483 строки
12 KiB
C
483 строки
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* sched_clock() for unstable CPU clocks
|
|
*
|
|
* Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
|
|
*
|
|
* Updates and enhancements:
|
|
* Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
|
|
*
|
|
* Based on code by:
|
|
* Ingo Molnar <mingo@redhat.com>
|
|
* Guillaume Chazarain <guichaz@gmail.com>
|
|
*
|
|
*
|
|
* What this file implements:
|
|
*
|
|
* cpu_clock(i) provides a fast (execution time) high resolution
|
|
* clock with bounded drift between CPUs. The value of cpu_clock(i)
|
|
* is monotonic for constant i. The timestamp returned is in nanoseconds.
|
|
*
|
|
* ######################### BIG FAT WARNING ##########################
|
|
* # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
|
|
* # go backwards !! #
|
|
* ####################################################################
|
|
*
|
|
* There is no strict promise about the base, although it tends to start
|
|
* at 0 on boot (but people really shouldn't rely on that).
|
|
*
|
|
* cpu_clock(i) -- can be used from any context, including NMI.
|
|
* local_clock() -- is cpu_clock() on the current CPU.
|
|
*
|
|
* sched_clock_cpu(i)
|
|
*
|
|
* How it is implemented:
|
|
*
|
|
* The implementation either uses sched_clock() when
|
|
* !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
|
|
* sched_clock() is assumed to provide these properties (mostly it means
|
|
* the architecture provides a globally synchronized highres time source).
|
|
*
|
|
* Otherwise it tries to create a semi stable clock from a mixture of other
|
|
* clocks, including:
|
|
*
|
|
* - GTOD (clock monotomic)
|
|
* - sched_clock()
|
|
* - explicit idle events
|
|
*
|
|
* We use GTOD as base and use sched_clock() deltas to improve resolution. The
|
|
* deltas are filtered to provide monotonicity and keeping it within an
|
|
* expected window.
|
|
*
|
|
* Furthermore, explicit sleep and wakeup hooks allow us to account for time
|
|
* that is otherwise invisible (TSC gets stopped).
|
|
*
|
|
*/
|
|
#include "sched.h"
|
|
#include <linux/sched_clock.h>
|
|
|
|
/*
|
|
* Scheduler clock - returns current time in nanosec units.
|
|
* This is default implementation.
|
|
* Architectures and sub-architectures can override this.
|
|
*/
|
|
unsigned long long __weak sched_clock(void)
|
|
{
|
|
return (unsigned long long)(jiffies - INITIAL_JIFFIES)
|
|
* (NSEC_PER_SEC / HZ);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_clock);
|
|
|
|
static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
|
|
|
|
#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
|
|
/*
|
|
* We must start with !__sched_clock_stable because the unstable -> stable
|
|
* transition is accurate, while the stable -> unstable transition is not.
|
|
*
|
|
* Similarly we start with __sched_clock_stable_early, thereby assuming we
|
|
* will become stable, such that there's only a single 1 -> 0 transition.
|
|
*/
|
|
static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
|
|
static int __sched_clock_stable_early = 1;
|
|
|
|
/*
|
|
* We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
|
|
*/
|
|
__read_mostly u64 __sched_clock_offset;
|
|
static __read_mostly u64 __gtod_offset;
|
|
|
|
struct sched_clock_data {
|
|
u64 tick_raw;
|
|
u64 tick_gtod;
|
|
u64 clock;
|
|
};
|
|
|
|
static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
|
|
|
|
static inline struct sched_clock_data *this_scd(void)
|
|
{
|
|
return this_cpu_ptr(&sched_clock_data);
|
|
}
|
|
|
|
static inline struct sched_clock_data *cpu_sdc(int cpu)
|
|
{
|
|
return &per_cpu(sched_clock_data, cpu);
|
|
}
|
|
|
|
int sched_clock_stable(void)
|
|
{
|
|
return static_branch_likely(&__sched_clock_stable);
|
|
}
|
|
|
|
static void __scd_stamp(struct sched_clock_data *scd)
|
|
{
|
|
scd->tick_gtod = ktime_get_ns();
|
|
scd->tick_raw = sched_clock();
|
|
}
|
|
|
|
static void __set_sched_clock_stable(void)
|
|
{
|
|
struct sched_clock_data *scd;
|
|
|
|
/*
|
|
* Since we're still unstable and the tick is already running, we have
|
|
* to disable IRQs in order to get a consistent scd->tick* reading.
|
|
*/
|
|
local_irq_disable();
|
|
scd = this_scd();
|
|
/*
|
|
* Attempt to make the (initial) unstable->stable transition continuous.
|
|
*/
|
|
__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
|
|
local_irq_enable();
|
|
|
|
printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
|
|
scd->tick_gtod, __gtod_offset,
|
|
scd->tick_raw, __sched_clock_offset);
|
|
|
|
static_branch_enable(&__sched_clock_stable);
|
|
tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
|
|
}
|
|
|
|
/*
|
|
* If we ever get here, we're screwed, because we found out -- typically after
|
|
* the fact -- that TSC wasn't good. This means all our clocksources (including
|
|
* ktime) could have reported wrong values.
|
|
*
|
|
* What we do here is an attempt to fix up and continue sort of where we left
|
|
* off in a coherent manner.
|
|
*
|
|
* The only way to fully avoid random clock jumps is to boot with:
|
|
* "tsc=unstable".
|
|
*/
|
|
static void __sched_clock_work(struct work_struct *work)
|
|
{
|
|
struct sched_clock_data *scd;
|
|
int cpu;
|
|
|
|
/* take a current timestamp and set 'now' */
|
|
preempt_disable();
|
|
scd = this_scd();
|
|
__scd_stamp(scd);
|
|
scd->clock = scd->tick_gtod + __gtod_offset;
|
|
preempt_enable();
|
|
|
|
/* clone to all CPUs */
|
|
for_each_possible_cpu(cpu)
|
|
per_cpu(sched_clock_data, cpu) = *scd;
|
|
|
|
printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
|
|
printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
|
|
scd->tick_gtod, __gtod_offset,
|
|
scd->tick_raw, __sched_clock_offset);
|
|
|
|
static_branch_disable(&__sched_clock_stable);
|
|
}
|
|
|
|
static DECLARE_WORK(sched_clock_work, __sched_clock_work);
|
|
|
|
static void __clear_sched_clock_stable(void)
|
|
{
|
|
if (!sched_clock_stable())
|
|
return;
|
|
|
|
tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
|
|
schedule_work(&sched_clock_work);
|
|
}
|
|
|
|
void clear_sched_clock_stable(void)
|
|
{
|
|
__sched_clock_stable_early = 0;
|
|
|
|
smp_mb(); /* matches sched_clock_init_late() */
|
|
|
|
if (static_key_count(&sched_clock_running.key) == 2)
|
|
__clear_sched_clock_stable();
|
|
}
|
|
|
|
static void __sched_clock_gtod_offset(void)
|
|
{
|
|
struct sched_clock_data *scd = this_scd();
|
|
|
|
__scd_stamp(scd);
|
|
__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
|
|
}
|
|
|
|
void __init sched_clock_init(void)
|
|
{
|
|
/*
|
|
* Set __gtod_offset such that once we mark sched_clock_running,
|
|
* sched_clock_tick() continues where sched_clock() left off.
|
|
*
|
|
* Even if TSC is buggered, we're still UP at this point so it
|
|
* can't really be out of sync.
|
|
*/
|
|
local_irq_disable();
|
|
__sched_clock_gtod_offset();
|
|
local_irq_enable();
|
|
|
|
static_branch_inc(&sched_clock_running);
|
|
}
|
|
/*
|
|
* We run this as late_initcall() such that it runs after all built-in drivers,
|
|
* notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
|
|
*/
|
|
static int __init sched_clock_init_late(void)
|
|
{
|
|
static_branch_inc(&sched_clock_running);
|
|
/*
|
|
* Ensure that it is impossible to not do a static_key update.
|
|
*
|
|
* Either {set,clear}_sched_clock_stable() must see sched_clock_running
|
|
* and do the update, or we must see their __sched_clock_stable_early
|
|
* and do the update, or both.
|
|
*/
|
|
smp_mb(); /* matches {set,clear}_sched_clock_stable() */
|
|
|
|
if (__sched_clock_stable_early)
|
|
__set_sched_clock_stable();
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(sched_clock_init_late);
|
|
|
|
/*
|
|
* min, max except they take wrapping into account
|
|
*/
|
|
|
|
static inline u64 wrap_min(u64 x, u64 y)
|
|
{
|
|
return (s64)(x - y) < 0 ? x : y;
|
|
}
|
|
|
|
static inline u64 wrap_max(u64 x, u64 y)
|
|
{
|
|
return (s64)(x - y) > 0 ? x : y;
|
|
}
|
|
|
|
/*
|
|
* update the percpu scd from the raw @now value
|
|
*
|
|
* - filter out backward motion
|
|
* - use the GTOD tick value to create a window to filter crazy TSC values
|
|
*/
|
|
static u64 sched_clock_local(struct sched_clock_data *scd)
|
|
{
|
|
u64 now, clock, old_clock, min_clock, max_clock, gtod;
|
|
s64 delta;
|
|
|
|
again:
|
|
now = sched_clock();
|
|
delta = now - scd->tick_raw;
|
|
if (unlikely(delta < 0))
|
|
delta = 0;
|
|
|
|
old_clock = scd->clock;
|
|
|
|
/*
|
|
* scd->clock = clamp(scd->tick_gtod + delta,
|
|
* max(scd->tick_gtod, scd->clock),
|
|
* scd->tick_gtod + TICK_NSEC);
|
|
*/
|
|
|
|
gtod = scd->tick_gtod + __gtod_offset;
|
|
clock = gtod + delta;
|
|
min_clock = wrap_max(gtod, old_clock);
|
|
max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
|
|
|
|
clock = wrap_max(clock, min_clock);
|
|
clock = wrap_min(clock, max_clock);
|
|
|
|
if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
|
|
goto again;
|
|
|
|
return clock;
|
|
}
|
|
|
|
static u64 sched_clock_remote(struct sched_clock_data *scd)
|
|
{
|
|
struct sched_clock_data *my_scd = this_scd();
|
|
u64 this_clock, remote_clock;
|
|
u64 *ptr, old_val, val;
|
|
|
|
#if BITS_PER_LONG != 64
|
|
again:
|
|
/*
|
|
* Careful here: The local and the remote clock values need to
|
|
* be read out atomic as we need to compare the values and
|
|
* then update either the local or the remote side. So the
|
|
* cmpxchg64 below only protects one readout.
|
|
*
|
|
* We must reread via sched_clock_local() in the retry case on
|
|
* 32-bit kernels as an NMI could use sched_clock_local() via the
|
|
* tracer and hit between the readout of
|
|
* the low 32-bit and the high 32-bit portion.
|
|
*/
|
|
this_clock = sched_clock_local(my_scd);
|
|
/*
|
|
* We must enforce atomic readout on 32-bit, otherwise the
|
|
* update on the remote CPU can hit inbetween the readout of
|
|
* the low 32-bit and the high 32-bit portion.
|
|
*/
|
|
remote_clock = cmpxchg64(&scd->clock, 0, 0);
|
|
#else
|
|
/*
|
|
* On 64-bit kernels the read of [my]scd->clock is atomic versus the
|
|
* update, so we can avoid the above 32-bit dance.
|
|
*/
|
|
sched_clock_local(my_scd);
|
|
again:
|
|
this_clock = my_scd->clock;
|
|
remote_clock = scd->clock;
|
|
#endif
|
|
|
|
/*
|
|
* Use the opportunity that we have both locks
|
|
* taken to couple the two clocks: we take the
|
|
* larger time as the latest time for both
|
|
* runqueues. (this creates monotonic movement)
|
|
*/
|
|
if (likely((s64)(remote_clock - this_clock) < 0)) {
|
|
ptr = &scd->clock;
|
|
old_val = remote_clock;
|
|
val = this_clock;
|
|
} else {
|
|
/*
|
|
* Should be rare, but possible:
|
|
*/
|
|
ptr = &my_scd->clock;
|
|
old_val = this_clock;
|
|
val = remote_clock;
|
|
}
|
|
|
|
if (cmpxchg64(ptr, old_val, val) != old_val)
|
|
goto again;
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Similar to cpu_clock(), but requires local IRQs to be disabled.
|
|
*
|
|
* See cpu_clock().
|
|
*/
|
|
u64 sched_clock_cpu(int cpu)
|
|
{
|
|
struct sched_clock_data *scd;
|
|
u64 clock;
|
|
|
|
if (sched_clock_stable())
|
|
return sched_clock() + __sched_clock_offset;
|
|
|
|
if (!static_branch_unlikely(&sched_clock_running))
|
|
return sched_clock();
|
|
|
|
preempt_disable_notrace();
|
|
scd = cpu_sdc(cpu);
|
|
|
|
if (cpu != smp_processor_id())
|
|
clock = sched_clock_remote(scd);
|
|
else
|
|
clock = sched_clock_local(scd);
|
|
preempt_enable_notrace();
|
|
|
|
return clock;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_clock_cpu);
|
|
|
|
void sched_clock_tick(void)
|
|
{
|
|
struct sched_clock_data *scd;
|
|
|
|
if (sched_clock_stable())
|
|
return;
|
|
|
|
if (!static_branch_unlikely(&sched_clock_running))
|
|
return;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
scd = this_scd();
|
|
__scd_stamp(scd);
|
|
sched_clock_local(scd);
|
|
}
|
|
|
|
void sched_clock_tick_stable(void)
|
|
{
|
|
if (!sched_clock_stable())
|
|
return;
|
|
|
|
/*
|
|
* Called under watchdog_lock.
|
|
*
|
|
* The watchdog just found this TSC to (still) be stable, so now is a
|
|
* good moment to update our __gtod_offset. Because once we find the
|
|
* TSC to be unstable, any computation will be computing crap.
|
|
*/
|
|
local_irq_disable();
|
|
__sched_clock_gtod_offset();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* We are going deep-idle (irqs are disabled):
|
|
*/
|
|
void sched_clock_idle_sleep_event(void)
|
|
{
|
|
sched_clock_cpu(smp_processor_id());
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
|
|
|
|
/*
|
|
* We just idled; resync with ktime.
|
|
*/
|
|
void sched_clock_idle_wakeup_event(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (sched_clock_stable())
|
|
return;
|
|
|
|
if (unlikely(timekeeping_suspended))
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
sched_clock_tick();
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
|
|
|
|
#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
|
|
|
|
void __init sched_clock_init(void)
|
|
{
|
|
static_branch_inc(&sched_clock_running);
|
|
local_irq_disable();
|
|
generic_sched_clock_init();
|
|
local_irq_enable();
|
|
}
|
|
|
|
u64 sched_clock_cpu(int cpu)
|
|
{
|
|
if (!static_branch_unlikely(&sched_clock_running))
|
|
return 0;
|
|
|
|
return sched_clock();
|
|
}
|
|
|
|
#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
|
|
|
|
/*
|
|
* Running clock - returns the time that has elapsed while a guest has been
|
|
* running.
|
|
* On a guest this value should be local_clock minus the time the guest was
|
|
* suspended by the hypervisor (for any reason).
|
|
* On bare metal this function should return the same as local_clock.
|
|
* Architectures and sub-architectures can override this.
|
|
*/
|
|
u64 __weak running_clock(void)
|
|
{
|
|
return local_clock();
|
|
}
|