };
|
|
|
|
/* Beware! hw[] is also used in dmascc_exit(). */
|
|
static struct scc_hardware hw[NUM_TYPES] = HARDWARE;
|
|
|
|
|
|
/* Global variables */
|
|
|
|
static struct scc_info *first;
|
|
static unsigned long rand;
|
|
|
|
|
|
MODULE_AUTHOR("Klaus Kudielka");
|
|
MODULE_DESCRIPTION("Driver for high-speed SCC boards");
|
|
module_param_hw_array(io, int, ioport, NULL, 0);
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static void __exit dmascc_exit(void)
|
|
{
|
|
int i;
|
|
struct scc_info *info;
|
|
|
|
while (first) {
|
|
info = first;
|
|
|
|
/* Unregister devices */
|
|
for (i = 0; i < 2; i++)
|
|
unregister_netdev(info->dev[i]);
|
|
|
|
/* Reset board */
|
|
if (info->priv[0].type == TYPE_TWIN)
|
|
outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
|
|
write_scc(&info->priv[0], R9, FHWRES);
|
|
release_region(info->dev[0]->base_addr,
|
|
hw[info->priv[0].type].io_size);
|
|
|
|
for (i = 0; i < 2; i++)
|
|
free_netdev(info->dev[i]);
|
|
|
|
/* Free memory */
|
|
first = info->next;
|
|
kfree(info);
|
|
}
|
|
}
|
|
|
|
static int __init dmascc_init(void)
|
|
{
|
|
int h, i, j, n;
|
|
int base[MAX_NUM_DEVS], tcmd[MAX_NUM_DEVS], t0[MAX_NUM_DEVS],
|
|
t1[MAX_NUM_DEVS];
|
|
unsigned t_val;
|
|
unsigned long time, start[MAX_NUM_DEVS], delay[MAX_NUM_DEVS],
|
|
counting[MAX_NUM_DEVS];
|
|
|
|
/* Initialize random number generator */
|
|
rand = jiffies;
|
|
/* Cards found = 0 */
|
|
n = 0;
|
|
/* Warning message */
|
|
if (!io[0])
|
|
printk(KERN_INFO "dmascc: autoprobing (dangerous)\n");
|
|
|
|
/* Run autodetection for each card type */
|
|
for (h = 0; h < NUM_TYPES; h++) {
|
|
|
|
if (io[0]) {
|
|
/* User-specified I/O address regions */
|
|
for (i = 0; i < hw[h].num_devs; i++)
|
|
base[i] = 0;
|
|
for (i = 0; i < MAX_NUM_DEVS && io[i]; i++) {
|
|
j = (io[i] -
|
|
hw[h].io_region) / hw[h].io_delta;
|
|
if (j >= 0 && j < hw[h].num_devs &&
|
|
hw[h].io_region +
|
|
j * hw[h].io_delta == io[i]) {
|
|
base[j] = io[i];
|
|
}
|
|
}
|
|
} else {
|
|
/* Default I/O address regions */
|
|
for (i = 0; i < hw[h].num_devs; i++) {
|
|
base[i] =
|
|
hw[h].io_region + i * hw[h].io_delta;
|
|
}
|
|
}
|
|
|
|
/* Check valid I/O address regions */
|
|
for (i = 0; i < hw[h].num_devs; i++)
|
|
if (base[i]) {
|
|
if (!request_region
|
|
(base[i], hw[h].io_size, "dmascc"))
|
|
base[i] = 0;
|
|
else {
|
|
tcmd[i] =
|
|
base[i] + hw[h].tmr_offset +
|
|
TMR_CTRL;
|
|
t0[i] =
|
|
base[i] + hw[h].tmr_offset +
|
|
TMR_CNT0;
|
|
t1[i] =
|
|
base[i] + hw[h].tmr_offset +
|
|
TMR_CNT1;
|
|
}
|
|
}
|
|
|
|
/* Start timers */
|
|
for (i = 0; i < hw[h].num_devs; i++)
|
|
if (base[i]) {
|
|
/* Timer 0: LSB+MSB, Mode 3, TMR_0_HZ */
|
|
outb(0x36, tcmd[i]);
|
|
outb((hw[h].tmr_hz / TMR_0_HZ) & 0xFF,
|
|
t0[i]);
|
|
outb((hw[h].tmr_hz / TMR_0_HZ) >> 8,
|
|
t0[i]);
|
|
/* Timer 1: LSB+MSB, Mode 0, HZ/10 */
|
|
outb(0x70, tcmd[i]);
|
|
outb((TMR_0_HZ / HZ * 10) & 0xFF, t1[i]);
|
|
outb((TMR_0_HZ / HZ * 10) >> 8, t1[i]);
|
|
start[i] = jiffies;
|
|
delay[i] = 0;
|
|
counting[i] = 1;
|
|
/* Timer 2: LSB+MSB, Mode 0 */
|
|
outb(0xb0, tcmd[i]);
|
|
}
|
|
time = jiffies;
|
|
/* Wait until counter registers are loaded */
|
|
udelay(2000000 / TMR_0_HZ);
|
|
|
|
/* Timing loop */
|
|
while (jiffies - time < 13) {
|
|
for (i = 0; i < hw[h].num_devs; i++)
|
|
if (base[i] && counting[i]) {
|
|
/* Read back Timer 1: latch; read LSB; read MSB */
|
|
outb(0x40, tcmd[i]);
|
|
t_val =
|
|
inb(t1[i]) + (inb(t1[i]) << 8);
|
|
/* Also check whether counter did wrap */
|
|
if (t_val == 0 ||
|
|
t_val > TMR_0_HZ / HZ * 10)
|
|
counting[i] = 0;
|
|
delay[i] = jiffies - start[i];
|
|
}
|
|
}
|
|
|
|
/* Evaluate measurements */
|
|
for (i = 0; i < hw[h].num_devs; i++)
|
|
if (base[i]) {
|
|
if ((delay[i] >= 9 && delay[i] <= 11) &&
|
|
/* Ok, we have found an adapter */
|
|
(setup_adapter(base[i], h, n) == 0))
|
|
n++;
|
|
else
|
|
release_region(base[i],
|
|
hw[h].io_size);
|
|
}
|
|
|
|
} /* NUM_TYPES */
|
|
|
|
/* If any adapter was successfully initialized, return ok */
|
|
if (n)
|
|
return 0;
|
|
|
|
/* If no adapter found, return error */
|
|
printk(KERN_INFO "dmascc: no adapters found\n");
|
|
return -EIO;
|
|
}
|
|
|
|
module_init(dmascc_init);
|
|
module_exit(dmascc_exit);
|
|
|
|
static void __init dev_setup(struct net_device *dev)
|
|
{
|
|
dev->type = ARPHRD_AX25;
|
|
dev->hard_header_len = AX25_MAX_HEADER_LEN;
|
|
dev->mtu = 1500;
|
|
dev->addr_len = AX25_ADDR_LEN;
|
|
dev->tx_queue_len = 64;
|
|
memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
|
|
memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
|
|
}
|
|
|
|
static const struct net_device_ops scc_netdev_ops = {
|
|
.ndo_open = scc_open,
|
|
.ndo_stop = scc_close,
|
|
.ndo_start_xmit = scc_send_packet,
|
|
.ndo_do_ioctl = scc_ioctl,
|
|
.ndo_set_mac_address = scc_set_mac_address,
|
|
};
|
|
|
|
static int __init setup_adapter(int card_base, int type, int n)
|
|
{
|
|
int i, irq, chip, err;
|
|
struct scc_info *info;
|
|
struct net_device *dev;
|
|
struct scc_priv *priv;
|
|
unsigned long time;
|
|
unsigned int irqs;
|
|
int tmr_base = card_base + hw[type].tmr_offset;
|
|
int scc_base = card_base + hw[type].scc_offset;
|
|
char *chipnames[] = CHIPNAMES;
|
|
|
|
/* Initialize what is necessary for write_scc and write_scc_data */
|
|
info = kzalloc(sizeof(struct scc_info), GFP_KERNEL | GFP_DMA);
|
|
if (!info) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
info->dev[0] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
|
|
if (!info->dev[0]) {
|
|
printk(KERN_ERR "dmascc: "
|
|
"could not allocate memory for %s at %#3x\n",
|
|
hw[type].name, card_base);
|
|
err = -ENOMEM;
|
|
goto out1;
|
|
}
|
|
|
|
info->dev[1] = alloc_netdev(0, "", NET_NAME_UNKNOWN, dev_setup);
|
|
if (!info->dev[1]) {
|
|
printk(KERN_ERR "dmascc: "
|
|
"could not allocate memory for %s at %#3x\n",
|
|
hw[type].name, card_base);
|
|
err = -ENOMEM;
|
|
goto out2;
|
|
}
|
|
spin_lock_init(&info->register_lock);
|
|
|
|
priv = &info->priv[0];
|
|
priv->type = type;
|
|
priv->card_base = card_base;
|
|
priv->scc_cmd = scc_base + SCCA_CMD;
|
|
priv->scc_data = scc_base + SCCA_DATA;
|
|
priv->register_lock = &info->register_lock;
|
|
|
|
/* Reset SCC */
|
|
write_scc(priv, R9, FHWRES | MIE | NV);
|
|
|
|
/* Determine type of chip by enabling SDLC/HDLC enhancements */
|
|
write_scc(priv, R15, SHDLCE);
|
|
if (!read_scc(priv, R15)) {
|
|
/* WR7' not present. This is an ordinary Z8530 SCC. */
|
|
chip = Z8530;
|
|
} else {
|
|
/* Put one character in TX FIFO */
|
|
write_scc_data(priv, 0, 0);
|
|
if (read_scc(priv, R0) & Tx_BUF_EMP) {
|
|
/* TX FIFO not full. This is a Z85230 ESCC with a 4-byte FIFO. */
|
|
chip = Z85230;
|
|
} else {
|
|
/* TX FIFO full. This is a Z85C30 SCC with a 1-byte FIFO. */
|
|
chip = Z85C30;
|
|
}
|
|
}
|
|
write_scc(priv, R15, 0);
|
|
|
|
/* Start IRQ auto-detection */
|
|
irqs = probe_irq_on();
|
|
|
|
/* Enable interrupts */
|
|
if (type == TYPE_TWIN) {
|
|
outb(0, card_base + TWIN_DMA_CFG);
|
|
inb(card_base + TWIN_CLR_TMR1);
|
|
inb(card_base + TWIN_CLR_TMR2);
|
|
info->twin_serial_cfg = TWIN_EI;
|
|
outb(info->twin_serial_cfg, card_base + TWIN_SERIAL_CFG);
|
|
} else {
|
|
write_scc(priv, R15, CTSIE);
|
|
write_scc(priv, R0, RES_EXT_INT);
|
|
write_scc(priv, R1, EXT_INT_ENAB);
|
|
}
|
|
|
|
/* Start timer */
|
|
outb(1, tmr_base + TMR_CNT1);
|
|
outb(0, tmr_base + TMR_CNT1);
|
|
|
|
/* Wait and detect IRQ */
|
|
time = jiffies;
|
|
while (jiffies - time < 2 + HZ / TMR_0_HZ);
|
|
irq = probe_irq_off(irqs);
|
|
|
|
/* Clear pending interrupt, disable interrupts */
|
|
if (type == TYPE_TWIN) {
|
|
inb(card_base + TWIN_CLR_TMR1);
|
|
} else {
|
|
write_scc(priv, R1, 0);
|
|
write_scc(priv, R15, 0);
|
|
write_scc(priv, R0, RES_EXT_INT);
|
|
}
|
|
|
|
if (irq <= 0) {
|
|
printk(KERN_ERR
|
|
"dmascc: could not find irq of %s at %#3x (irq=%d)\n",
|
|
hw[type].name, card_base, irq);
|
|
err = -ENODEV;
|
|
goto out3;
|
|
}
|
|
|
|
/* Set up data structures */
|
|
for (i = 0; i < 2; i++) {
|
|
dev = info->dev[i];
|
|
priv = &info->priv[i];
|
|
priv->type = type;
|
|
priv->chip = chip;
|
|
priv->dev = dev;
|
|
priv->info = info;
|
|
priv->channel = i;
|
|
spin_lock_init(&priv->ring_lock);
|
|
priv->register_lock = &info->register_lock;
|
|
priv->card_base = card_base;
|
|
priv->scc_cmd = scc_base + (i ? SCCB_CMD : SCCA_CMD);
|
|
priv->scc_data = scc_base + (i ? SCCB_DATA : SCCA_DATA);
|
|
priv->tmr_cnt = tmr_base + (i ? TMR_CNT2 : TMR_CNT1);
|
|
priv->tmr_ctrl = tmr_base + TMR_CTRL;
|
|
priv->tmr_mode = i ? 0xb0 : 0x70;
|
|
priv->param.pclk_hz = hw[type].pclk_hz;
|
|
priv->param.brg_tc = -1;
|
|
priv->param.clocks = TCTRxCP | RCRTxCP;
|
|
priv->param.persist = 256;
|
|
priv->param.dma = -1;
|
|
INIT_WORK(&priv->rx_work, rx_bh);
|
|
dev->ml_priv = priv;
|
|
snprintf(dev->name, sizeof(dev->name), "dmascc%i", 2 * n + i);
|
|
dev->base_addr = card_base;
|
|
dev->irq = irq;
|
|
dev->netdev_ops = &scc_netdev_ops;
|
|
dev->header_ops = &ax25_header_ops;
|
|
}
|
|
if (register_netdev(info->dev[0])) {
|
|
printk(KERN_ERR "dmascc: could not register %s\n",
|
|
info->dev[0]->name);
|
|
err = -ENODEV;
|
|
goto out3;
|
|
}
|
|
if (register_netdev(info->dev[1])) {
|
|
printk(KERN_ERR "dmascc: could not register %s\n",
|
|
info->dev[1]->name);
|
|
err = -ENODEV;
|
|
goto out4;
|
|
}
|
|
|
|
|
|
info->next = first;
|
|
first = info;
|
|
printk(KERN_INFO "dmascc: found %s (%s) at %#3x, irq %d\n",
|
|
hw[type].name, chipnames[chip], card_base, irq);
|
|
return 0;
|
|
|
|
out4:
|
|
unregister_netdev(info->dev[0]);
|
|
out3:
|
|
if (info->priv[0].type == TYPE_TWIN)
|
|
outb(0, info->dev[0]->base_addr + TWIN_SERIAL_CFG);
|
|
write_scc(&info->priv[0], R9, FHWRES);
|
|
free_netdev(info->dev[1]);
|
|
out2:
|
|
free_netdev(info->dev[0]);
|
|
out1:
|
|
kfree(info);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
|
|
/* Driver functions */
|
|
|
|
static void write_scc(struct scc_priv *priv, int reg, int val)
|
|
{
|
|
unsigned long flags;
|
|
switch (priv->type) {
|
|
case TYPE_S5:
|
|
if (reg)
|
|
outb(reg, priv->scc_cmd);
|
|
outb(val, priv->scc_cmd);
|
|
return;
|
|
case TYPE_TWIN:
|
|
if (reg)
|
|
outb_p(reg, priv->scc_cmd);
|
|
outb_p(val, priv->scc_cmd);
|
|
return;
|
|
default:
|
|
spin_lock_irqsave(priv->register_lock, flags);
|
|
outb_p(0, priv->card_base + PI_DREQ_MASK);
|
|
if (reg)
|
|
outb_p(reg, priv->scc_cmd);
|
|
outb_p(val, priv->scc_cmd);
|
|
outb(1, priv->card_base + PI_DREQ_MASK);
|
|
spin_unlock_irqrestore(priv->register_lock, flags);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
static void write_scc_data(struct scc_priv *priv, int val, int fast)
|
|
{
|
|
unsigned long flags;
|
|
switch (priv->type) {
|
|
case TYPE_S5:
|
|
outb(val, priv->scc_data);
|
|
return;
|
|
case TYPE_TWIN:
|
|
outb_p(val, priv->scc_data);
|
|
return;
|
|
default:
|
|
if (fast)
|
|
outb_p(val, priv->scc_data);
|
|
else {
|
|
spin_lock_irqsave(priv->register_lock, flags);
|
|
outb_p(0, priv->card_base + PI_DREQ_MASK);
|
|
outb_p(val, priv->scc_data);
|
|
outb(1, priv->card_base + PI_DREQ_MASK);
|
|
spin_unlock_irqrestore(priv->register_lock, flags);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
static int read_scc(struct scc_priv *priv, int reg)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
switch (priv->type) {
|
|
case TYPE_S5:
|
|
if (reg)
|
|
outb(reg, priv->scc_cmd);
|
|
return inb(priv->scc_cmd);
|
|
case TYPE_TWIN:
|
|
if (reg)
|
|
outb_p(reg, priv->scc_cmd);
|
|
return inb_p(priv->scc_cmd);
|
|
default:
|
|
spin_lock_irqsave(priv->register_lock, flags);
|
|
outb_p(0, priv->card_base + PI_DREQ_MASK);
|
|
if (reg)
|
|
outb_p(reg, priv->scc_cmd);
|
|
rc = inb_p(priv->scc_cmd);
|
|
outb(1, priv->card_base + PI_DREQ_MASK);
|
|
spin_unlock_irqrestore(priv->register_lock, flags);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
|
|
static int read_scc_data(struct scc_priv *priv)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
switch (priv->type) {
|
|
case TYPE_S5:
|
|
return inb(priv->scc_data);
|
|
case TYPE_TWIN:
|
|
return inb_p(priv->scc_data);
|
|
default:
|
|
spin_lock_irqsave(priv->register_lock, flags);
|
|
outb_p(0, priv->card_base + PI_DREQ_MASK);
|
|
rc = inb_p(priv->scc_data);
|
|
outb(1, priv->card_base + PI_DREQ_MASK);
|
|
spin_unlock_irqrestore(priv->register_lock, flags);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
|
|
static int scc_open(struct net_device *dev)
|
|
{
|
|
struct scc_priv *priv = dev->ml_priv;
|
|
struct scc_info *info = priv->info;
|
|
int card_base = priv->card_base;
|
|
|
|
/* Request IRQ if not already used by other channel */
|
|
if (!info->irq_used) {
|
|
if (request_irq(dev->irq, scc_isr, 0, "dmascc", info)) {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
info->irq_used++;
|
|
|
|
/* Request DMA if required */
|
|
if (priv->param.dma >= 0) {
|
|
if (request_dma(priv->param.dma, "dmascc")) {
|
|
if (--info->irq_used == 0)
|
|
free_irq(dev->irq, info);
|
|
return -EAGAIN;
|
|
} else {
|
|
unsigned long flags = claim_dma_lock();
|
|
clear_dma_ff(priv->param.dma);
|
|
release_dma_lock(flags);
|
|
}
|
|
}
|
|
|
|
/* Initialize local variables */
|
|
priv->rx_ptr = 0;
|
|
priv->rx_over = 0;
|
|
priv->rx_head = priv->rx_tail = priv->rx_count = 0;
|
|
priv->state = IDLE;
|
|
priv->tx_head = priv->tx_tail = priv->tx_count = 0;
|
|
priv->tx_ptr = 0;
|
|
|
|
/* Reset channel */
|
|
write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
|
|
/* X1 clock, SDLC mode */
|
|
write_scc(priv, R4, SDLC | X1CLK);
|
|
/* DMA */
|
|
write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
|
|
/* 8 bit RX char, RX disable */
|
|
write_scc(priv, R3, Rx8);
|
|
/* 8 bit TX char, TX disable */
|
|
write_scc(priv, R5, Tx8);
|
|
/* SDLC address field */
|
|
write_scc(priv, R6, 0);
|
|
/* SDLC flag */
|
|
write_scc(priv, R7, FLAG);
|
|
switch (priv->chip) {
|
|
case Z85C30:
|
|
/* Select WR7' */
|
|
write_scc(priv, R15, SHDLCE);
|
|
/* Auto EOM reset */
|
|
write_scc(priv, R7, AUTOEOM);
|
|
write_scc(priv, R15, 0);
|
|
break;
|
|
case Z85230:
|
|
/* Select WR7' */
|
|
write_scc(priv, R15, SHDLCE);
|
|
/* The following bits are set (see 2.5.2.1):
|
|
- Automatic EOM reset
|
|
- Interrupt request if RX FIFO is half full
|
|
This bit should be ignored in DMA mode (according to the
|
|
documentation), but actually isn't. The receiver doesn't work if
|
|
it is set. Thus, we have to clear it in DMA mode.
|
|
- Interrupt/DMA request if TX FIFO is completely empty
|
|
a) If set, the ESCC behaves as if it had no TX FIFO (Z85C30
|
|
compatibility).
|
|
b) If cleared, DMA requests may follow each other very quickly,
|
|
filling up the TX FIFO.
|
|
Advantage: TX works even in case of high bus latency.
|
|
Disadvantage: Edge-triggered DMA request circuitry may miss
|
|
a request. No more data is delivered, resulting
|
|
in a TX FIFO underrun.
|
|
Both PI2 and S5SCC/DMA seem to work fine with TXFIFOE cleared.
|
|
The PackeTwin doesn't. I don't know about the PI, but let's
|
|
assume it behaves like the PI2.
|
|
*/
|
|
if (priv->param.dma >= 0) {
|
|
if (priv->type == TYPE_TWIN)
|
|
write_scc(priv, R7, AUTOEOM | TXFIFOE);
|
|
else
|
|
write_scc(priv, R7, AUTOEOM);
|
|
} else {
|
|
write_scc(priv, R7, AUTOEOM | RXFIFOH);
|
|
}
|
|
write_scc(priv, R15, 0);
|
|
break;
|
|
}
|
|
/* Preset CRC, NRZ(I) encoding */
|
|
write_scc(priv, R10, CRCPS | (priv->param.nrzi ? NRZI : NRZ));
|
|
|
|
/* Configure baud rate generator */
|
|
if (priv->param.brg_tc >= 0) {
|
|
/* Program BR generator */
|
|
write_scc(priv, R12, priv->param.brg_tc & 0xFF);
|
|
write_scc(priv, R13, (priv->param.brg_tc >> 8) & 0xFF);
|
|
/* BRG source = SYS CLK; enable BRG; DTR REQ function (required by
|
|
PackeTwin, not connected on the PI2); set DPLL source to BRG */
|
|
write_scc(priv, R14, SSBR | DTRREQ | BRSRC | BRENABL);
|
|
/* Enable DPLL */
|
|
write_scc(priv, R14, SEARCH | DTRREQ | BRSRC | BRENABL);
|
|
} else {
|
|
/* Disable BR generator */
|
|
write_scc(priv, R14, DTRREQ | BRSRC);
|
|
}
|
|
|
|
/* Configure clocks */
|
|
if (priv->type == TYPE_TWIN) {
|
|
/* Disable external TX clock receiver */
|
|
outb((info->twin_serial_cfg &=
|
|
~(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
|
|
card_base + TWIN_SERIAL_CFG);
|
|
}
|
|
write_scc(priv, R11, priv->param.clocks);
|
|
if ((priv->type == TYPE_TWIN) && !(priv->param.clocks & TRxCOI)) {
|
|
/* Enable external TX clock receiver */
|
|
outb((info->twin_serial_cfg |=
|
|
(priv->channel ? TWIN_EXTCLKB : TWIN_EXTCLKA)),
|
|
card_base + TWIN_SERIAL_CFG);
|
|
}
|
|
|
|
/* Configure PackeTwin */
|
|
if (priv->type == TYPE_TWIN) {
|
|
/* Assert DTR, enable interrupts */
|
|
outb((info->twin_serial_cfg |= TWIN_EI |
|
|
(priv->channel ? TWIN_DTRB_ON : TWIN_DTRA_ON)),
|
|
card_base + TWIN_SERIAL_CFG);
|
|
}
|
|
|
|
/* Read current status */
|
|
priv->rr0 = read_scc(priv, R0);
|
|
/* Enable DCD interrupt */
|
|
write_scc(priv, R15, DCDIE);
|
|
|
|
netif_start_queue(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int scc_close(struct net_device *dev)
|
|
{
|
|
struct scc_priv *priv = dev->ml_priv;
|
|
struct scc_info *info = priv->info;
|
|
int card_base = priv->card_base;
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
if (priv->type == TYPE_TWIN) {
|
|
/* Drop DTR */
|
|
outb((info->twin_serial_cfg &=
|
|
(priv->channel ? ~TWIN_DTRB_ON : ~TWIN_DTRA_ON)),
|
|
card_base + TWIN_SERIAL_CFG);
|
|
}
|
|
|
|
/* Reset channel, free DMA and IRQ */
|
|
write_scc(priv, R9, (priv->channel ? CHRB : CHRA) | MIE | NV);
|
|
if (priv->param.dma >= 0) {
|
|
if (priv->type == TYPE_TWIN)
|
|
outb(0, card_base + TWIN_DMA_CFG);
|
|
free_dma(priv->param.dma);
|
|
}
|
|
if (--info->irq_used == 0)
|
|
free_irq(dev->irq, info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int scc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct scc_priv *priv = dev->ml_priv;
|
|
|
|
switch (cmd) {
|
|
case SIOCGSCCPARAM:
|
|
if (copy_to_user
|
|
(ifr->ifr_data, &priv->param,
|
|
sizeof(struct scc_param)))
|
|
return -EFAULT;
|
|
return 0;
|
|
case SIOCSSCCPARAM:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
if (netif_running(dev))
|
|
return -EAGAIN;
|
|
if (copy_from_user
|
|
(&priv->param, ifr->ifr_data,
|
|
sizeof(struct scc_param)))
|
|
return -EFAULT;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
|
|
static int scc_send_packet(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct scc_priv *priv = dev->ml_priv;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
if (skb->protocol == htons(ETH_P_IP))
|
|
return ax25_ip_xmit(skb);
|
|
|
|
/* Temporarily stop the scheduler feeding us packets */
|
|
netif_stop_queue(dev);
|
|
|
|
/* Transfer data to DMA buffer */
|
|
i = priv->tx_head;
|
|
skb_copy_from_linear_data_offset(skb, 1, priv->tx_buf[i], skb->len - 1);
|
|
priv->tx_len[i] = skb->len - 1;
|
|
|
|
/* Clear interrupts while we touch our circular buffers */
|
|
|
|
spin_lock_irqsave(&priv->ring_lock, flags);
|
|
/* Move the ring buffer's head */
|
|
priv->tx_head = (i + 1) % NUM_TX_BUF;
|
|
priv->tx_count++;
|
|
|
|
/* If we just filled up the last buffer, leave queue stopped.
|
|
The higher layers must wait until we have a DMA buffer
|
|
to accept the data. */
|
|
if (priv->tx_count < NUM_TX_BUF)
|
|
netif_wake_queue(dev);
|
|
|
|
/* Set new TX state */
|
|
if (priv->state == IDLE) {
|
|
/* Assert RTS, start timer */
|
|
priv->state = TX_HEAD;
|
|
priv->tx_start = jiffies;
|
|
write_scc(priv, R5, TxCRC_ENAB | RTS | TxENAB | Tx8);
|
|
write_scc(priv, R15, 0);
|
|
start_timer(priv, priv->param.txdelay, 0);
|
|
}
|
|
|
|
/* Turn interrupts back on and free buffer */
|
|
spin_unlock_irqrestore(&priv->ring_lock, flags);
|
|
dev_kfree_skb(skb);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
|
|
static int scc_set_mac_address(struct net_device *dev, void *sa)
|
|
{
|
|
memcpy(dev->dev_addr, ((struct sockaddr *) sa)->sa_data,
|
|
dev->addr_len);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static inline void tx_on(struct scc_priv *priv)
|
|
{
|
|
int i, n;
|
|
unsigned long flags;
|
|
|
|
if (priv->param.dma >= 0) {
|
|
n = (priv->chip == Z85230) ? 3 : 1;
|
|
/* Program DMA controller */
|
|
flags = claim_dma_lock();
|
|
set_dma_mode(priv->param.dma, DMA_MODE_WRITE);
|
|
set_dma_addr(priv->param.dma,
|
|
(int) priv->tx_buf[priv->tx_tail] + n);
|
|
set_dma_count(priv->param.dma,
|
|
priv->tx_len[priv->tx_tail] - n);
|
|
release_dma_lock(flags);
|
|
/* Enable TX underrun interrupt */
|
|
write_scc(priv, R15, TxUIE);
|
|
/* Configure DREQ */
|
|
if (priv->type == TYPE_TWIN)
|
|
outb((priv->param.dma ==
|
|
1) ? TWIN_DMA_HDX_T1 : TWIN_DMA_HDX_T3,
|
|
priv->card_base + TWIN_DMA_CFG);
|
|
else
|
|
write_scc(priv, R1,
|
|
EXT_INT_ENAB | WT_FN_RDYFN |
|
|
WT_RDY_ENAB);
|
|
/* Write first byte(s) */
|
|
spin_lock_irqsave(priv->register_lock, flags);
|
|
for (i = 0; i < n; i++)
|
|
write_scc_data(priv,
|
|
priv->tx_buf[priv->tx_tail][i], 1);
|
|
enable_dma(priv->param.dma);
|
|
spin_unlock_irqrestore(priv->register_lock, flags);
|
|
} else {
|
|
write_scc(priv, R15, TxUIE);
|
|
write_scc(priv, R1,
|
|
EXT_INT_ENAB | WT_FN_RDYFN | TxINT_ENAB);
|
|
tx_isr(priv);
|
|
}
|
|
/* Reset EOM latch if we do not have the AUTOEOM feature */
|
|
if (priv->chip == Z8530)
|
|
write_scc(priv, R0, RES_EOM_L);
|
|
}
|
|
|
|
|
|
static inline void rx_on(struct scc_priv *priv)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Clear RX FIFO */
|
|
while (read_scc(priv, R0) & Rx_CH_AV)
|
|
read_scc_data(priv);
|
|
priv->rx_over = 0;
|
|
if (priv->param.dma >= 0) {
|
|
/* Program DMA controller */
|
|
flags = claim_dma_lock();
|
|
set_dma_mode(priv->param.dma, DMA_MODE_READ);
|
|
set_dma_addr(priv->param.dma,
|
|
(int) priv->rx_buf[priv->rx_head]);
|
|
set_dma_count(priv->param.dma, BUF_SIZE);
|
|
release_dma_lock(flags);
|
|
enable_dma(priv->param.dma);
|
|
/* Configure PackeTwin DMA */
|
|
if (priv->type == TYPE_TWIN) {
|
|
outb((priv->param.dma ==
|
|
1) ? TWIN_DMA_HDX_R1 : TWIN_DMA_HDX_R3,
|
|
priv->card_base + TWIN_DMA_CFG);
|
|
}
|
|
/* Sp. cond. intr. only, ext int enable, RX DMA enable */
|
|
write_scc(priv, R1, EXT_INT_ENAB | INT_ERR_Rx |
|
|
WT_RDY_RT | WT_FN_RDYFN | WT_RDY_ENAB);
|
|
} else {
|
|
/* Reset current frame */
|
|
priv->rx_ptr = 0;
|
|
/* Intr. on all Rx characters and Sp. cond., ext int enable */
|
|
write_scc(priv, R1, EXT_INT_ENAB | INT_ALL_Rx | WT_RDY_RT |
|
|
WT_FN_RDYFN);
|
|
}
|
|
write_scc(priv, R0, ERR_RES);
|
|
write_scc(priv, R3, RxENABLE | Rx8 | RxCRC_ENAB);
|
|
}
|
|
|
|
|
|
static inline void rx_off(struct scc_priv *priv)
|
|
{
|
|
/* Disable receiver */
|
|
write_scc(priv, R3, Rx8);
|
|
/* Disable DREQ / RX interrupt */
|
|
if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
|
|
outb(0, priv->card_base + TWIN_DMA_CFG);
|
|
else
|
|
write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
|
|
/* Disable DMA */
|
|
if (priv->param.dma >= 0)
|
|
disable_dma(priv->param.dma);
|
|
}
|
|
|
|
|
|
static void start_timer(struct scc_priv *priv, int t, int r15)
|
|
{
|
|
outb(priv->tmr_mode, priv->tmr_ctrl);
|
|
if (t == 0) {
|
|
tm_isr(priv);
|
|
} else if (t > 0) {
|
|
outb(t & 0xFF, priv->tmr_cnt);
|
|
outb((t >> 8) & 0xFF, priv->tmr_cnt);
|
|
if (priv->type != TYPE_TWIN) {
|
|
write_scc(priv, R15, r15 | CTSIE);
|
|
priv->rr0 |= CTS;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static inline unsigned char random(void)
|
|
{
|
|
/* See "Numerical Recipes in C", second edition, p. 284 */
|
|
rand = rand * 1664525L + 1013904223L;
|
|
return (unsigned char) (rand >> 24);
|
|
}
|
|
|
|
static inline void z8530_isr(struct scc_info *info)
|
|
{
|
|
int is, i = 100;
|
|
|
|
while ((is = read_scc(&info->priv[0], R3)) && i--) {
|
|
if (is & CHARxIP) {
|
|
rx_isr(&info->priv[0]);
|
|
} else if (is & CHATxIP) {
|
|
tx_isr(&info->priv[0]);
|
|
} else if (is & CHAEXT) {
|
|
es_isr(&info->priv[0]);
|
|
} else if (is & CHBRxIP) {
|
|
rx_isr(&info->priv[1]);
|
|
} else if (is & CHBTxIP) {
|
|
tx_isr(&info->priv[1]);
|
|
} else {
|
|
es_isr(&info->priv[1]);
|
|
}
|
|
write_scc(&info->priv[0], R0, RES_H_IUS);
|
|
i++;
|
|
}
|
|
if (i < 0) {
|
|
printk(KERN_ERR "dmascc: stuck in ISR with RR3=0x%02x.\n",
|
|
is);
|
|
}
|
|
/* Ok, no interrupts pending from this 8530. The INT line should
|
|
be inactive now. */
|
|
}
|
|
|
|
|
|
static irqreturn_t scc_isr(int irq, void *dev_id)
|
|
{
|
|
struct scc_info *info = dev_id;
|
|
|
|
spin_lock(info->priv[0].register_lock);
|
|
/* At this point interrupts are enabled, and the interrupt under service
|
|
is already acknowledged, but masked off.
|
|
|
|
Interrupt processing: We loop until we know that the IRQ line is
|
|
low. If another positive edge occurs afterwards during the ISR,
|
|
another interrupt will be triggered by the interrupt controller
|
|
as soon as the IRQ level is enabled again (see asm/irq.h).
|
|
|
|
Bottom-half handlers will be processed after scc_isr(). This is
|
|
important, since we only have small ringbuffers and want new data
|
|
to be fetched/delivered immediately. */
|
|
|
|
if (info->priv[0].type == TYPE_TWIN) {
|
|
int is, card_base = info->priv[0].card_base;
|
|
while ((is = ~inb(card_base + TWIN_INT_REG)) &
|
|
TWIN_INT_MSK) {
|
|
if (is & TWIN_SCC_MSK) {
|
|
z8530_isr(info);
|
|
} else if (is & TWIN_TMR1_MSK) {
|
|
inb(card_base + TWIN_CLR_TMR1);
|
|
tm_isr(&info->priv[0]);
|
|
} else {
|
|
inb(card_base + TWIN_CLR_TMR2);
|
|
tm_isr(&info->priv[1]);
|
|
}
|
|
}
|
|
} else
|
|
z8530_isr(info);
|
|
spin_unlock(info->priv[0].register_lock);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static void rx_isr(struct scc_priv *priv)
|
|
{
|
|
if (priv->param.dma >= 0) {
|
|
/* Check special condition and perform error reset. See 2.4.7.5. */
|
|
special_condition(priv, read_scc(priv, R1));
|
|
write_scc(priv, R0, ERR_RES);
|
|
} else {
|
|
/* Check special condition for each character. Error reset not necessary.
|
|
Same algorithm for SCC and ESCC. See 2.4.7.1 and 2.4.7.4. */
|
|
int rc;
|
|
while (read_scc(priv, R0) & Rx_CH_AV) {
|
|
rc = read_scc(priv, R1);
|
|
if (priv->rx_ptr < BUF_SIZE)
|
|
priv->rx_buf[priv->rx_head][priv->
|
|
rx_ptr++] =
|
|
read_scc_data(priv);
|
|
else {
|
|
priv->rx_over = 2;
|
|
read_scc_data(priv);
|
|
}
|
|
special_condition(priv, rc);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void special_condition(struct scc_priv *priv, int rc)
|
|
{
|
|
int cb;
|
|
unsigned long flags;
|
|
|
|
/* See Figure 2-15. Only overrun and EOF need to be checked. */
|
|
|
|
if (rc & Rx_OVR) {
|
|
/* Receiver overrun */
|
|
priv->rx_over = 1;
|
|
if (priv->param.dma < 0)
|
|
write_scc(priv, R0, ERR_RES);
|
|
} else if (rc & END_FR) {
|
|
/* End of frame. Get byte count */
|
|
if (priv->param.dma >= 0) {
|
|
flags = claim_dma_lock();
|
|
cb = BUF_SIZE - get_dma_residue(priv->param.dma) -
|
|
2;
|
|
release_dma_lock(flags);
|
|
} else {
|
|
cb = priv->rx_ptr - 2;
|
|
}
|
|
if (priv->rx_over) {
|
|
/* We had an overrun */
|
|
priv->dev->stats.rx_errors++;
|
|
if (priv->rx_over == 2)
|
|
priv->dev->stats.rx_length_errors++;
|
|
else
|
|
priv->dev->stats.rx_fifo_errors++;
|
|
priv->rx_over = 0;
|
|
} else if (rc & CRC_ERR) {
|
|
/* Count invalid CRC only if packet length >= minimum */
|
|
if (cb >= 15) {
|
|
priv->dev->stats.rx_errors++;
|
|
priv->dev->stats.rx_crc_errors++;
|
|
}
|
|
} else {
|
|
if (cb >= 15) {
|
|
if (priv->rx_count < NUM_RX_BUF - 1) {
|
|
/* Put good frame in FIFO */
|
|
priv->rx_len[priv->rx_head] = cb;
|
|
priv->rx_head =
|
|
(priv->rx_head +
|
|
1) % NUM_RX_BUF;
|
|
priv->rx_count++;
|
|
schedule_work(&priv->rx_work);
|
|
} else {
|
|
priv->dev->stats.rx_errors++;
|
|
priv->dev->stats.rx_over_errors++;
|
|
}
|
|
}
|
|
}
|
|
/* Get ready for new frame */
|
|
if (priv->param.dma >= 0) {
|
|
flags = claim_dma_lock();
|
|
set_dma_addr(priv->param.dma,
|
|
(int) priv->rx_buf[priv->rx_head]);
|
|
set_dma_count(priv->param.dma, BUF_SIZE);
|
|
release_dma_lock(flags);
|
|
} else {
|
|
priv->rx_ptr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void rx_bh(struct work_struct *ugli_api)
|
|
{
|
|
struct scc_priv *priv = container_of(ugli_api, struct scc_priv, rx_work);
|
|
int i = priv->rx_tail;
|
|
int cb;
|
|
unsigned long flags;
|
|
struct sk_buff *skb;
|
|
unsigned char *data;
|
|
|
|
spin_lock_irqsave(&priv->ring_lock, flags);
|
|
while (priv->rx_count) {
|
|
spin_unlock_irqrestore(&priv->ring_lock, flags);
|
|
cb = priv->rx_len[i];
|
|
/* Allocate buffer */
|
|
skb = dev_alloc_skb(cb + 1);
|
|
if (skb == NULL) {
|
|
/* Drop packet */
|
|
priv->dev->stats.rx_dropped++;
|
|
} else {
|
|
/* Fill buffer */
|
|
data = skb_put(skb, cb + 1);
|
|
data[0] = 0;
|
|
memcpy(&data[1], priv->rx_buf[i], cb);
|
|
skb->protocol = ax25_type_trans(skb, priv->dev);
|
|
netif_rx(skb);
|
|
priv->dev->stats.rx_packets++;
|
|
priv->dev->stats.rx_bytes += cb;
|
|
}
|
|
spin_lock_irqsave(&priv->ring_lock, flags);
|
|
/* Move tail */
|
|
priv->rx_tail = i = (i + 1) % NUM_RX_BUF;
|
|
priv->rx_count--;
|
|
}
|
|
spin_unlock_irqrestore(&priv->ring_lock, flags);
|
|
}
|
|
|
|
|
|
static void tx_isr(struct scc_priv *priv)
|
|
{
|
|
int i = priv->tx_tail, p = priv->tx_ptr;
|
|
|
|
/* Suspend TX interrupts if we don't want to send anything.
|
|
See Figure 2-22. */
|
|
if (p == priv->tx_len[i]) {
|
|
write_scc(priv, R0, RES_Tx_P);
|
|
return;
|
|
}
|
|
|
|
/* Write characters */
|
|
while ((read_scc(priv, R0) & Tx_BUF_EMP) && p < priv->tx_len[i]) {
|
|
write_scc_data(priv, priv->tx_buf[i][p++], 0);
|
|
}
|
|
|
|
/* Reset EOM latch of Z8530 */
|
|
if (!priv->tx_ptr && p && priv->chip == Z8530)
|
|
write_scc(priv, R0, RES_EOM_L);
|
|
|
|
priv->tx_ptr = p;
|
|
}
|
|
|
|
|
|
static void es_isr(struct scc_priv *priv)
|
|
{
|
|
int i, rr0, drr0, res;
|
|
unsigned long flags;
|
|
|
|
/* Read status, reset interrupt bit (open latches) */
|
|
rr0 = read_scc(priv, R0);
|
|
write_scc(priv, R0, RES_EXT_INT);
|
|
drr0 = priv->rr0 ^ rr0;
|
|
priv->rr0 = rr0;
|
|
|
|
/* Transmit underrun (2.4.9.6). We can't check the TxEOM flag, since
|
|
it might have already been cleared again by AUTOEOM. */
|
|
if (priv->state == TX_DATA) {
|
|
/* Get remaining bytes */
|
|
i = priv->tx_tail;
|
|
if (priv->param.dma >= 0) {
|
|
disable_dma(priv->param.dma);
|
|
flags = claim_dma_lock();
|
|
res = get_dma_residue(priv->param.dma);
|
|
release_dma_lock(flags);
|
|
} else {
|
|
res = priv->tx_len[i] - priv->tx_ptr;
|
|
priv->tx_ptr = 0;
|
|
}
|
|
/* Disable DREQ / TX interrupt */
|
|
if (priv->param.dma >= 0 && priv->type == TYPE_TWIN)
|
|
outb(0, priv->card_base + TWIN_DMA_CFG);
|
|
else
|
|
write_scc(priv, R1, EXT_INT_ENAB | WT_FN_RDYFN);
|
|
if (res) {
|
|
/* Update packet statistics */
|
|
priv->dev->stats.tx_errors++;
|
|
priv->dev->stats.tx_fifo_errors++;
|
|
/* Other underrun interrupts may already be waiting */
|
|
write_scc(priv, R0, RES_EXT_INT);
|
|
write_scc(priv, R0, RES_EXT_INT);
|
|
} else {
|
|
/* Update packet statistics */
|
|
priv->dev->stats.tx_packets++;
|
|
priv->dev->stats.tx_bytes += priv->tx_len[i];
|
|
/* Remove frame from FIFO */
|
|
priv->tx_tail = (i + 1) % NUM_TX_BUF;
|
|
priv->tx_count--;
|
|
/* Inform upper layers */
|
|
netif_wake_queue(priv->dev);
|
|
}
|
|
/* Switch state */
|
|
write_scc(priv, R15, 0);
|
|
if (priv->tx_count &&
|
|
(jiffies - priv->tx_start) < priv->param.txtimeout) {
|
|
priv->state = TX_PAUSE;
|
|
start_timer(priv, priv->param.txpause, 0);
|
|
} else {
|
|
priv->state = TX_TAIL;
|
|
start_timer(priv, priv->param.txtail, 0);
|
|
}
|
|
}
|
|
|
|
/* DCD transition */
|
|
if (drr0 & DCD) {
|
|
if (rr0 & DCD) {
|
|
switch (priv->state) {
|
|
case IDLE:
|
|
case WAIT:
|
|
priv->state = DCD_ON;
|
|
write_scc(priv, R15, 0);
|
|
start_timer(priv, priv->param.dcdon, 0);
|
|
}
|
|
} else {
|
|
switch (priv->state) {
|
|
case RX_ON:
|
|
rx_off(priv);
|
|
priv->state = DCD_OFF;
|
|
write_scc(priv, R15, 0);
|
|
start_timer(priv, priv->param.dcdoff, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CTS transition */
|
|
if ((drr0 & CTS) && (~rr0 & CTS) && priv->type != TYPE_TWIN)
|
|
tm_isr(priv);
|
|
|
|
}
|
|
|
|
|
|
static void tm_isr(struct scc_priv *priv)
|
|
{
|
|
switch (priv->state) {
|
|
case TX_HEAD:
|
|
case TX_PAUSE:
|
|
tx_on(priv);
|
|
priv->state = TX_DATA;
|
|
break;
|
|
case TX_TAIL:
|
|
write_scc(priv, R5, TxCRC_ENAB | Tx8);
|
|
priv->state = RTS_OFF;
|
|
if (priv->type != TYPE_TWIN)
|
|
write_scc(priv, R15, 0);
|
|
start_timer(priv, priv->param.rtsoff, 0);
|
|
break;
|
|
case RTS_OFF:
|
|
write_scc(priv, R15, DCDIE);
|
|
priv->rr0 = read_scc(priv, R0);
|
|
if (priv->rr0 & DCD) {
|
|
priv->dev->stats.collisions++;
|
|
rx_on(priv);
|
|
priv->state = RX_ON;
|
|
} else {
|
|
priv->state = WAIT;
|
|
start_timer(priv, priv->param.waittime, DCDIE);
|
|
}
|
|
break;
|
|
case WAIT:
|
|
if (priv->tx_count) {
|
|
priv->state = TX_HEAD;
|
|
priv->tx_start = jiffies;
|
|
write_scc(priv, R5,
|
|
TxCRC_ENAB | RTS | TxENAB | Tx8);
|
|
write_scc(priv, R15, 0);
|
|
start_timer(priv, priv->param.txdelay, 0);
|
|
} else {
|
|
priv->state = IDLE;
|
|
if (priv->type != TYPE_TWIN)
|
|
write_scc(priv, R15, DCDIE);
|
|
}
|
|
break;
|
|
case DCD_ON:
|
|
case DCD_OFF:
|
|
write_scc(priv, R15, DCDIE);
|
|
priv->rr0 = read_scc(priv, R0);
|
|
if (priv->rr0 & DCD) {
|
|
rx_on(priv);
|
|
priv->state = RX_ON;
|
|
} else {
|
|
priv->state = WAIT;
|
|
start_timer(priv,
|
|
random() / priv->param.persist *
|
|
priv->param.slottime, DCDIE);
|
|
}
|
|
break;
|
|
}
|
|
}
|