WSL2-Linux-Kernel/drivers/infiniband/core/verbs.c

2869 строки
76 KiB
C

/*
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
* Copyright (c) 2004 Intel Corporation. All rights reserved.
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/in.h>
#include <linux/in6.h>
#include <net/addrconf.h>
#include <linux/security.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_addr.h>
#include <rdma/rw.h>
#include "core_priv.h"
static int ib_resolve_eth_dmac(struct ib_device *device,
struct rdma_ah_attr *ah_attr);
static const char * const ib_events[] = {
[IB_EVENT_CQ_ERR] = "CQ error",
[IB_EVENT_QP_FATAL] = "QP fatal error",
[IB_EVENT_QP_REQ_ERR] = "QP request error",
[IB_EVENT_QP_ACCESS_ERR] = "QP access error",
[IB_EVENT_COMM_EST] = "communication established",
[IB_EVENT_SQ_DRAINED] = "send queue drained",
[IB_EVENT_PATH_MIG] = "path migration successful",
[IB_EVENT_PATH_MIG_ERR] = "path migration error",
[IB_EVENT_DEVICE_FATAL] = "device fatal error",
[IB_EVENT_PORT_ACTIVE] = "port active",
[IB_EVENT_PORT_ERR] = "port error",
[IB_EVENT_LID_CHANGE] = "LID change",
[IB_EVENT_PKEY_CHANGE] = "P_key change",
[IB_EVENT_SM_CHANGE] = "SM change",
[IB_EVENT_SRQ_ERR] = "SRQ error",
[IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
[IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
[IB_EVENT_CLIENT_REREGISTER] = "client reregister",
[IB_EVENT_GID_CHANGE] = "GID changed",
};
const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
{
size_t index = event;
return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
ib_events[index] : "unrecognized event";
}
EXPORT_SYMBOL(ib_event_msg);
static const char * const wc_statuses[] = {
[IB_WC_SUCCESS] = "success",
[IB_WC_LOC_LEN_ERR] = "local length error",
[IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
[IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
[IB_WC_LOC_PROT_ERR] = "local protection error",
[IB_WC_WR_FLUSH_ERR] = "WR flushed",
[IB_WC_MW_BIND_ERR] = "memory management operation error",
[IB_WC_BAD_RESP_ERR] = "bad response error",
[IB_WC_LOC_ACCESS_ERR] = "local access error",
[IB_WC_REM_INV_REQ_ERR] = "invalid request error",
[IB_WC_REM_ACCESS_ERR] = "remote access error",
[IB_WC_REM_OP_ERR] = "remote operation error",
[IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
[IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
[IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
[IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
[IB_WC_REM_ABORT_ERR] = "operation aborted",
[IB_WC_INV_EECN_ERR] = "invalid EE context number",
[IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
[IB_WC_FATAL_ERR] = "fatal error",
[IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
[IB_WC_GENERAL_ERR] = "general error",
};
const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
{
size_t index = status;
return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
wc_statuses[index] : "unrecognized status";
}
EXPORT_SYMBOL(ib_wc_status_msg);
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 1;
case IB_RATE_5_GBPS: return 2;
case IB_RATE_10_GBPS: return 4;
case IB_RATE_20_GBPS: return 8;
case IB_RATE_30_GBPS: return 12;
case IB_RATE_40_GBPS: return 16;
case IB_RATE_60_GBPS: return 24;
case IB_RATE_80_GBPS: return 32;
case IB_RATE_120_GBPS: return 48;
case IB_RATE_14_GBPS: return 6;
case IB_RATE_56_GBPS: return 22;
case IB_RATE_112_GBPS: return 45;
case IB_RATE_168_GBPS: return 67;
case IB_RATE_25_GBPS: return 10;
case IB_RATE_100_GBPS: return 40;
case IB_RATE_200_GBPS: return 80;
case IB_RATE_300_GBPS: return 120;
case IB_RATE_28_GBPS: return 11;
case IB_RATE_50_GBPS: return 20;
case IB_RATE_400_GBPS: return 160;
case IB_RATE_600_GBPS: return 240;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mult);
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
{
switch (mult) {
case 1: return IB_RATE_2_5_GBPS;
case 2: return IB_RATE_5_GBPS;
case 4: return IB_RATE_10_GBPS;
case 8: return IB_RATE_20_GBPS;
case 12: return IB_RATE_30_GBPS;
case 16: return IB_RATE_40_GBPS;
case 24: return IB_RATE_60_GBPS;
case 32: return IB_RATE_80_GBPS;
case 48: return IB_RATE_120_GBPS;
case 6: return IB_RATE_14_GBPS;
case 22: return IB_RATE_56_GBPS;
case 45: return IB_RATE_112_GBPS;
case 67: return IB_RATE_168_GBPS;
case 10: return IB_RATE_25_GBPS;
case 40: return IB_RATE_100_GBPS;
case 80: return IB_RATE_200_GBPS;
case 120: return IB_RATE_300_GBPS;
case 11: return IB_RATE_28_GBPS;
case 20: return IB_RATE_50_GBPS;
case 160: return IB_RATE_400_GBPS;
case 240: return IB_RATE_600_GBPS;
default: return IB_RATE_PORT_CURRENT;
}
}
EXPORT_SYMBOL(mult_to_ib_rate);
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
{
switch (rate) {
case IB_RATE_2_5_GBPS: return 2500;
case IB_RATE_5_GBPS: return 5000;
case IB_RATE_10_GBPS: return 10000;
case IB_RATE_20_GBPS: return 20000;
case IB_RATE_30_GBPS: return 30000;
case IB_RATE_40_GBPS: return 40000;
case IB_RATE_60_GBPS: return 60000;
case IB_RATE_80_GBPS: return 80000;
case IB_RATE_120_GBPS: return 120000;
case IB_RATE_14_GBPS: return 14062;
case IB_RATE_56_GBPS: return 56250;
case IB_RATE_112_GBPS: return 112500;
case IB_RATE_168_GBPS: return 168750;
case IB_RATE_25_GBPS: return 25781;
case IB_RATE_100_GBPS: return 103125;
case IB_RATE_200_GBPS: return 206250;
case IB_RATE_300_GBPS: return 309375;
case IB_RATE_28_GBPS: return 28125;
case IB_RATE_50_GBPS: return 53125;
case IB_RATE_400_GBPS: return 425000;
case IB_RATE_600_GBPS: return 637500;
default: return -1;
}
}
EXPORT_SYMBOL(ib_rate_to_mbps);
__attribute_const__ enum rdma_transport_type
rdma_node_get_transport(unsigned int node_type)
{
if (node_type == RDMA_NODE_USNIC)
return RDMA_TRANSPORT_USNIC;
if (node_type == RDMA_NODE_USNIC_UDP)
return RDMA_TRANSPORT_USNIC_UDP;
if (node_type == RDMA_NODE_RNIC)
return RDMA_TRANSPORT_IWARP;
if (node_type == RDMA_NODE_UNSPECIFIED)
return RDMA_TRANSPORT_UNSPECIFIED;
return RDMA_TRANSPORT_IB;
}
EXPORT_SYMBOL(rdma_node_get_transport);
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
{
enum rdma_transport_type lt;
if (device->ops.get_link_layer)
return device->ops.get_link_layer(device, port_num);
lt = rdma_node_get_transport(device->node_type);
if (lt == RDMA_TRANSPORT_IB)
return IB_LINK_LAYER_INFINIBAND;
return IB_LINK_LAYER_ETHERNET;
}
EXPORT_SYMBOL(rdma_port_get_link_layer);
/* Protection domains */
/**
* ib_alloc_pd - Allocates an unused protection domain.
* @device: The device on which to allocate the protection domain.
*
* A protection domain object provides an association between QPs, shared
* receive queues, address handles, memory regions, and memory windows.
*
* Every PD has a local_dma_lkey which can be used as the lkey value for local
* memory operations.
*/
struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
const char *caller)
{
struct ib_pd *pd;
int mr_access_flags = 0;
int ret;
pd = rdma_zalloc_drv_obj(device, ib_pd);
if (!pd)
return ERR_PTR(-ENOMEM);
pd->device = device;
pd->uobject = NULL;
pd->__internal_mr = NULL;
atomic_set(&pd->usecnt, 0);
pd->flags = flags;
pd->res.type = RDMA_RESTRACK_PD;
rdma_restrack_set_task(&pd->res, caller);
ret = device->ops.alloc_pd(pd, NULL);
if (ret) {
kfree(pd);
return ERR_PTR(ret);
}
rdma_restrack_kadd(&pd->res);
if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
pd->local_dma_lkey = device->local_dma_lkey;
else
mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
pr_warn("%s: enabling unsafe global rkey\n", caller);
mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
}
if (mr_access_flags) {
struct ib_mr *mr;
mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
if (IS_ERR(mr)) {
ib_dealloc_pd(pd);
return ERR_CAST(mr);
}
mr->device = pd->device;
mr->pd = pd;
mr->type = IB_MR_TYPE_DMA;
mr->uobject = NULL;
mr->need_inval = false;
pd->__internal_mr = mr;
if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
pd->local_dma_lkey = pd->__internal_mr->lkey;
if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
pd->unsafe_global_rkey = pd->__internal_mr->rkey;
}
return pd;
}
EXPORT_SYMBOL(__ib_alloc_pd);
/**
* ib_dealloc_pd_user - Deallocates a protection domain.
* @pd: The protection domain to deallocate.
* @udata: Valid user data or NULL for kernel object
*
* It is an error to call this function while any resources in the pd still
* exist. The caller is responsible to synchronously destroy them and
* guarantee no new allocations will happen.
*/
void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
{
int ret;
if (pd->__internal_mr) {
ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
WARN_ON(ret);
pd->__internal_mr = NULL;
}
/* uverbs manipulates usecnt with proper locking, while the kabi
requires the caller to guarantee we can't race here. */
WARN_ON(atomic_read(&pd->usecnt));
rdma_restrack_del(&pd->res);
pd->device->ops.dealloc_pd(pd, udata);
kfree(pd);
}
EXPORT_SYMBOL(ib_dealloc_pd_user);
/* Address handles */
/**
* rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
* @dest: Pointer to destination ah_attr. Contents of the destination
* pointer is assumed to be invalid and attribute are overwritten.
* @src: Pointer to source ah_attr.
*/
void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
const struct rdma_ah_attr *src)
{
*dest = *src;
if (dest->grh.sgid_attr)
rdma_hold_gid_attr(dest->grh.sgid_attr);
}
EXPORT_SYMBOL(rdma_copy_ah_attr);
/**
* rdma_replace_ah_attr - Replace valid ah_attr with new new one.
* @old: Pointer to existing ah_attr which needs to be replaced.
* old is assumed to be valid or zero'd
* @new: Pointer to the new ah_attr.
*
* rdma_replace_ah_attr() first releases any reference in the old ah_attr if
* old the ah_attr is valid; after that it copies the new attribute and holds
* the reference to the replaced ah_attr.
*/
void rdma_replace_ah_attr(struct rdma_ah_attr *old,
const struct rdma_ah_attr *new)
{
rdma_destroy_ah_attr(old);
*old = *new;
if (old->grh.sgid_attr)
rdma_hold_gid_attr(old->grh.sgid_attr);
}
EXPORT_SYMBOL(rdma_replace_ah_attr);
/**
* rdma_move_ah_attr - Move ah_attr pointed by source to destination.
* @dest: Pointer to destination ah_attr to copy to.
* dest is assumed to be valid or zero'd
* @src: Pointer to the new ah_attr.
*
* rdma_move_ah_attr() first releases any reference in the destination ah_attr
* if it is valid. This also transfers ownership of internal references from
* src to dest, making src invalid in the process. No new reference of the src
* ah_attr is taken.
*/
void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
{
rdma_destroy_ah_attr(dest);
*dest = *src;
src->grh.sgid_attr = NULL;
}
EXPORT_SYMBOL(rdma_move_ah_attr);
/*
* Validate that the rdma_ah_attr is valid for the device before passing it
* off to the driver.
*/
static int rdma_check_ah_attr(struct ib_device *device,
struct rdma_ah_attr *ah_attr)
{
if (!rdma_is_port_valid(device, ah_attr->port_num))
return -EINVAL;
if ((rdma_is_grh_required(device, ah_attr->port_num) ||
ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
!(ah_attr->ah_flags & IB_AH_GRH))
return -EINVAL;
if (ah_attr->grh.sgid_attr) {
/*
* Make sure the passed sgid_attr is consistent with the
* parameters
*/
if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
return -EINVAL;
}
return 0;
}
/*
* If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
* On success the caller is responsible to call rdma_unfill_sgid_attr().
*/
static int rdma_fill_sgid_attr(struct ib_device *device,
struct rdma_ah_attr *ah_attr,
const struct ib_gid_attr **old_sgid_attr)
{
const struct ib_gid_attr *sgid_attr;
struct ib_global_route *grh;
int ret;
*old_sgid_attr = ah_attr->grh.sgid_attr;
ret = rdma_check_ah_attr(device, ah_attr);
if (ret)
return ret;
if (!(ah_attr->ah_flags & IB_AH_GRH))
return 0;
grh = rdma_ah_retrieve_grh(ah_attr);
if (grh->sgid_attr)
return 0;
sgid_attr =
rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
if (IS_ERR(sgid_attr))
return PTR_ERR(sgid_attr);
/* Move ownerhip of the kref into the ah_attr */
grh->sgid_attr = sgid_attr;
return 0;
}
static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
const struct ib_gid_attr *old_sgid_attr)
{
/*
* Fill didn't change anything, the caller retains ownership of
* whatever it passed
*/
if (ah_attr->grh.sgid_attr == old_sgid_attr)
return;
/*
* Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
* doesn't see any change in the rdma_ah_attr. If we get here
* old_sgid_attr is NULL.
*/
rdma_destroy_ah_attr(ah_attr);
}
static const struct ib_gid_attr *
rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
const struct ib_gid_attr *old_attr)
{
if (old_attr)
rdma_put_gid_attr(old_attr);
if (ah_attr->ah_flags & IB_AH_GRH) {
rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
return ah_attr->grh.sgid_attr;
}
return NULL;
}
static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
struct rdma_ah_attr *ah_attr,
u32 flags,
struct ib_udata *udata)
{
struct ib_device *device = pd->device;
struct ib_ah *ah;
int ret;
might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
if (!device->ops.create_ah)
return ERR_PTR(-EOPNOTSUPP);
ah = rdma_zalloc_drv_obj_gfp(
device, ib_ah,
(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
if (!ah)
return ERR_PTR(-ENOMEM);
ah->device = device;
ah->pd = pd;
ah->type = ah_attr->type;
ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
ret = device->ops.create_ah(ah, ah_attr, flags, udata);
if (ret) {
kfree(ah);
return ERR_PTR(ret);
}
atomic_inc(&pd->usecnt);
return ah;
}
/**
* rdma_create_ah - Creates an address handle for the
* given address vector.
* @pd: The protection domain associated with the address handle.
* @ah_attr: The attributes of the address vector.
* @flags: Create address handle flags (see enum rdma_create_ah_flags).
*
* It returns 0 on success and returns appropriate error code on error.
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
u32 flags)
{
const struct ib_gid_attr *old_sgid_attr;
struct ib_ah *ah;
int ret;
ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
if (ret)
return ERR_PTR(ret);
ah = _rdma_create_ah(pd, ah_attr, flags, NULL);
rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
return ah;
}
EXPORT_SYMBOL(rdma_create_ah);
/**
* rdma_create_user_ah - Creates an address handle for the
* given address vector.
* It resolves destination mac address for ah attribute of RoCE type.
* @pd: The protection domain associated with the address handle.
* @ah_attr: The attributes of the address vector.
* @udata: pointer to user's input output buffer information need by
* provider driver.
*
* It returns 0 on success and returns appropriate error code on error.
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
struct rdma_ah_attr *ah_attr,
struct ib_udata *udata)
{
const struct ib_gid_attr *old_sgid_attr;
struct ib_ah *ah;
int err;
err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
if (err)
return ERR_PTR(err);
if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
err = ib_resolve_eth_dmac(pd->device, ah_attr);
if (err) {
ah = ERR_PTR(err);
goto out;
}
}
ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata);
out:
rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
return ah;
}
EXPORT_SYMBOL(rdma_create_user_ah);
int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
{
const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
struct iphdr ip4h_checked;
const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
/* If it's IPv6, the version must be 6, otherwise, the first
* 20 bytes (before the IPv4 header) are garbled.
*/
if (ip6h->version != 6)
return (ip4h->version == 4) ? 4 : 0;
/* version may be 6 or 4 because the first 20 bytes could be garbled */
/* RoCE v2 requires no options, thus header length
* must be 5 words
*/
if (ip4h->ihl != 5)
return 6;
/* Verify checksum.
* We can't write on scattered buffers so we need to copy to
* temp buffer.
*/
memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
ip4h_checked.check = 0;
ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
/* if IPv4 header checksum is OK, believe it */
if (ip4h->check == ip4h_checked.check)
return 4;
return 6;
}
EXPORT_SYMBOL(ib_get_rdma_header_version);
static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
u8 port_num,
const struct ib_grh *grh)
{
int grh_version;
if (rdma_protocol_ib(device, port_num))
return RDMA_NETWORK_IB;
grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
if (grh_version == 4)
return RDMA_NETWORK_IPV4;
if (grh->next_hdr == IPPROTO_UDP)
return RDMA_NETWORK_IPV6;
return RDMA_NETWORK_ROCE_V1;
}
struct find_gid_index_context {
u16 vlan_id;
enum ib_gid_type gid_type;
};
static bool find_gid_index(const union ib_gid *gid,
const struct ib_gid_attr *gid_attr,
void *context)
{
struct find_gid_index_context *ctx = context;
if (ctx->gid_type != gid_attr->gid_type)
return false;
if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
(is_vlan_dev(gid_attr->ndev) &&
vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
return false;
return true;
}
static const struct ib_gid_attr *
get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
u16 vlan_id, const union ib_gid *sgid,
enum ib_gid_type gid_type)
{
struct find_gid_index_context context = {.vlan_id = vlan_id,
.gid_type = gid_type};
return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
&context);
}
int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
enum rdma_network_type net_type,
union ib_gid *sgid, union ib_gid *dgid)
{
struct sockaddr_in src_in;
struct sockaddr_in dst_in;
__be32 src_saddr, dst_saddr;
if (!sgid || !dgid)
return -EINVAL;
if (net_type == RDMA_NETWORK_IPV4) {
memcpy(&src_in.sin_addr.s_addr,
&hdr->roce4grh.saddr, 4);
memcpy(&dst_in.sin_addr.s_addr,
&hdr->roce4grh.daddr, 4);
src_saddr = src_in.sin_addr.s_addr;
dst_saddr = dst_in.sin_addr.s_addr;
ipv6_addr_set_v4mapped(src_saddr,
(struct in6_addr *)sgid);
ipv6_addr_set_v4mapped(dst_saddr,
(struct in6_addr *)dgid);
return 0;
} else if (net_type == RDMA_NETWORK_IPV6 ||
net_type == RDMA_NETWORK_IB) {
*dgid = hdr->ibgrh.dgid;
*sgid = hdr->ibgrh.sgid;
return 0;
} else {
return -EINVAL;
}
}
EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
/* Resolve destination mac address and hop limit for unicast destination
* GID entry, considering the source GID entry as well.
* ah_attribute must have have valid port_num, sgid_index.
*/
static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
struct rdma_ah_attr *ah_attr)
{
struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
int hop_limit = 0xff;
int ret = 0;
/* If destination is link local and source GID is RoCEv1,
* IP stack is not used.
*/
if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
ah_attr->roce.dmac);
return ret;
}
ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
ah_attr->roce.dmac,
sgid_attr, &hop_limit);
grh->hop_limit = hop_limit;
return ret;
}
/*
* This function initializes address handle attributes from the incoming packet.
* Incoming packet has dgid of the receiver node on which this code is
* getting executed and, sgid contains the GID of the sender.
*
* When resolving mac address of destination, the arrived dgid is used
* as sgid and, sgid is used as dgid because sgid contains destinations
* GID whom to respond to.
*
* On success the caller is responsible to call rdma_destroy_ah_attr on the
* attr.
*/
int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
const struct ib_wc *wc, const struct ib_grh *grh,
struct rdma_ah_attr *ah_attr)
{
u32 flow_class;
int ret;
enum rdma_network_type net_type = RDMA_NETWORK_IB;
enum ib_gid_type gid_type = IB_GID_TYPE_IB;
const struct ib_gid_attr *sgid_attr;
int hoplimit = 0xff;
union ib_gid dgid;
union ib_gid sgid;
might_sleep();
memset(ah_attr, 0, sizeof *ah_attr);
ah_attr->type = rdma_ah_find_type(device, port_num);
if (rdma_cap_eth_ah(device, port_num)) {
if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
net_type = wc->network_hdr_type;
else
net_type = ib_get_net_type_by_grh(device, port_num, grh);
gid_type = ib_network_to_gid_type(net_type);
}
ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
&sgid, &dgid);
if (ret)
return ret;
rdma_ah_set_sl(ah_attr, wc->sl);
rdma_ah_set_port_num(ah_attr, port_num);
if (rdma_protocol_roce(device, port_num)) {
u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
wc->vlan_id : 0xffff;
if (!(wc->wc_flags & IB_WC_GRH))
return -EPROTOTYPE;
sgid_attr = get_sgid_attr_from_eth(device, port_num,
vlan_id, &dgid,
gid_type);
if (IS_ERR(sgid_attr))
return PTR_ERR(sgid_attr);
flow_class = be32_to_cpu(grh->version_tclass_flow);
rdma_move_grh_sgid_attr(ah_attr,
&sgid,
flow_class & 0xFFFFF,
hoplimit,
(flow_class >> 20) & 0xFF,
sgid_attr);
ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
if (ret)
rdma_destroy_ah_attr(ah_attr);
return ret;
} else {
rdma_ah_set_dlid(ah_attr, wc->slid);
rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
if ((wc->wc_flags & IB_WC_GRH) == 0)
return 0;
if (dgid.global.interface_id !=
cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
sgid_attr = rdma_find_gid_by_port(
device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
} else
sgid_attr = rdma_get_gid_attr(device, port_num, 0);
if (IS_ERR(sgid_attr))
return PTR_ERR(sgid_attr);
flow_class = be32_to_cpu(grh->version_tclass_flow);
rdma_move_grh_sgid_attr(ah_attr,
&sgid,
flow_class & 0xFFFFF,
hoplimit,
(flow_class >> 20) & 0xFF,
sgid_attr);
return 0;
}
}
EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
/**
* rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
* of the reference
*
* @attr: Pointer to AH attribute structure
* @dgid: Destination GID
* @flow_label: Flow label
* @hop_limit: Hop limit
* @traffic_class: traffic class
* @sgid_attr: Pointer to SGID attribute
*
* This takes ownership of the sgid_attr reference. The caller must ensure
* rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
* calling this function.
*/
void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
u32 flow_label, u8 hop_limit, u8 traffic_class,
const struct ib_gid_attr *sgid_attr)
{
rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
traffic_class);
attr->grh.sgid_attr = sgid_attr;
}
EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
/**
* rdma_destroy_ah_attr - Release reference to SGID attribute of
* ah attribute.
* @ah_attr: Pointer to ah attribute
*
* Release reference to the SGID attribute of the ah attribute if it is
* non NULL. It is safe to call this multiple times, and safe to call it on
* a zero initialized ah_attr.
*/
void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
{
if (ah_attr->grh.sgid_attr) {
rdma_put_gid_attr(ah_attr->grh.sgid_attr);
ah_attr->grh.sgid_attr = NULL;
}
}
EXPORT_SYMBOL(rdma_destroy_ah_attr);
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
const struct ib_grh *grh, u8 port_num)
{
struct rdma_ah_attr ah_attr;
struct ib_ah *ah;
int ret;
ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
if (ret)
return ERR_PTR(ret);
ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
rdma_destroy_ah_attr(&ah_attr);
return ah;
}
EXPORT_SYMBOL(ib_create_ah_from_wc);
int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
{
const struct ib_gid_attr *old_sgid_attr;
int ret;
if (ah->type != ah_attr->type)
return -EINVAL;
ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
if (ret)
return ret;
ret = ah->device->ops.modify_ah ?
ah->device->ops.modify_ah(ah, ah_attr) :
-EOPNOTSUPP;
ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
return ret;
}
EXPORT_SYMBOL(rdma_modify_ah);
int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
{
ah_attr->grh.sgid_attr = NULL;
return ah->device->ops.query_ah ?
ah->device->ops.query_ah(ah, ah_attr) :
-EOPNOTSUPP;
}
EXPORT_SYMBOL(rdma_query_ah);
int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
{
const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
struct ib_pd *pd;
might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
pd = ah->pd;
ah->device->ops.destroy_ah(ah, flags);
atomic_dec(&pd->usecnt);
if (sgid_attr)
rdma_put_gid_attr(sgid_attr);
kfree(ah);
return 0;
}
EXPORT_SYMBOL(rdma_destroy_ah_user);
/* Shared receive queues */
struct ib_srq *ib_create_srq(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr)
{
struct ib_srq *srq;
int ret;
if (!pd->device->ops.create_srq)
return ERR_PTR(-EOPNOTSUPP);
srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
if (!srq)
return ERR_PTR(-ENOMEM);
srq->device = pd->device;
srq->pd = pd;
srq->event_handler = srq_init_attr->event_handler;
srq->srq_context = srq_init_attr->srq_context;
srq->srq_type = srq_init_attr->srq_type;
if (ib_srq_has_cq(srq->srq_type)) {
srq->ext.cq = srq_init_attr->ext.cq;
atomic_inc(&srq->ext.cq->usecnt);
}
if (srq->srq_type == IB_SRQT_XRC) {
srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
atomic_inc(&srq->ext.xrc.xrcd->usecnt);
}
atomic_inc(&pd->usecnt);
ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL);
if (ret) {
atomic_dec(&srq->pd->usecnt);
if (srq->srq_type == IB_SRQT_XRC)
atomic_dec(&srq->ext.xrc.xrcd->usecnt);
if (ib_srq_has_cq(srq->srq_type))
atomic_dec(&srq->ext.cq->usecnt);
kfree(srq);
return ERR_PTR(ret);
}
return srq;
}
EXPORT_SYMBOL(ib_create_srq);
int ib_modify_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask)
{
return srq->device->ops.modify_srq ?
srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
NULL) : -EOPNOTSUPP;
}
EXPORT_SYMBOL(ib_modify_srq);
int ib_query_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr)
{
return srq->device->ops.query_srq ?
srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
}
EXPORT_SYMBOL(ib_query_srq);
int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
{
if (atomic_read(&srq->usecnt))
return -EBUSY;
srq->device->ops.destroy_srq(srq, udata);
atomic_dec(&srq->pd->usecnt);
if (srq->srq_type == IB_SRQT_XRC)
atomic_dec(&srq->ext.xrc.xrcd->usecnt);
if (ib_srq_has_cq(srq->srq_type))
atomic_dec(&srq->ext.cq->usecnt);
kfree(srq);
return 0;
}
EXPORT_SYMBOL(ib_destroy_srq_user);
/* Queue pairs */
static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
{
struct ib_qp *qp = context;
unsigned long flags;
spin_lock_irqsave(&qp->device->event_handler_lock, flags);
list_for_each_entry(event->element.qp, &qp->open_list, open_list)
if (event->element.qp->event_handler)
event->element.qp->event_handler(event, event->element.qp->qp_context);
spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
}
static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
{
mutex_lock(&xrcd->tgt_qp_mutex);
list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
mutex_unlock(&xrcd->tgt_qp_mutex);
}
static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
void (*event_handler)(struct ib_event *, void *),
void *qp_context)
{
struct ib_qp *qp;
unsigned long flags;
int err;
qp = kzalloc(sizeof *qp, GFP_KERNEL);
if (!qp)
return ERR_PTR(-ENOMEM);
qp->real_qp = real_qp;
err = ib_open_shared_qp_security(qp, real_qp->device);
if (err) {
kfree(qp);
return ERR_PTR(err);
}
qp->real_qp = real_qp;
atomic_inc(&real_qp->usecnt);
qp->device = real_qp->device;
qp->event_handler = event_handler;
qp->qp_context = qp_context;
qp->qp_num = real_qp->qp_num;
qp->qp_type = real_qp->qp_type;
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
list_add(&qp->open_list, &real_qp->open_list);
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
return qp;
}
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
struct ib_qp_open_attr *qp_open_attr)
{
struct ib_qp *qp, *real_qp;
if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
return ERR_PTR(-EINVAL);
qp = ERR_PTR(-EINVAL);
mutex_lock(&xrcd->tgt_qp_mutex);
list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
if (real_qp->qp_num == qp_open_attr->qp_num) {
qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
qp_open_attr->qp_context);
break;
}
}
mutex_unlock(&xrcd->tgt_qp_mutex);
return qp;
}
EXPORT_SYMBOL(ib_open_qp);
static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
struct ib_qp_init_attr *qp_init_attr,
struct ib_udata *udata)
{
struct ib_qp *real_qp = qp;
qp->event_handler = __ib_shared_qp_event_handler;
qp->qp_context = qp;
qp->pd = NULL;
qp->send_cq = qp->recv_cq = NULL;
qp->srq = NULL;
qp->xrcd = qp_init_attr->xrcd;
atomic_inc(&qp_init_attr->xrcd->usecnt);
INIT_LIST_HEAD(&qp->open_list);
qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
qp_init_attr->qp_context);
if (IS_ERR(qp))
return qp;
__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
return qp;
}
struct ib_qp *ib_create_qp_user(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr,
struct ib_udata *udata)
{
struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
struct ib_qp *qp;
int ret;
if (qp_init_attr->rwq_ind_tbl &&
(qp_init_attr->recv_cq ||
qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
qp_init_attr->cap.max_recv_sge))
return ERR_PTR(-EINVAL);
if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
!(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
return ERR_PTR(-EINVAL);
/*
* If the callers is using the RDMA API calculate the resources
* needed for the RDMA READ/WRITE operations.
*
* Note that these callers need to pass in a port number.
*/
if (qp_init_attr->cap.max_rdma_ctxs)
rdma_rw_init_qp(device, qp_init_attr);
qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
if (IS_ERR(qp))
return qp;
ret = ib_create_qp_security(qp, device);
if (ret)
goto err;
qp->qp_type = qp_init_attr->qp_type;
qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
atomic_set(&qp->usecnt, 0);
qp->mrs_used = 0;
spin_lock_init(&qp->mr_lock);
INIT_LIST_HEAD(&qp->rdma_mrs);
INIT_LIST_HEAD(&qp->sig_mrs);
qp->port = 0;
if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
struct ib_qp *xrc_qp =
create_xrc_qp_user(qp, qp_init_attr, udata);
if (IS_ERR(xrc_qp)) {
ret = PTR_ERR(xrc_qp);
goto err;
}
return xrc_qp;
}
qp->event_handler = qp_init_attr->event_handler;
qp->qp_context = qp_init_attr->qp_context;
if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
qp->recv_cq = NULL;
qp->srq = NULL;
} else {
qp->recv_cq = qp_init_attr->recv_cq;
if (qp_init_attr->recv_cq)
atomic_inc(&qp_init_attr->recv_cq->usecnt);
qp->srq = qp_init_attr->srq;
if (qp->srq)
atomic_inc(&qp_init_attr->srq->usecnt);
}
qp->send_cq = qp_init_attr->send_cq;
qp->xrcd = NULL;
atomic_inc(&pd->usecnt);
if (qp_init_attr->send_cq)
atomic_inc(&qp_init_attr->send_cq->usecnt);
if (qp_init_attr->rwq_ind_tbl)
atomic_inc(&qp->rwq_ind_tbl->usecnt);
if (qp_init_attr->cap.max_rdma_ctxs) {
ret = rdma_rw_init_mrs(qp, qp_init_attr);
if (ret)
goto err;
}
/*
* Note: all hw drivers guarantee that max_send_sge is lower than
* the device RDMA WRITE SGE limit but not all hw drivers ensure that
* max_send_sge <= max_sge_rd.
*/
qp->max_write_sge = qp_init_attr->cap.max_send_sge;
qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
device->attrs.max_sge_rd);
if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
qp->integrity_en = true;
return qp;
err:
ib_destroy_qp(qp);
return ERR_PTR(ret);
}
EXPORT_SYMBOL(ib_create_qp_user);
static const struct {
int valid;
enum ib_qp_attr_mask req_param[IB_QPT_MAX];
enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
} qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_RAW_PACKET] = IB_QP_PORT,
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
},
[IB_QPS_INIT] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_INIT] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_RC] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
IB_QP_PORT |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
},
[IB_QPS_RTR] = {
.valid = 1,
.req_param = {
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_RC] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_XRC_INI] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN),
[IB_QPT_XRC_TGT] = (IB_QP_AV |
IB_QP_PATH_MTU |
IB_QP_DEST_QPN |
IB_QP_RQ_PSN |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_MIN_RNR_TIMER),
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_RC] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
},
},
},
[IB_QPS_RTR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.req_param = {
[IB_QPT_UD] = IB_QP_SQ_PSN,
[IB_QPT_UC] = IB_QP_SQ_PSN,
[IB_QPT_RC] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_SQ_PSN |
IB_QP_MAX_QP_RD_ATOMIC),
[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
IB_QP_SQ_PSN),
[IB_QPT_SMI] = IB_QP_SQ_PSN,
[IB_QPT_GSI] = IB_QP_SQ_PSN,
},
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
}
}
},
[IB_QPS_RTS] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS |
IB_QP_ALT_PATH |
IB_QP_PATH_MIG_STATE |
IB_QP_MIN_RNR_TIMER),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
}
},
},
[IB_QPS_SQD] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
},
[IB_QPS_SQD] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_AV |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_RC] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_INI] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_RETRY_CNT |
IB_QP_RNR_RETRY |
IB_QP_MAX_QP_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_PATH_MIG_STATE),
[IB_QPT_XRC_TGT] = (IB_QP_PORT |
IB_QP_AV |
IB_QP_TIMEOUT |
IB_QP_MAX_DEST_RD_ATOMIC |
IB_QP_ALT_PATH |
IB_QP_ACCESS_FLAGS |
IB_QP_PKEY_INDEX |
IB_QP_MIN_RNR_TIMER |
IB_QP_PATH_MIG_STATE),
[IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
IB_QP_QKEY),
}
}
},
[IB_QPS_SQE] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 },
[IB_QPS_RTS] = {
.valid = 1,
.opt_param = {
[IB_QPT_UD] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_UC] = (IB_QP_CUR_STATE |
IB_QP_ACCESS_FLAGS),
[IB_QPT_SMI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
[IB_QPT_GSI] = (IB_QP_CUR_STATE |
IB_QP_QKEY),
}
}
},
[IB_QPS_ERR] = {
[IB_QPS_RESET] = { .valid = 1 },
[IB_QPS_ERR] = { .valid = 1 }
}
};
bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
enum ib_qp_type type, enum ib_qp_attr_mask mask)
{
enum ib_qp_attr_mask req_param, opt_param;
if (mask & IB_QP_CUR_STATE &&
cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
return false;
if (!qp_state_table[cur_state][next_state].valid)
return false;
req_param = qp_state_table[cur_state][next_state].req_param[type];
opt_param = qp_state_table[cur_state][next_state].opt_param[type];
if ((mask & req_param) != req_param)
return false;
if (mask & ~(req_param | opt_param | IB_QP_STATE))
return false;
return true;
}
EXPORT_SYMBOL(ib_modify_qp_is_ok);
/**
* ib_resolve_eth_dmac - Resolve destination mac address
* @device: Device to consider
* @ah_attr: address handle attribute which describes the
* source and destination parameters
* ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
* returns 0 on success or appropriate error code. It initializes the
* necessary ah_attr fields when call is successful.
*/
static int ib_resolve_eth_dmac(struct ib_device *device,
struct rdma_ah_attr *ah_attr)
{
int ret = 0;
if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
__be32 addr = 0;
memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
} else {
ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
(char *)ah_attr->roce.dmac);
}
} else {
ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
}
return ret;
}
static bool is_qp_type_connected(const struct ib_qp *qp)
{
return (qp->qp_type == IB_QPT_UC ||
qp->qp_type == IB_QPT_RC ||
qp->qp_type == IB_QPT_XRC_INI ||
qp->qp_type == IB_QPT_XRC_TGT);
}
/**
* IB core internal function to perform QP attributes modification.
*/
static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
const struct ib_gid_attr *old_sgid_attr_av;
const struct ib_gid_attr *old_sgid_attr_alt_av;
int ret;
if (attr_mask & IB_QP_AV) {
ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
&old_sgid_attr_av);
if (ret)
return ret;
}
if (attr_mask & IB_QP_ALT_PATH) {
/*
* FIXME: This does not track the migration state, so if the
* user loads a new alternate path after the HW has migrated
* from primary->alternate we will keep the wrong
* references. This is OK for IB because the reference
* counting does not serve any functional purpose.
*/
ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
&old_sgid_attr_alt_av);
if (ret)
goto out_av;
/*
* Today the core code can only handle alternate paths and APM
* for IB. Ban them in roce mode.
*/
if (!(rdma_protocol_ib(qp->device,
attr->alt_ah_attr.port_num) &&
rdma_protocol_ib(qp->device, port))) {
ret = EINVAL;
goto out;
}
}
/*
* If the user provided the qp_attr then we have to resolve it. Kernel
* users have to provide already resolved rdma_ah_attr's
*/
if (udata && (attr_mask & IB_QP_AV) &&
attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
is_qp_type_connected(qp)) {
ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
if (ret)
goto out;
}
if (rdma_ib_or_roce(qp->device, port)) {
if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
dev_warn(&qp->device->dev,
"%s rq_psn overflow, masking to 24 bits\n",
__func__);
attr->rq_psn &= 0xffffff;
}
if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
dev_warn(&qp->device->dev,
" %s sq_psn overflow, masking to 24 bits\n",
__func__);
attr->sq_psn &= 0xffffff;
}
}
/*
* Bind this qp to a counter automatically based on the rdma counter
* rules. This only set in RST2INIT with port specified
*/
if (!qp->counter && (attr_mask & IB_QP_PORT) &&
((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
rdma_counter_bind_qp_auto(qp, attr->port_num);
ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
if (ret)
goto out;
if (attr_mask & IB_QP_PORT)
qp->port = attr->port_num;
if (attr_mask & IB_QP_AV)
qp->av_sgid_attr =
rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
if (attr_mask & IB_QP_ALT_PATH)
qp->alt_path_sgid_attr = rdma_update_sgid_attr(
&attr->alt_ah_attr, qp->alt_path_sgid_attr);
out:
if (attr_mask & IB_QP_ALT_PATH)
rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
out_av:
if (attr_mask & IB_QP_AV)
rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
return ret;
}
/**
* ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
* @ib_qp: The QP to modify.
* @attr: On input, specifies the QP attributes to modify. On output,
* the current values of selected QP attributes are returned.
* @attr_mask: A bit-mask used to specify which attributes of the QP
* are being modified.
* @udata: pointer to user's input output buffer information
* are being modified.
* It returns 0 on success and returns appropriate error code on error.
*/
int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
}
EXPORT_SYMBOL(ib_modify_qp_with_udata);
int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
{
int rc;
u32 netdev_speed;
struct net_device *netdev;
struct ethtool_link_ksettings lksettings;
if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
return -EINVAL;
netdev = ib_device_get_netdev(dev, port_num);
if (!netdev)
return -ENODEV;
rtnl_lock();
rc = __ethtool_get_link_ksettings(netdev, &lksettings);
rtnl_unlock();
dev_put(netdev);
if (!rc) {
netdev_speed = lksettings.base.speed;
} else {
netdev_speed = SPEED_1000;
pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
netdev_speed);
}
if (netdev_speed <= SPEED_1000) {
*width = IB_WIDTH_1X;
*speed = IB_SPEED_SDR;
} else if (netdev_speed <= SPEED_10000) {
*width = IB_WIDTH_1X;
*speed = IB_SPEED_FDR10;
} else if (netdev_speed <= SPEED_20000) {
*width = IB_WIDTH_4X;
*speed = IB_SPEED_DDR;
} else if (netdev_speed <= SPEED_25000) {
*width = IB_WIDTH_1X;
*speed = IB_SPEED_EDR;
} else if (netdev_speed <= SPEED_40000) {
*width = IB_WIDTH_4X;
*speed = IB_SPEED_FDR10;
} else {
*width = IB_WIDTH_4X;
*speed = IB_SPEED_EDR;
}
return 0;
}
EXPORT_SYMBOL(ib_get_eth_speed);
int ib_modify_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask)
{
return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
}
EXPORT_SYMBOL(ib_modify_qp);
int ib_query_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr)
{
qp_attr->ah_attr.grh.sgid_attr = NULL;
qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
return qp->device->ops.query_qp ?
qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
qp_init_attr) : -EOPNOTSUPP;
}
EXPORT_SYMBOL(ib_query_qp);
int ib_close_qp(struct ib_qp *qp)
{
struct ib_qp *real_qp;
unsigned long flags;
real_qp = qp->real_qp;
if (real_qp == qp)
return -EINVAL;
spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
list_del(&qp->open_list);
spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
atomic_dec(&real_qp->usecnt);
if (qp->qp_sec)
ib_close_shared_qp_security(qp->qp_sec);
kfree(qp);
return 0;
}
EXPORT_SYMBOL(ib_close_qp);
static int __ib_destroy_shared_qp(struct ib_qp *qp)
{
struct ib_xrcd *xrcd;
struct ib_qp *real_qp;
int ret;
real_qp = qp->real_qp;
xrcd = real_qp->xrcd;
mutex_lock(&xrcd->tgt_qp_mutex);
ib_close_qp(qp);
if (atomic_read(&real_qp->usecnt) == 0)
list_del(&real_qp->xrcd_list);
else
real_qp = NULL;
mutex_unlock(&xrcd->tgt_qp_mutex);
if (real_qp) {
ret = ib_destroy_qp(real_qp);
if (!ret)
atomic_dec(&xrcd->usecnt);
else
__ib_insert_xrcd_qp(xrcd, real_qp);
}
return 0;
}
int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
{
const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
struct ib_pd *pd;
struct ib_cq *scq, *rcq;
struct ib_srq *srq;
struct ib_rwq_ind_table *ind_tbl;
struct ib_qp_security *sec;
int ret;
WARN_ON_ONCE(qp->mrs_used > 0);
if (atomic_read(&qp->usecnt))
return -EBUSY;
if (qp->real_qp != qp)
return __ib_destroy_shared_qp(qp);
pd = qp->pd;
scq = qp->send_cq;
rcq = qp->recv_cq;
srq = qp->srq;
ind_tbl = qp->rwq_ind_tbl;
sec = qp->qp_sec;
if (sec)
ib_destroy_qp_security_begin(sec);
if (!qp->uobject)
rdma_rw_cleanup_mrs(qp);
rdma_counter_unbind_qp(qp, true);
rdma_restrack_del(&qp->res);
ret = qp->device->ops.destroy_qp(qp, udata);
if (!ret) {
if (alt_path_sgid_attr)
rdma_put_gid_attr(alt_path_sgid_attr);
if (av_sgid_attr)
rdma_put_gid_attr(av_sgid_attr);
if (pd)
atomic_dec(&pd->usecnt);
if (scq)
atomic_dec(&scq->usecnt);
if (rcq)
atomic_dec(&rcq->usecnt);
if (srq)
atomic_dec(&srq->usecnt);
if (ind_tbl)
atomic_dec(&ind_tbl->usecnt);
if (sec)
ib_destroy_qp_security_end(sec);
} else {
if (sec)
ib_destroy_qp_security_abort(sec);
}
return ret;
}
EXPORT_SYMBOL(ib_destroy_qp_user);
/* Completion queues */
struct ib_cq *__ib_create_cq(struct ib_device *device,
ib_comp_handler comp_handler,
void (*event_handler)(struct ib_event *, void *),
void *cq_context,
const struct ib_cq_init_attr *cq_attr,
const char *caller)
{
struct ib_cq *cq;
int ret;
cq = rdma_zalloc_drv_obj(device, ib_cq);
if (!cq)
return ERR_PTR(-ENOMEM);
cq->device = device;
cq->uobject = NULL;
cq->comp_handler = comp_handler;
cq->event_handler = event_handler;
cq->cq_context = cq_context;
atomic_set(&cq->usecnt, 0);
cq->res.type = RDMA_RESTRACK_CQ;
rdma_restrack_set_task(&cq->res, caller);
ret = device->ops.create_cq(cq, cq_attr, NULL);
if (ret) {
kfree(cq);
return ERR_PTR(ret);
}
rdma_restrack_kadd(&cq->res);
return cq;
}
EXPORT_SYMBOL(__ib_create_cq);
int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
{
return cq->device->ops.modify_cq ?
cq->device->ops.modify_cq(cq, cq_count,
cq_period) : -EOPNOTSUPP;
}
EXPORT_SYMBOL(rdma_set_cq_moderation);
int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
{
if (atomic_read(&cq->usecnt))
return -EBUSY;
rdma_restrack_del(&cq->res);
cq->device->ops.destroy_cq(cq, udata);
kfree(cq);
return 0;
}
EXPORT_SYMBOL(ib_destroy_cq_user);
int ib_resize_cq(struct ib_cq *cq, int cqe)
{
return cq->device->ops.resize_cq ?
cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
}
EXPORT_SYMBOL(ib_resize_cq);
/* Memory regions */
int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
{
struct ib_pd *pd = mr->pd;
struct ib_dm *dm = mr->dm;
struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
int ret;
rdma_restrack_del(&mr->res);
ret = mr->device->ops.dereg_mr(mr, udata);
if (!ret) {
atomic_dec(&pd->usecnt);
if (dm)
atomic_dec(&dm->usecnt);
kfree(sig_attrs);
}
return ret;
}
EXPORT_SYMBOL(ib_dereg_mr_user);
/**
* ib_alloc_mr_user() - Allocates a memory region
* @pd: protection domain associated with the region
* @mr_type: memory region type
* @max_num_sg: maximum sg entries available for registration.
* @udata: user data or null for kernel objects
*
* Notes:
* Memory registeration page/sg lists must not exceed max_num_sg.
* For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
* max_num_sg * used_page_size.
*
*/
struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg, struct ib_udata *udata)
{
struct ib_mr *mr;
if (!pd->device->ops.alloc_mr)
return ERR_PTR(-EOPNOTSUPP);
if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY))
return ERR_PTR(-EINVAL);
mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata);
if (!IS_ERR(mr)) {
mr->device = pd->device;
mr->pd = pd;
mr->dm = NULL;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
mr->need_inval = false;
mr->res.type = RDMA_RESTRACK_MR;
rdma_restrack_kadd(&mr->res);
mr->type = mr_type;
mr->sig_attrs = NULL;
}
return mr;
}
EXPORT_SYMBOL(ib_alloc_mr_user);
/**
* ib_alloc_mr_integrity() - Allocates an integrity memory region
* @pd: protection domain associated with the region
* @max_num_data_sg: maximum data sg entries available for registration
* @max_num_meta_sg: maximum metadata sg entries available for
* registration
*
* Notes:
* Memory registration page/sg lists must not exceed max_num_sg,
* also the integrity page/sg lists must not exceed max_num_meta_sg.
*
*/
struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
u32 max_num_data_sg,
u32 max_num_meta_sg)
{
struct ib_mr *mr;
struct ib_sig_attrs *sig_attrs;
if (!pd->device->ops.alloc_mr_integrity ||
!pd->device->ops.map_mr_sg_pi)
return ERR_PTR(-EOPNOTSUPP);
if (!max_num_meta_sg)
return ERR_PTR(-EINVAL);
sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
if (!sig_attrs)
return ERR_PTR(-ENOMEM);
mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
max_num_meta_sg);
if (IS_ERR(mr)) {
kfree(sig_attrs);
return mr;
}
mr->device = pd->device;
mr->pd = pd;
mr->dm = NULL;
mr->uobject = NULL;
atomic_inc(&pd->usecnt);
mr->need_inval = false;
mr->res.type = RDMA_RESTRACK_MR;
rdma_restrack_kadd(&mr->res);
mr->type = IB_MR_TYPE_INTEGRITY;
mr->sig_attrs = sig_attrs;
return mr;
}
EXPORT_SYMBOL(ib_alloc_mr_integrity);
/* "Fast" memory regions */
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr)
{
struct ib_fmr *fmr;
if (!pd->device->ops.alloc_fmr)
return ERR_PTR(-EOPNOTSUPP);
fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr);
if (!IS_ERR(fmr)) {
fmr->device = pd->device;
fmr->pd = pd;
atomic_inc(&pd->usecnt);
}
return fmr;
}
EXPORT_SYMBOL(ib_alloc_fmr);
int ib_unmap_fmr(struct list_head *fmr_list)
{
struct ib_fmr *fmr;
if (list_empty(fmr_list))
return 0;
fmr = list_entry(fmr_list->next, struct ib_fmr, list);
return fmr->device->ops.unmap_fmr(fmr_list);
}
EXPORT_SYMBOL(ib_unmap_fmr);
int ib_dealloc_fmr(struct ib_fmr *fmr)
{
struct ib_pd *pd;
int ret;
pd = fmr->pd;
ret = fmr->device->ops.dealloc_fmr(fmr);
if (!ret)
atomic_dec(&pd->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_dealloc_fmr);
/* Multicast groups */
static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
{
struct ib_qp_init_attr init_attr = {};
struct ib_qp_attr attr = {};
int num_eth_ports = 0;
int port;
/* If QP state >= init, it is assigned to a port and we can check this
* port only.
*/
if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
if (attr.qp_state >= IB_QPS_INIT) {
if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
IB_LINK_LAYER_INFINIBAND)
return true;
goto lid_check;
}
}
/* Can't get a quick answer, iterate over all ports */
for (port = 0; port < qp->device->phys_port_cnt; port++)
if (rdma_port_get_link_layer(qp->device, port) !=
IB_LINK_LAYER_INFINIBAND)
num_eth_ports++;
/* If we have at lease one Ethernet port, RoCE annex declares that
* multicast LID should be ignored. We can't tell at this step if the
* QP belongs to an IB or Ethernet port.
*/
if (num_eth_ports)
return true;
/* If all the ports are IB, we can check according to IB spec. */
lid_check:
return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
lid == be16_to_cpu(IB_LID_PERMISSIVE));
}
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
int ret;
if (!qp->device->ops.attach_mcast)
return -EOPNOTSUPP;
if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
return -EINVAL;
ret = qp->device->ops.attach_mcast(qp, gid, lid);
if (!ret)
atomic_inc(&qp->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_attach_mcast);
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
{
int ret;
if (!qp->device->ops.detach_mcast)
return -EOPNOTSUPP;
if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
return -EINVAL;
ret = qp->device->ops.detach_mcast(qp, gid, lid);
if (!ret)
atomic_dec(&qp->usecnt);
return ret;
}
EXPORT_SYMBOL(ib_detach_mcast);
struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller)
{
struct ib_xrcd *xrcd;
if (!device->ops.alloc_xrcd)
return ERR_PTR(-EOPNOTSUPP);
xrcd = device->ops.alloc_xrcd(device, NULL);
if (!IS_ERR(xrcd)) {
xrcd->device = device;
xrcd->inode = NULL;
atomic_set(&xrcd->usecnt, 0);
mutex_init(&xrcd->tgt_qp_mutex);
INIT_LIST_HEAD(&xrcd->tgt_qp_list);
}
return xrcd;
}
EXPORT_SYMBOL(__ib_alloc_xrcd);
int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata)
{
struct ib_qp *qp;
int ret;
if (atomic_read(&xrcd->usecnt))
return -EBUSY;
while (!list_empty(&xrcd->tgt_qp_list)) {
qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
ret = ib_destroy_qp(qp);
if (ret)
return ret;
}
mutex_destroy(&xrcd->tgt_qp_mutex);
return xrcd->device->ops.dealloc_xrcd(xrcd, udata);
}
EXPORT_SYMBOL(ib_dealloc_xrcd);
/**
* ib_create_wq - Creates a WQ associated with the specified protection
* domain.
* @pd: The protection domain associated with the WQ.
* @wq_attr: A list of initial attributes required to create the
* WQ. If WQ creation succeeds, then the attributes are updated to
* the actual capabilities of the created WQ.
*
* wq_attr->max_wr and wq_attr->max_sge determine
* the requested size of the WQ, and set to the actual values allocated
* on return.
* If ib_create_wq() succeeds, then max_wr and max_sge will always be
* at least as large as the requested values.
*/
struct ib_wq *ib_create_wq(struct ib_pd *pd,
struct ib_wq_init_attr *wq_attr)
{
struct ib_wq *wq;
if (!pd->device->ops.create_wq)
return ERR_PTR(-EOPNOTSUPP);
wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
if (!IS_ERR(wq)) {
wq->event_handler = wq_attr->event_handler;
wq->wq_context = wq_attr->wq_context;
wq->wq_type = wq_attr->wq_type;
wq->cq = wq_attr->cq;
wq->device = pd->device;
wq->pd = pd;
wq->uobject = NULL;
atomic_inc(&pd->usecnt);
atomic_inc(&wq_attr->cq->usecnt);
atomic_set(&wq->usecnt, 0);
}
return wq;
}
EXPORT_SYMBOL(ib_create_wq);
/**
* ib_destroy_wq - Destroys the specified user WQ.
* @wq: The WQ to destroy.
* @udata: Valid user data
*/
int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
{
struct ib_cq *cq = wq->cq;
struct ib_pd *pd = wq->pd;
if (atomic_read(&wq->usecnt))
return -EBUSY;
wq->device->ops.destroy_wq(wq, udata);
atomic_dec(&pd->usecnt);
atomic_dec(&cq->usecnt);
return 0;
}
EXPORT_SYMBOL(ib_destroy_wq);
/**
* ib_modify_wq - Modifies the specified WQ.
* @wq: The WQ to modify.
* @wq_attr: On input, specifies the WQ attributes to modify.
* @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
* are being modified.
* On output, the current values of selected WQ attributes are returned.
*/
int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
u32 wq_attr_mask)
{
int err;
if (!wq->device->ops.modify_wq)
return -EOPNOTSUPP;
err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
return err;
}
EXPORT_SYMBOL(ib_modify_wq);
/*
* ib_create_rwq_ind_table - Creates a RQ Indirection Table.
* @device: The device on which to create the rwq indirection table.
* @ib_rwq_ind_table_init_attr: A list of initial attributes required to
* create the Indirection Table.
*
* Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
* than the created ib_rwq_ind_table object and the caller is responsible
* for its memory allocation/free.
*/
struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
struct ib_rwq_ind_table_init_attr *init_attr)
{
struct ib_rwq_ind_table *rwq_ind_table;
int i;
u32 table_size;
if (!device->ops.create_rwq_ind_table)
return ERR_PTR(-EOPNOTSUPP);
table_size = (1 << init_attr->log_ind_tbl_size);
rwq_ind_table = device->ops.create_rwq_ind_table(device,
init_attr, NULL);
if (IS_ERR(rwq_ind_table))
return rwq_ind_table;
rwq_ind_table->ind_tbl = init_attr->ind_tbl;
rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
rwq_ind_table->device = device;
rwq_ind_table->uobject = NULL;
atomic_set(&rwq_ind_table->usecnt, 0);
for (i = 0; i < table_size; i++)
atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
return rwq_ind_table;
}
EXPORT_SYMBOL(ib_create_rwq_ind_table);
/*
* ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
* @wq_ind_table: The Indirection Table to destroy.
*/
int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
{
int err, i;
u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
if (atomic_read(&rwq_ind_table->usecnt))
return -EBUSY;
err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
if (!err) {
for (i = 0; i < table_size; i++)
atomic_dec(&ind_tbl[i]->usecnt);
}
return err;
}
EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
struct ib_mr_status *mr_status)
{
if (!mr->device->ops.check_mr_status)
return -EOPNOTSUPP;
return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
}
EXPORT_SYMBOL(ib_check_mr_status);
int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
int state)
{
if (!device->ops.set_vf_link_state)
return -EOPNOTSUPP;
return device->ops.set_vf_link_state(device, vf, port, state);
}
EXPORT_SYMBOL(ib_set_vf_link_state);
int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
struct ifla_vf_info *info)
{
if (!device->ops.get_vf_config)
return -EOPNOTSUPP;
return device->ops.get_vf_config(device, vf, port, info);
}
EXPORT_SYMBOL(ib_get_vf_config);
int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
struct ifla_vf_stats *stats)
{
if (!device->ops.get_vf_stats)
return -EOPNOTSUPP;
return device->ops.get_vf_stats(device, vf, port, stats);
}
EXPORT_SYMBOL(ib_get_vf_stats);
int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
int type)
{
if (!device->ops.set_vf_guid)
return -EOPNOTSUPP;
return device->ops.set_vf_guid(device, vf, port, guid, type);
}
EXPORT_SYMBOL(ib_set_vf_guid);
/**
* ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
* information) and set an appropriate memory region for registration.
* @mr: memory region
* @data_sg: dma mapped scatterlist for data
* @data_sg_nents: number of entries in data_sg
* @data_sg_offset: offset in bytes into data_sg
* @meta_sg: dma mapped scatterlist for metadata
* @meta_sg_nents: number of entries in meta_sg
* @meta_sg_offset: offset in bytes into meta_sg
* @page_size: page vector desired page size
*
* Constraints:
* - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
*
* Return: 0 on success.
*
* After this completes successfully, the memory region
* is ready for registration.
*/
int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset, unsigned int page_size)
{
if (unlikely(!mr->device->ops.map_mr_sg_pi ||
WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
return -EOPNOTSUPP;
mr->page_size = page_size;
return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
data_sg_offset, meta_sg,
meta_sg_nents, meta_sg_offset);
}
EXPORT_SYMBOL(ib_map_mr_sg_pi);
/**
* ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
* and set it the memory region.
* @mr: memory region
* @sg: dma mapped scatterlist
* @sg_nents: number of entries in sg
* @sg_offset: offset in bytes into sg
* @page_size: page vector desired page size
*
* Constraints:
* - The first sg element is allowed to have an offset.
* - Each sg element must either be aligned to page_size or virtually
* contiguous to the previous element. In case an sg element has a
* non-contiguous offset, the mapping prefix will not include it.
* - The last sg element is allowed to have length less than page_size.
* - If sg_nents total byte length exceeds the mr max_num_sge * page_size
* then only max_num_sg entries will be mapped.
* - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
* constraints holds and the page_size argument is ignored.
*
* Returns the number of sg elements that were mapped to the memory region.
*
* After this completes successfully, the memory region
* is ready for registration.
*/
int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset, unsigned int page_size)
{
if (unlikely(!mr->device->ops.map_mr_sg))
return -EOPNOTSUPP;
mr->page_size = page_size;
return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
}
EXPORT_SYMBOL(ib_map_mr_sg);
/**
* ib_sg_to_pages() - Convert the largest prefix of a sg list
* to a page vector
* @mr: memory region
* @sgl: dma mapped scatterlist
* @sg_nents: number of entries in sg
* @sg_offset_p: IN: start offset in bytes into sg
* OUT: offset in bytes for element n of the sg of the first
* byte that has not been processed where n is the return
* value of this function.
* @set_page: driver page assignment function pointer
*
* Core service helper for drivers to convert the largest
* prefix of given sg list to a page vector. The sg list
* prefix converted is the prefix that meet the requirements
* of ib_map_mr_sg.
*
* Returns the number of sg elements that were assigned to
* a page vector.
*/
int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
{
struct scatterlist *sg;
u64 last_end_dma_addr = 0;
unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
unsigned int last_page_off = 0;
u64 page_mask = ~((u64)mr->page_size - 1);
int i, ret;
if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
return -EINVAL;
mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
mr->length = 0;
for_each_sg(sgl, sg, sg_nents, i) {
u64 dma_addr = sg_dma_address(sg) + sg_offset;
u64 prev_addr = dma_addr;
unsigned int dma_len = sg_dma_len(sg) - sg_offset;
u64 end_dma_addr = dma_addr + dma_len;
u64 page_addr = dma_addr & page_mask;
/*
* For the second and later elements, check whether either the
* end of element i-1 or the start of element i is not aligned
* on a page boundary.
*/
if (i && (last_page_off != 0 || page_addr != dma_addr)) {
/* Stop mapping if there is a gap. */
if (last_end_dma_addr != dma_addr)
break;
/*
* Coalesce this element with the last. If it is small
* enough just update mr->length. Otherwise start
* mapping from the next page.
*/
goto next_page;
}
do {
ret = set_page(mr, page_addr);
if (unlikely(ret < 0)) {
sg_offset = prev_addr - sg_dma_address(sg);
mr->length += prev_addr - dma_addr;
if (sg_offset_p)
*sg_offset_p = sg_offset;
return i || sg_offset ? i : ret;
}
prev_addr = page_addr;
next_page:
page_addr += mr->page_size;
} while (page_addr < end_dma_addr);
mr->length += dma_len;
last_end_dma_addr = end_dma_addr;
last_page_off = end_dma_addr & ~page_mask;
sg_offset = 0;
}
if (sg_offset_p)
*sg_offset_p = 0;
return i;
}
EXPORT_SYMBOL(ib_sg_to_pages);
struct ib_drain_cqe {
struct ib_cqe cqe;
struct completion done;
};
static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
cqe);
complete(&cqe->done);
}
/*
* Post a WR and block until its completion is reaped for the SQ.
*/
static void __ib_drain_sq(struct ib_qp *qp)
{
struct ib_cq *cq = qp->send_cq;
struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
struct ib_drain_cqe sdrain;
struct ib_rdma_wr swr = {
.wr = {
.next = NULL,
{ .wr_cqe = &sdrain.cqe, },
.opcode = IB_WR_RDMA_WRITE,
},
};
int ret;
ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
if (ret) {
WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
return;
}
sdrain.cqe.done = ib_drain_qp_done;
init_completion(&sdrain.done);
ret = ib_post_send(qp, &swr.wr, NULL);
if (ret) {
WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
return;
}
if (cq->poll_ctx == IB_POLL_DIRECT)
while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
ib_process_cq_direct(cq, -1);
else
wait_for_completion(&sdrain.done);
}
/*
* Post a WR and block until its completion is reaped for the RQ.
*/
static void __ib_drain_rq(struct ib_qp *qp)
{
struct ib_cq *cq = qp->recv_cq;
struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
struct ib_drain_cqe rdrain;
struct ib_recv_wr rwr = {};
int ret;
ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
if (ret) {
WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
return;
}
rwr.wr_cqe = &rdrain.cqe;
rdrain.cqe.done = ib_drain_qp_done;
init_completion(&rdrain.done);
ret = ib_post_recv(qp, &rwr, NULL);
if (ret) {
WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
return;
}
if (cq->poll_ctx == IB_POLL_DIRECT)
while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
ib_process_cq_direct(cq, -1);
else
wait_for_completion(&rdrain.done);
}
/**
* ib_drain_sq() - Block until all SQ CQEs have been consumed by the
* application.
* @qp: queue pair to drain
*
* If the device has a provider-specific drain function, then
* call that. Otherwise call the generic drain function
* __ib_drain_sq().
*
* The caller must:
*
* ensure there is room in the CQ and SQ for the drain work request and
* completion.
*
* allocate the CQ using ib_alloc_cq().
*
* ensure that there are no other contexts that are posting WRs concurrently.
* Otherwise the drain is not guaranteed.
*/
void ib_drain_sq(struct ib_qp *qp)
{
if (qp->device->ops.drain_sq)
qp->device->ops.drain_sq(qp);
else
__ib_drain_sq(qp);
}
EXPORT_SYMBOL(ib_drain_sq);
/**
* ib_drain_rq() - Block until all RQ CQEs have been consumed by the
* application.
* @qp: queue pair to drain
*
* If the device has a provider-specific drain function, then
* call that. Otherwise call the generic drain function
* __ib_drain_rq().
*
* The caller must:
*
* ensure there is room in the CQ and RQ for the drain work request and
* completion.
*
* allocate the CQ using ib_alloc_cq().
*
* ensure that there are no other contexts that are posting WRs concurrently.
* Otherwise the drain is not guaranteed.
*/
void ib_drain_rq(struct ib_qp *qp)
{
if (qp->device->ops.drain_rq)
qp->device->ops.drain_rq(qp);
else
__ib_drain_rq(qp);
}
EXPORT_SYMBOL(ib_drain_rq);
/**
* ib_drain_qp() - Block until all CQEs have been consumed by the
* application on both the RQ and SQ.
* @qp: queue pair to drain
*
* The caller must:
*
* ensure there is room in the CQ(s), SQ, and RQ for drain work requests
* and completions.
*
* allocate the CQs using ib_alloc_cq().
*
* ensure that there are no other contexts that are posting WRs concurrently.
* Otherwise the drain is not guaranteed.
*/
void ib_drain_qp(struct ib_qp *qp)
{
ib_drain_sq(qp);
if (!qp->srq)
ib_drain_rq(qp);
}
EXPORT_SYMBOL(ib_drain_qp);
struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
enum rdma_netdev_t type, const char *name,
unsigned char name_assign_type,
void (*setup)(struct net_device *))
{
struct rdma_netdev_alloc_params params;
struct net_device *netdev;
int rc;
if (!device->ops.rdma_netdev_get_params)
return ERR_PTR(-EOPNOTSUPP);
rc = device->ops.rdma_netdev_get_params(device, port_num, type,
&params);
if (rc)
return ERR_PTR(rc);
netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
setup, params.txqs, params.rxqs);
if (!netdev)
return ERR_PTR(-ENOMEM);
return netdev;
}
EXPORT_SYMBOL(rdma_alloc_netdev);
int rdma_init_netdev(struct ib_device *device, u8 port_num,
enum rdma_netdev_t type, const char *name,
unsigned char name_assign_type,
void (*setup)(struct net_device *),
struct net_device *netdev)
{
struct rdma_netdev_alloc_params params;
int rc;
if (!device->ops.rdma_netdev_get_params)
return -EOPNOTSUPP;
rc = device->ops.rdma_netdev_get_params(device, port_num, type,
&params);
if (rc)
return rc;
return params.initialize_rdma_netdev(device, port_num,
netdev, params.param);
}
EXPORT_SYMBOL(rdma_init_netdev);
void __rdma_block_iter_start(struct ib_block_iter *biter,
struct scatterlist *sglist, unsigned int nents,
unsigned long pgsz)
{
memset(biter, 0, sizeof(struct ib_block_iter));
biter->__sg = sglist;
biter->__sg_nents = nents;
/* Driver provides best block size to use */
biter->__pg_bit = __fls(pgsz);
}
EXPORT_SYMBOL(__rdma_block_iter_start);
bool __rdma_block_iter_next(struct ib_block_iter *biter)
{
unsigned int block_offset;
if (!biter->__sg_nents || !biter->__sg)
return false;
biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
biter->__sg_advance = 0;
biter->__sg = sg_next(biter->__sg);
biter->__sg_nents--;
}
return true;
}
EXPORT_SYMBOL(__rdma_block_iter_next);