WSL2-Linux-Kernel/drivers/s390/cio/cmf.c

1043 строки
26 KiB
C
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/*
* linux/drivers/s390/cio/cmf.c ($Revision: 1.16 $)
*
* Linux on zSeries Channel Measurement Facility support
*
* Copyright 2000,2003 IBM Corporation
*
* Author: Arnd Bergmann <arndb@de.ibm.com>
*
* original idea from Natarajan Krishnaswami <nkrishna@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/bootmem.h>
#include <linux/device.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <asm/ccwdev.h>
#include <asm/cio.h>
#include <asm/cmb.h>
#include "cio.h"
#include "css.h"
#include "device.h"
#include "ioasm.h"
#include "chsc.h"
/* parameter to enable cmf during boot, possible uses are:
* "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be
* used on any subchannel
* "s390cmf=<num>" -- enable cmf and allocate enough memory to measure
* <num> subchannel, where <num> is an integer
* between 1 and 65535, default is 1024
*/
#define ARGSTRING "s390cmf"
/* indices for READCMB */
enum cmb_index {
/* basic and exended format: */
cmb_ssch_rsch_count,
cmb_sample_count,
cmb_device_connect_time,
cmb_function_pending_time,
cmb_device_disconnect_time,
cmb_control_unit_queuing_time,
cmb_device_active_only_time,
/* extended format only: */
cmb_device_busy_time,
cmb_initial_command_response_time,
};
/**
* enum cmb_format - types of supported measurement block formats
*
* @CMF_BASIC: traditional channel measurement blocks supported
* by all machines that we run on
* @CMF_EXTENDED: improved format that was introduced with the z990
* machine
* @CMF_AUTODETECT: default: use extended format when running on a z990
* or later machine, otherwise fall back to basic format
**/
enum cmb_format {
CMF_BASIC,
CMF_EXTENDED,
CMF_AUTODETECT = -1,
};
/**
* format - actual format for all measurement blocks
*
* The format module parameter can be set to a value of 0 (zero)
* or 1, indicating basic or extended format as described for
* enum cmb_format.
*/
static int format = CMF_AUTODETECT;
module_param(format, bool, 0444);
/**
* struct cmb_operations - functions to use depending on cmb_format
*
* all these functions operate on a struct cmf_device. There is only
* one instance of struct cmb_operations because all cmf_device
* objects are guaranteed to be of the same type.
*
* @alloc: allocate memory for a channel measurement block,
* either with the help of a special pool or with kmalloc
* @free: free memory allocated with @alloc
* @set: enable or disable measurement
* @readall: read a measurement block in a common format
* @reset: clear the data in the associated measurement block and
* reset its time stamp
*/
struct cmb_operations {
int (*alloc) (struct ccw_device*);
void(*free) (struct ccw_device*);
int (*set) (struct ccw_device*, u32);
u64 (*read) (struct ccw_device*, int);
int (*readall)(struct ccw_device*, struct cmbdata *);
void (*reset) (struct ccw_device*);
struct attribute_group *attr_group;
};
static struct cmb_operations *cmbops;
/* our user interface is designed in terms of nanoseconds,
* while the hardware measures total times in its own
* unit.*/
static inline u64 time_to_nsec(u32 value)
{
return ((u64)value) * 128000ull;
}
/*
* Users are usually interested in average times,
* not accumulated time.
* This also helps us with atomicity problems
* when reading sinlge values.
*/
static inline u64 time_to_avg_nsec(u32 value, u32 count)
{
u64 ret;
/* no samples yet, avoid division by 0 */
if (count == 0)
return 0;
/* value comes in units of 128 <20>sec */
ret = time_to_nsec(value);
do_div(ret, count);
return ret;
}
/* activate or deactivate the channel monitor. When area is NULL,
* the monitor is deactivated. The channel monitor needs to
* be active in order to measure subchannels, which also need
* to be enabled. */
static inline void
cmf_activate(void *area, unsigned int onoff)
{
register void * __gpr2 asm("2");
register long __gpr1 asm("1");
__gpr2 = area;
__gpr1 = onoff ? 2 : 0;
/* activate channel measurement */
asm("schm" : : "d" (__gpr2), "d" (__gpr1) );
}
static int
set_schib(struct ccw_device *cdev, u32 mme, int mbfc, unsigned long address)
{
int ret;
int retry;
struct subchannel *sch;
struct schib *schib;
sch = to_subchannel(cdev->dev.parent);
schib = &sch->schib;
/* msch can silently fail, so do it again if necessary */
for (retry = 0; retry < 3; retry++) {
/* prepare schib */
stsch(sch->irq, schib);
schib->pmcw.mme = mme;
schib->pmcw.mbfc = mbfc;
/* address can be either a block address or a block index */
if (mbfc)
schib->mba = address;
else
schib->pmcw.mbi = address;
/* try to submit it */
switch(ret = msch_err(sch->irq, schib)) {
case 0:
break;
case 1:
case 2: /* in I/O or status pending */
ret = -EBUSY;
break;
case 3: /* subchannel is no longer valid */
ret = -ENODEV;
break;
default: /* msch caught an exception */
ret = -EINVAL;
break;
}
stsch(sch->irq, schib); /* restore the schib */
if (ret)
break;
/* check if it worked */
if (schib->pmcw.mme == mme &&
schib->pmcw.mbfc == mbfc &&
(mbfc ? (schib->mba == address)
: (schib->pmcw.mbi == address)))
return 0;
ret = -EINVAL;
}
return ret;
}
struct set_schib_struct {
u32 mme;
int mbfc;
unsigned long address;
wait_queue_head_t wait;
int ret;
};
static int set_schib_wait(struct ccw_device *cdev, u32 mme,
int mbfc, unsigned long address)
{
struct set_schib_struct s = {
.mme = mme,
.mbfc = mbfc,
.address = address,
.wait = __WAIT_QUEUE_HEAD_INITIALIZER(s.wait),
};
spin_lock_irq(cdev->ccwlock);
s.ret = set_schib(cdev, mme, mbfc, address);
if (s.ret != -EBUSY) {
goto out_nowait;
}
if (cdev->private->state != DEV_STATE_ONLINE) {
s.ret = -EBUSY;
/* if the device is not online, don't even try again */
goto out_nowait;
}
cdev->private->state = DEV_STATE_CMFCHANGE;
cdev->private->cmb_wait = &s;
s.ret = 1;
spin_unlock_irq(cdev->ccwlock);
if (wait_event_interruptible(s.wait, s.ret != 1)) {
spin_lock_irq(cdev->ccwlock);
if (s.ret == 1) {
s.ret = -ERESTARTSYS;
cdev->private->cmb_wait = 0;
if (cdev->private->state == DEV_STATE_CMFCHANGE)
cdev->private->state = DEV_STATE_ONLINE;
}
spin_unlock_irq(cdev->ccwlock);
}
return s.ret;
out_nowait:
spin_unlock_irq(cdev->ccwlock);
return s.ret;
}
void retry_set_schib(struct ccw_device *cdev)
{
struct set_schib_struct *s;
s = cdev->private->cmb_wait;
cdev->private->cmb_wait = 0;
if (!s) {
WARN_ON(1);
return;
}
s->ret = set_schib(cdev, s->mme, s->mbfc, s->address);
wake_up(&s->wait);
}
/**
* struct cmb_area - container for global cmb data
*
* @mem: pointer to CMBs (only in basic measurement mode)
* @list: contains a linked list of all subchannels
* @lock: protect concurrent access to @mem and @list
*/
struct cmb_area {
struct cmb *mem;
struct list_head list;
int num_channels;
spinlock_t lock;
};
static struct cmb_area cmb_area = {
.lock = SPIN_LOCK_UNLOCKED,
.list = LIST_HEAD_INIT(cmb_area.list),
.num_channels = 1024,
};
/* ****** old style CMB handling ********/
/** int maxchannels
*
* Basic channel measurement blocks are allocated in one contiguous
* block of memory, which can not be moved as long as any channel
* is active. Therefore, a maximum number of subchannels needs to
* be defined somewhere. This is a module parameter, defaulting to
* a resonable value of 1024, or 32 kb of memory.
* Current kernels don't allow kmalloc with more than 128kb, so the
* maximum is 4096
*/
module_param_named(maxchannels, cmb_area.num_channels, uint, 0444);
/**
* struct cmb - basic channel measurement block
*
* cmb as used by the hardware the fields are described in z/Architecture
* Principles of Operation, chapter 17.
* The area to be a contiguous array and may not be reallocated or freed.
* Only one cmb area can be present in the system.
*/
struct cmb {
u16 ssch_rsch_count;
u16 sample_count;
u32 device_connect_time;
u32 function_pending_time;
u32 device_disconnect_time;
u32 control_unit_queuing_time;
u32 device_active_only_time;
u32 reserved[2];
};
/* insert a single device into the cmb_area list
* called with cmb_area.lock held from alloc_cmb
*/
static inline int
alloc_cmb_single (struct ccw_device *cdev)
{
struct cmb *cmb;
struct ccw_device_private *node;
int ret;
spin_lock_irq(cdev->ccwlock);
if (!list_empty(&cdev->private->cmb_list)) {
ret = -EBUSY;
goto out;
}
/* find first unused cmb in cmb_area.mem.
* this is a little tricky: cmb_area.list
* remains sorted by ->cmb pointers */
cmb = cmb_area.mem;
list_for_each_entry(node, &cmb_area.list, cmb_list) {
if ((struct cmb*)node->cmb > cmb)
break;
cmb++;
}
if (cmb - cmb_area.mem >= cmb_area.num_channels) {
ret = -ENOMEM;
goto out;
}
/* insert new cmb */
list_add_tail(&cdev->private->cmb_list, &node->cmb_list);
cdev->private->cmb = cmb;
ret = 0;
out:
spin_unlock_irq(cdev->ccwlock);
return ret;
}
static int
alloc_cmb (struct ccw_device *cdev)
{
int ret;
struct cmb *mem;
ssize_t size;
spin_lock(&cmb_area.lock);
if (!cmb_area.mem) {
/* there is no user yet, so we need a new area */
size = sizeof(struct cmb) * cmb_area.num_channels;
WARN_ON(!list_empty(&cmb_area.list));
spin_unlock(&cmb_area.lock);
mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA,
get_order(size));
spin_lock(&cmb_area.lock);
if (cmb_area.mem) {
/* ok, another thread was faster */
free_pages((unsigned long)mem, get_order(size));
} else if (!mem) {
/* no luck */
ret = -ENOMEM;
goto out;
} else {
/* everything ok */
memset(mem, 0, size);
cmb_area.mem = mem;
cmf_activate(cmb_area.mem, 1);
}
}
/* do the actual allocation */
ret = alloc_cmb_single(cdev);
out:
spin_unlock(&cmb_area.lock);
return ret;
}
static void
free_cmb(struct ccw_device *cdev)
{
struct ccw_device_private *priv;
priv = cdev->private;
spin_lock(&cmb_area.lock);
spin_lock_irq(cdev->ccwlock);
if (list_empty(&priv->cmb_list)) {
/* already freed */
goto out;
}
priv->cmb = NULL;
list_del_init(&priv->cmb_list);
if (list_empty(&cmb_area.list)) {
ssize_t size;
size = sizeof(struct cmb) * cmb_area.num_channels;
cmf_activate(NULL, 0);
free_pages((unsigned long)cmb_area.mem, get_order(size));
cmb_area.mem = NULL;
}
out:
spin_unlock_irq(cdev->ccwlock);
spin_unlock(&cmb_area.lock);
}
static int
set_cmb(struct ccw_device *cdev, u32 mme)
{
u16 offset;
if (!cdev->private->cmb)
return -EINVAL;
offset = mme ? (struct cmb *)cdev->private->cmb - cmb_area.mem : 0;
return set_schib_wait(cdev, mme, 0, offset);
}
static u64
read_cmb (struct ccw_device *cdev, int index)
{
/* yes, we have to put it on the stack
* because the cmb must only be accessed
* atomically, e.g. with mvc */
struct cmb cmb;
unsigned long flags;
u32 val;
spin_lock_irqsave(cdev->ccwlock, flags);
if (!cdev->private->cmb) {
spin_unlock_irqrestore(cdev->ccwlock, flags);
return 0;
}
cmb = *(struct cmb*)cdev->private->cmb;
spin_unlock_irqrestore(cdev->ccwlock, flags);
switch (index) {
case cmb_ssch_rsch_count:
return cmb.ssch_rsch_count;
case cmb_sample_count:
return cmb.sample_count;
case cmb_device_connect_time:
val = cmb.device_connect_time;
break;
case cmb_function_pending_time:
val = cmb.function_pending_time;
break;
case cmb_device_disconnect_time:
val = cmb.device_disconnect_time;
break;
case cmb_control_unit_queuing_time:
val = cmb.control_unit_queuing_time;
break;
case cmb_device_active_only_time:
val = cmb.device_active_only_time;
break;
default:
return 0;
}
return time_to_avg_nsec(val, cmb.sample_count);
}
static int
readall_cmb (struct ccw_device *cdev, struct cmbdata *data)
{
/* yes, we have to put it on the stack
* because the cmb must only be accessed
* atomically, e.g. with mvc */
struct cmb cmb;
unsigned long flags;
u64 time;
spin_lock_irqsave(cdev->ccwlock, flags);
if (!cdev->private->cmb) {
spin_unlock_irqrestore(cdev->ccwlock, flags);
return -ENODEV;
}
cmb = *(struct cmb*)cdev->private->cmb;
time = get_clock() - cdev->private->cmb_start_time;
spin_unlock_irqrestore(cdev->ccwlock, flags);
memset(data, 0, sizeof(struct cmbdata));
/* we only know values before device_busy_time */
data->size = offsetof(struct cmbdata, device_busy_time);
/* convert to nanoseconds */
data->elapsed_time = (time * 1000) >> 12;
/* copy data to new structure */
data->ssch_rsch_count = cmb.ssch_rsch_count;
data->sample_count = cmb.sample_count;
/* time fields are converted to nanoseconds while copying */
data->device_connect_time = time_to_nsec(cmb.device_connect_time);
data->function_pending_time = time_to_nsec(cmb.function_pending_time);
data->device_disconnect_time = time_to_nsec(cmb.device_disconnect_time);
data->control_unit_queuing_time
= time_to_nsec(cmb.control_unit_queuing_time);
data->device_active_only_time
= time_to_nsec(cmb.device_active_only_time);
return 0;
}
static void
reset_cmb(struct ccw_device *cdev)
{
struct cmb *cmb;
spin_lock_irq(cdev->ccwlock);
cmb = cdev->private->cmb;
if (cmb)
memset (cmb, 0, sizeof (*cmb));
cdev->private->cmb_start_time = get_clock();
spin_unlock_irq(cdev->ccwlock);
}
static struct attribute_group cmf_attr_group;
static struct cmb_operations cmbops_basic = {
.alloc = alloc_cmb,
.free = free_cmb,
.set = set_cmb,
.read = read_cmb,
.readall = readall_cmb,
.reset = reset_cmb,
.attr_group = &cmf_attr_group,
};
/* ******** extended cmb handling ********/
/**
* struct cmbe - extended channel measurement block
*
* cmb as used by the hardware, may be in any 64 bit physical location,
* the fields are described in z/Architecture Principles of Operation,
* third edition, chapter 17.
*/
struct cmbe {
u32 ssch_rsch_count;
u32 sample_count;
u32 device_connect_time;
u32 function_pending_time;
u32 device_disconnect_time;
u32 control_unit_queuing_time;
u32 device_active_only_time;
u32 device_busy_time;
u32 initial_command_response_time;
u32 reserved[7];
};
/* kmalloc only guarantees 8 byte alignment, but we need cmbe
* pointers to be naturally aligned. Make sure to allocate
* enough space for two cmbes */
static inline struct cmbe* cmbe_align(struct cmbe *c)
{
unsigned long addr;
addr = ((unsigned long)c + sizeof (struct cmbe) - sizeof(long)) &
~(sizeof (struct cmbe) - sizeof(long));
return (struct cmbe*)addr;
}
static int
alloc_cmbe (struct ccw_device *cdev)
{
struct cmbe *cmbe;
cmbe = kmalloc (sizeof (*cmbe) * 2, GFP_KERNEL);
if (!cmbe)
return -ENOMEM;
spin_lock_irq(cdev->ccwlock);
if (cdev->private->cmb) {
kfree(cmbe);
spin_unlock_irq(cdev->ccwlock);
return -EBUSY;
}
cdev->private->cmb = cmbe;
spin_unlock_irq(cdev->ccwlock);
/* activate global measurement if this is the first channel */
spin_lock(&cmb_area.lock);
if (list_empty(&cmb_area.list))
cmf_activate(NULL, 1);
list_add_tail(&cdev->private->cmb_list, &cmb_area.list);
spin_unlock(&cmb_area.lock);
return 0;
}
static void
free_cmbe (struct ccw_device *cdev)
{
spin_lock_irq(cdev->ccwlock);
if (cdev->private->cmb)
kfree(cdev->private->cmb);
cdev->private->cmb = NULL;
spin_unlock_irq(cdev->ccwlock);
/* deactivate global measurement if this is the last channel */
spin_lock(&cmb_area.lock);
list_del_init(&cdev->private->cmb_list);
if (list_empty(&cmb_area.list))
cmf_activate(NULL, 0);
spin_unlock(&cmb_area.lock);
}
static int
set_cmbe(struct ccw_device *cdev, u32 mme)
{
unsigned long mba;
if (!cdev->private->cmb)
return -EINVAL;
mba = mme ? (unsigned long) cmbe_align(cdev->private->cmb) : 0;
return set_schib_wait(cdev, mme, 1, mba);
}
u64
read_cmbe (struct ccw_device *cdev, int index)
{
/* yes, we have to put it on the stack
* because the cmb must only be accessed
* atomically, e.g. with mvc */
struct cmbe cmb;
unsigned long flags;
u32 val;
spin_lock_irqsave(cdev->ccwlock, flags);
if (!cdev->private->cmb) {
spin_unlock_irqrestore(cdev->ccwlock, flags);
return 0;
}
cmb = *cmbe_align(cdev->private->cmb);
spin_unlock_irqrestore(cdev->ccwlock, flags);
switch (index) {
case cmb_ssch_rsch_count:
return cmb.ssch_rsch_count;
case cmb_sample_count:
return cmb.sample_count;
case cmb_device_connect_time:
val = cmb.device_connect_time;
break;
case cmb_function_pending_time:
val = cmb.function_pending_time;
break;
case cmb_device_disconnect_time:
val = cmb.device_disconnect_time;
break;
case cmb_control_unit_queuing_time:
val = cmb.control_unit_queuing_time;
break;
case cmb_device_active_only_time:
val = cmb.device_active_only_time;
break;
case cmb_device_busy_time:
val = cmb.device_busy_time;
break;
case cmb_initial_command_response_time:
val = cmb.initial_command_response_time;
break;
default:
return 0;
}
return time_to_avg_nsec(val, cmb.sample_count);
}
static int
readall_cmbe (struct ccw_device *cdev, struct cmbdata *data)
{
/* yes, we have to put it on the stack
* because the cmb must only be accessed
* atomically, e.g. with mvc */
struct cmbe cmb;
unsigned long flags;
u64 time;
spin_lock_irqsave(cdev->ccwlock, flags);
if (!cdev->private->cmb) {
spin_unlock_irqrestore(cdev->ccwlock, flags);
return -ENODEV;
}
cmb = *cmbe_align(cdev->private->cmb);
time = get_clock() - cdev->private->cmb_start_time;
spin_unlock_irqrestore(cdev->ccwlock, flags);
memset (data, 0, sizeof(struct cmbdata));
/* we only know values before device_busy_time */
data->size = offsetof(struct cmbdata, device_busy_time);
/* conver to nanoseconds */
data->elapsed_time = (time * 1000) >> 12;
/* copy data to new structure */
data->ssch_rsch_count = cmb.ssch_rsch_count;
data->sample_count = cmb.sample_count;
/* time fields are converted to nanoseconds while copying */
data->device_connect_time = time_to_nsec(cmb.device_connect_time);
data->function_pending_time = time_to_nsec(cmb.function_pending_time);
data->device_disconnect_time = time_to_nsec(cmb.device_disconnect_time);
data->control_unit_queuing_time
= time_to_nsec(cmb.control_unit_queuing_time);
data->device_active_only_time
= time_to_nsec(cmb.device_active_only_time);
data->device_busy_time = time_to_nsec(cmb.device_busy_time);
data->initial_command_response_time
= time_to_nsec(cmb.initial_command_response_time);
return 0;
}
static void
reset_cmbe(struct ccw_device *cdev)
{
struct cmbe *cmb;
spin_lock_irq(cdev->ccwlock);
cmb = cmbe_align(cdev->private->cmb);
if (cmb)
memset (cmb, 0, sizeof (*cmb));
cdev->private->cmb_start_time = get_clock();
spin_unlock_irq(cdev->ccwlock);
}
static struct attribute_group cmf_attr_group_ext;
static struct cmb_operations cmbops_extended = {
.alloc = alloc_cmbe,
.free = free_cmbe,
.set = set_cmbe,
.read = read_cmbe,
.readall = readall_cmbe,
.reset = reset_cmbe,
.attr_group = &cmf_attr_group_ext,
};
static ssize_t
cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx)
{
return sprintf(buf, "%lld\n",
(unsigned long long) cmf_read(to_ccwdev(dev), idx));
}
static ssize_t
cmb_show_avg_sample_interval(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ccw_device *cdev;
long interval;
unsigned long count;
cdev = to_ccwdev(dev);
interval = get_clock() - cdev->private->cmb_start_time;
count = cmf_read(cdev, cmb_sample_count);
if (count)
interval /= count;
else
interval = -1;
return sprintf(buf, "%ld\n", interval);
}
static ssize_t
cmb_show_avg_utilization(struct device *dev, struct device_attribute *attr, char *buf)
{
struct cmbdata data;
u64 utilization;
unsigned long t, u;
int ret;
ret = cmf_readall(to_ccwdev(dev), &data);
if (ret)
return ret;
utilization = data.device_connect_time +
data.function_pending_time +
data.device_disconnect_time;
/* shift to avoid long long division */
while (-1ul < (data.elapsed_time | utilization)) {
utilization >>= 8;
data.elapsed_time >>= 8;
}
/* calculate value in 0.1 percent units */
t = (unsigned long) data.elapsed_time / 1000;
u = (unsigned long) utilization / t;
return sprintf(buf, "%02ld.%01ld%%\n", u/ 10, u - (u/ 10) * 10);
}
#define cmf_attr(name) \
static ssize_t show_ ## name (struct device * dev, struct device_attribute *attr, char * buf) \
{ return cmb_show_attr((dev), buf, cmb_ ## name); } \
static DEVICE_ATTR(name, 0444, show_ ## name, NULL);
#define cmf_attr_avg(name) \
static ssize_t show_avg_ ## name (struct device * dev, struct device_attribute *attr, char * buf) \
{ return cmb_show_attr((dev), buf, cmb_ ## name); } \
static DEVICE_ATTR(avg_ ## name, 0444, show_avg_ ## name, NULL);
cmf_attr(ssch_rsch_count);
cmf_attr(sample_count);
cmf_attr_avg(device_connect_time);
cmf_attr_avg(function_pending_time);
cmf_attr_avg(device_disconnect_time);
cmf_attr_avg(control_unit_queuing_time);
cmf_attr_avg(device_active_only_time);
cmf_attr_avg(device_busy_time);
cmf_attr_avg(initial_command_response_time);
static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, NULL);
static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL);
static struct attribute *cmf_attributes[] = {
&dev_attr_avg_sample_interval.attr,
&dev_attr_avg_utilization.attr,
&dev_attr_ssch_rsch_count.attr,
&dev_attr_sample_count.attr,
&dev_attr_avg_device_connect_time.attr,
&dev_attr_avg_function_pending_time.attr,
&dev_attr_avg_device_disconnect_time.attr,
&dev_attr_avg_control_unit_queuing_time.attr,
&dev_attr_avg_device_active_only_time.attr,
0,
};
static struct attribute_group cmf_attr_group = {
.name = "cmf",
.attrs = cmf_attributes,
};
static struct attribute *cmf_attributes_ext[] = {
&dev_attr_avg_sample_interval.attr,
&dev_attr_avg_utilization.attr,
&dev_attr_ssch_rsch_count.attr,
&dev_attr_sample_count.attr,
&dev_attr_avg_device_connect_time.attr,
&dev_attr_avg_function_pending_time.attr,
&dev_attr_avg_device_disconnect_time.attr,
&dev_attr_avg_control_unit_queuing_time.attr,
&dev_attr_avg_device_active_only_time.attr,
&dev_attr_avg_device_busy_time.attr,
&dev_attr_avg_initial_command_response_time.attr,
0,
};
static struct attribute_group cmf_attr_group_ext = {
.name = "cmf",
.attrs = cmf_attributes_ext,
};
static ssize_t cmb_enable_show(struct device *dev, struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", to_ccwdev(dev)->private->cmb ? 1 : 0);
}
static ssize_t cmb_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t c)
{
struct ccw_device *cdev;
int ret;
cdev = to_ccwdev(dev);
switch (buf[0]) {
case '0':
ret = disable_cmf(cdev);
if (ret)
printk(KERN_INFO "disable_cmf failed (%d)\n", ret);
break;
case '1':
ret = enable_cmf(cdev);
if (ret && ret != -EBUSY)
printk(KERN_INFO "enable_cmf failed (%d)\n", ret);
break;
}
return c;
}
DEVICE_ATTR(cmb_enable, 0644, cmb_enable_show, cmb_enable_store);
/* enable_cmf/disable_cmf: module interface for cmf (de)activation */
int
enable_cmf(struct ccw_device *cdev)
{
int ret;
ret = cmbops->alloc(cdev);
cmbops->reset(cdev);
if (ret)
return ret;
ret = cmbops->set(cdev, 2);
if (ret) {
cmbops->free(cdev);
return ret;
}
ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group);
if (!ret)
return 0;
cmbops->set(cdev, 0); //FIXME: this can fail
cmbops->free(cdev);
return ret;
}
int
disable_cmf(struct ccw_device *cdev)
{
int ret;
ret = cmbops->set(cdev, 0);
if (ret)
return ret;
cmbops->free(cdev);
sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group);
return ret;
}
u64
cmf_read(struct ccw_device *cdev, int index)
{
return cmbops->read(cdev, index);
}
int
cmf_readall(struct ccw_device *cdev, struct cmbdata *data)
{
return cmbops->readall(cdev, data);
}
static int __init
init_cmf(void)
{
char *format_string;
char *detect_string = "parameter";
/* We cannot really autoprobe this. If the user did not give a parameter,
see if we are running on z990 or up, otherwise fall back to basic mode. */
if (format == CMF_AUTODETECT) {
if (!css_characteristics_avail ||
!css_general_characteristics.ext_mb) {
format = CMF_BASIC;
} else {
format = CMF_EXTENDED;
}
detect_string = "autodetected";
} else {
detect_string = "parameter";
}
switch (format) {
case CMF_BASIC:
format_string = "basic";
cmbops = &cmbops_basic;
if (cmb_area.num_channels > 4096 || cmb_area.num_channels < 1) {
printk(KERN_ERR "Basic channel measurement facility"
" can only use 1 to 4096 devices\n"
KERN_ERR "when the cmf driver is built"
" as a loadable module\n");
return 1;
}
break;
case CMF_EXTENDED:
format_string = "extended";
cmbops = &cmbops_extended;
break;
default:
printk(KERN_ERR "Invalid format %d for channel "
"measurement facility\n", format);
return 1;
}
printk(KERN_INFO "Channel measurement facility using %s format (%s)\n",
format_string, detect_string);
return 0;
}
module_init(init_cmf);
MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("channel measurement facility base driver\n"
"Copyright 2003 IBM Corporation\n");
EXPORT_SYMBOL_GPL(enable_cmf);
EXPORT_SYMBOL_GPL(disable_cmf);
EXPORT_SYMBOL_GPL(cmf_read);
EXPORT_SYMBOL_GPL(cmf_readall);