5732 строки
141 KiB
C
5732 строки
141 KiB
C
/*
|
|
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
|
|
* of PCI-SCSI IO processors.
|
|
*
|
|
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
|
|
* Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
|
|
*
|
|
* This driver is derived from the Linux sym53c8xx driver.
|
|
* Copyright (C) 1998-2000 Gerard Roudier
|
|
*
|
|
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
|
|
* a port of the FreeBSD ncr driver to Linux-1.2.13.
|
|
*
|
|
* The original ncr driver has been written for 386bsd and FreeBSD by
|
|
* Wolfgang Stanglmeier <wolf@cologne.de>
|
|
* Stefan Esser <se@mi.Uni-Koeln.de>
|
|
* Copyright (C) 1994 Wolfgang Stanglmeier
|
|
*
|
|
* Other major contributions:
|
|
*
|
|
* NVRAM detection and reading.
|
|
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
|
|
*
|
|
*-----------------------------------------------------------------------------
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <asm/param.h> /* for timeouts in units of HZ */
|
|
|
|
#include "sym_glue.h"
|
|
#include "sym_nvram.h"
|
|
|
|
#if 0
|
|
#define SYM_DEBUG_GENERIC_SUPPORT
|
|
#endif
|
|
|
|
/*
|
|
* Needed function prototypes.
|
|
*/
|
|
static void sym_int_ma (struct sym_hcb *np);
|
|
static void sym_int_sir (struct sym_hcb *np);
|
|
static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
|
|
static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
|
|
static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
|
|
static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
|
|
static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
|
|
static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
|
|
|
|
/*
|
|
* Print a buffer in hexadecimal format with a ".\n" at end.
|
|
*/
|
|
static void sym_printl_hex(u_char *p, int n)
|
|
{
|
|
while (n-- > 0)
|
|
printf (" %x", *p++);
|
|
printf (".\n");
|
|
}
|
|
|
|
static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
|
|
{
|
|
if (label)
|
|
sym_print_addr(cp->cmd, "%s: ", label);
|
|
else
|
|
sym_print_addr(cp->cmd, "");
|
|
|
|
spi_print_msg(msg);
|
|
printf("\n");
|
|
}
|
|
|
|
static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
|
|
{
|
|
struct sym_tcb *tp = &np->target[target];
|
|
dev_info(&tp->starget->dev, "%s: ", label);
|
|
|
|
spi_print_msg(msg);
|
|
printf("\n");
|
|
}
|
|
|
|
/*
|
|
* Print something that tells about extended errors.
|
|
*/
|
|
void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
|
|
{
|
|
if (x_status & XE_PARITY_ERR) {
|
|
sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
|
|
}
|
|
if (x_status & XE_EXTRA_DATA) {
|
|
sym_print_addr(cmd, "extraneous data discarded.\n");
|
|
}
|
|
if (x_status & XE_BAD_PHASE) {
|
|
sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
|
|
}
|
|
if (x_status & XE_SODL_UNRUN) {
|
|
sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
|
|
}
|
|
if (x_status & XE_SWIDE_OVRUN) {
|
|
sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return a string for SCSI BUS mode.
|
|
*/
|
|
static char *sym_scsi_bus_mode(int mode)
|
|
{
|
|
switch(mode) {
|
|
case SMODE_HVD: return "HVD";
|
|
case SMODE_SE: return "SE";
|
|
case SMODE_LVD: return "LVD";
|
|
}
|
|
return "??";
|
|
}
|
|
|
|
/*
|
|
* Soft reset the chip.
|
|
*
|
|
* Raising SRST when the chip is running may cause
|
|
* problems on dual function chips (see below).
|
|
* On the other hand, LVD devices need some delay
|
|
* to settle and report actual BUS mode in STEST4.
|
|
*/
|
|
static void sym_chip_reset (struct sym_hcb *np)
|
|
{
|
|
OUTB(np, nc_istat, SRST);
|
|
INB(np, nc_mbox1);
|
|
udelay(10);
|
|
OUTB(np, nc_istat, 0);
|
|
INB(np, nc_mbox1);
|
|
udelay(2000); /* For BUS MODE to settle */
|
|
}
|
|
|
|
/*
|
|
* Really soft reset the chip.:)
|
|
*
|
|
* Some 896 and 876 chip revisions may hang-up if we set
|
|
* the SRST (soft reset) bit at the wrong time when SCRIPTS
|
|
* are running.
|
|
* So, we need to abort the current operation prior to
|
|
* soft resetting the chip.
|
|
*/
|
|
static void sym_soft_reset (struct sym_hcb *np)
|
|
{
|
|
u_char istat = 0;
|
|
int i;
|
|
|
|
if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
|
|
goto do_chip_reset;
|
|
|
|
OUTB(np, nc_istat, CABRT);
|
|
for (i = 100000 ; i ; --i) {
|
|
istat = INB(np, nc_istat);
|
|
if (istat & SIP) {
|
|
INW(np, nc_sist);
|
|
}
|
|
else if (istat & DIP) {
|
|
if (INB(np, nc_dstat) & ABRT)
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
OUTB(np, nc_istat, 0);
|
|
if (!i)
|
|
printf("%s: unable to abort current chip operation, "
|
|
"ISTAT=0x%02x.\n", sym_name(np), istat);
|
|
do_chip_reset:
|
|
sym_chip_reset(np);
|
|
}
|
|
|
|
/*
|
|
* Start reset process.
|
|
*
|
|
* The interrupt handler will reinitialize the chip.
|
|
*/
|
|
static void sym_start_reset(struct sym_hcb *np)
|
|
{
|
|
sym_reset_scsi_bus(np, 1);
|
|
}
|
|
|
|
int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
|
|
{
|
|
u32 term;
|
|
int retv = 0;
|
|
|
|
sym_soft_reset(np); /* Soft reset the chip */
|
|
if (enab_int)
|
|
OUTW(np, nc_sien, RST);
|
|
/*
|
|
* Enable Tolerant, reset IRQD if present and
|
|
* properly set IRQ mode, prior to resetting the bus.
|
|
*/
|
|
OUTB(np, nc_stest3, TE);
|
|
OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
|
|
OUTB(np, nc_scntl1, CRST);
|
|
INB(np, nc_mbox1);
|
|
udelay(200);
|
|
|
|
if (!SYM_SETUP_SCSI_BUS_CHECK)
|
|
goto out;
|
|
/*
|
|
* Check for no terminators or SCSI bus shorts to ground.
|
|
* Read SCSI data bus, data parity bits and control signals.
|
|
* We are expecting RESET to be TRUE and other signals to be
|
|
* FALSE.
|
|
*/
|
|
term = INB(np, nc_sstat0);
|
|
term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
|
|
term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */
|
|
((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */
|
|
((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */
|
|
INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */
|
|
|
|
if (!np->maxwide)
|
|
term &= 0x3ffff;
|
|
|
|
if (term != (2<<7)) {
|
|
printf("%s: suspicious SCSI data while resetting the BUS.\n",
|
|
sym_name(np));
|
|
printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
|
|
"0x%lx, expecting 0x%lx\n",
|
|
sym_name(np),
|
|
(np->features & FE_WIDE) ? "dp1,d15-8," : "",
|
|
(u_long)term, (u_long)(2<<7));
|
|
if (SYM_SETUP_SCSI_BUS_CHECK == 1)
|
|
retv = 1;
|
|
}
|
|
out:
|
|
OUTB(np, nc_scntl1, 0);
|
|
return retv;
|
|
}
|
|
|
|
/*
|
|
* Select SCSI clock frequency
|
|
*/
|
|
static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
|
|
{
|
|
/*
|
|
* If multiplier not present or not selected, leave here.
|
|
*/
|
|
if (np->multiplier <= 1) {
|
|
OUTB(np, nc_scntl3, scntl3);
|
|
return;
|
|
}
|
|
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: enabling clock multiplier\n", sym_name(np));
|
|
|
|
OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */
|
|
/*
|
|
* Wait for the LCKFRQ bit to be set if supported by the chip.
|
|
* Otherwise wait 50 micro-seconds (at least).
|
|
*/
|
|
if (np->features & FE_LCKFRQ) {
|
|
int i = 20;
|
|
while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
|
|
udelay(20);
|
|
if (!i)
|
|
printf("%s: the chip cannot lock the frequency\n",
|
|
sym_name(np));
|
|
} else {
|
|
INB(np, nc_mbox1);
|
|
udelay(50+10);
|
|
}
|
|
OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */
|
|
OUTB(np, nc_scntl3, scntl3);
|
|
OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
|
|
OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine the chip's clock frequency.
|
|
*
|
|
* This is essential for the negotiation of the synchronous
|
|
* transfer rate.
|
|
*
|
|
* Note: we have to return the correct value.
|
|
* THERE IS NO SAFE DEFAULT VALUE.
|
|
*
|
|
* Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
|
|
* 53C860 and 53C875 rev. 1 support fast20 transfers but
|
|
* do not have a clock doubler and so are provided with a
|
|
* 80 MHz clock. All other fast20 boards incorporate a doubler
|
|
* and so should be delivered with a 40 MHz clock.
|
|
* The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
|
|
* clock and provide a clock quadrupler (160 Mhz).
|
|
*/
|
|
|
|
/*
|
|
* calculate SCSI clock frequency (in KHz)
|
|
*/
|
|
static unsigned getfreq (struct sym_hcb *np, int gen)
|
|
{
|
|
unsigned int ms = 0;
|
|
unsigned int f;
|
|
|
|
/*
|
|
* Measure GEN timer delay in order
|
|
* to calculate SCSI clock frequency
|
|
*
|
|
* This code will never execute too
|
|
* many loop iterations (if DELAY is
|
|
* reasonably correct). It could get
|
|
* too low a delay (too high a freq.)
|
|
* if the CPU is slow executing the
|
|
* loop for some reason (an NMI, for
|
|
* example). For this reason we will
|
|
* if multiple measurements are to be
|
|
* performed trust the higher delay
|
|
* (lower frequency returned).
|
|
*/
|
|
OUTW(np, nc_sien, 0); /* mask all scsi interrupts */
|
|
INW(np, nc_sist); /* clear pending scsi interrupt */
|
|
OUTB(np, nc_dien, 0); /* mask all dma interrupts */
|
|
INW(np, nc_sist); /* another one, just to be sure :) */
|
|
/*
|
|
* The C1010-33 core does not report GEN in SIST,
|
|
* if this interrupt is masked in SIEN.
|
|
* I don't know yet if the C1010-66 behaves the same way.
|
|
*/
|
|
if (np->features & FE_C10) {
|
|
OUTW(np, nc_sien, GEN);
|
|
OUTB(np, nc_istat1, SIRQD);
|
|
}
|
|
OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */
|
|
OUTB(np, nc_stime1, 0); /* disable general purpose timer */
|
|
OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
|
|
while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
|
|
udelay(1000/4); /* count in 1/4 of ms */
|
|
OUTB(np, nc_stime1, 0); /* disable general purpose timer */
|
|
/*
|
|
* Undo C1010-33 specific settings.
|
|
*/
|
|
if (np->features & FE_C10) {
|
|
OUTW(np, nc_sien, 0);
|
|
OUTB(np, nc_istat1, 0);
|
|
}
|
|
/*
|
|
* set prescaler to divide by whatever 0 means
|
|
* 0 ought to choose divide by 2, but appears
|
|
* to set divide by 3.5 mode in my 53c810 ...
|
|
*/
|
|
OUTB(np, nc_scntl3, 0);
|
|
|
|
/*
|
|
* adjust for prescaler, and convert into KHz
|
|
*/
|
|
f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
|
|
|
|
/*
|
|
* The C1010-33 result is biased by a factor
|
|
* of 2/3 compared to earlier chips.
|
|
*/
|
|
if (np->features & FE_C10)
|
|
f = (f * 2) / 3;
|
|
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
|
|
sym_name(np), gen, ms/4, f);
|
|
|
|
return f;
|
|
}
|
|
|
|
static unsigned sym_getfreq (struct sym_hcb *np)
|
|
{
|
|
u_int f1, f2;
|
|
int gen = 8;
|
|
|
|
getfreq (np, gen); /* throw away first result */
|
|
f1 = getfreq (np, gen);
|
|
f2 = getfreq (np, gen);
|
|
if (f1 > f2) f1 = f2; /* trust lower result */
|
|
return f1;
|
|
}
|
|
|
|
/*
|
|
* Get/probe chip SCSI clock frequency
|
|
*/
|
|
static void sym_getclock (struct sym_hcb *np, int mult)
|
|
{
|
|
unsigned char scntl3 = np->sv_scntl3;
|
|
unsigned char stest1 = np->sv_stest1;
|
|
unsigned f1;
|
|
|
|
np->multiplier = 1;
|
|
f1 = 40000;
|
|
/*
|
|
* True with 875/895/896/895A with clock multiplier selected
|
|
*/
|
|
if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: clock multiplier found\n", sym_name(np));
|
|
np->multiplier = mult;
|
|
}
|
|
|
|
/*
|
|
* If multiplier not found or scntl3 not 7,5,3,
|
|
* reset chip and get frequency from general purpose timer.
|
|
* Otherwise trust scntl3 BIOS setting.
|
|
*/
|
|
if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
|
|
OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */
|
|
f1 = sym_getfreq (np);
|
|
|
|
if (sym_verbose)
|
|
printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
|
|
|
|
if (f1 < 45000) f1 = 40000;
|
|
else if (f1 < 55000) f1 = 50000;
|
|
else f1 = 80000;
|
|
|
|
if (f1 < 80000 && mult > 1) {
|
|
if (sym_verbose >= 2)
|
|
printf ("%s: clock multiplier assumed\n",
|
|
sym_name(np));
|
|
np->multiplier = mult;
|
|
}
|
|
} else {
|
|
if ((scntl3 & 7) == 3) f1 = 40000;
|
|
else if ((scntl3 & 7) == 5) f1 = 80000;
|
|
else f1 = 160000;
|
|
|
|
f1 /= np->multiplier;
|
|
}
|
|
|
|
/*
|
|
* Compute controller synchronous parameters.
|
|
*/
|
|
f1 *= np->multiplier;
|
|
np->clock_khz = f1;
|
|
}
|
|
|
|
/*
|
|
* Get/probe PCI clock frequency
|
|
*/
|
|
static int sym_getpciclock (struct sym_hcb *np)
|
|
{
|
|
int f = 0;
|
|
|
|
/*
|
|
* For now, we only need to know about the actual
|
|
* PCI BUS clock frequency for C1010-66 chips.
|
|
*/
|
|
#if 1
|
|
if (np->features & FE_66MHZ) {
|
|
#else
|
|
if (1) {
|
|
#endif
|
|
OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
|
|
f = sym_getfreq(np);
|
|
OUTB(np, nc_stest1, 0);
|
|
}
|
|
np->pciclk_khz = f;
|
|
|
|
return f;
|
|
}
|
|
|
|
/*
|
|
* SYMBIOS chip clock divisor table.
|
|
*
|
|
* Divisors are multiplied by 10,000,000 in order to make
|
|
* calculations more simple.
|
|
*/
|
|
#define _5M 5000000
|
|
static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
|
|
|
|
/*
|
|
* Get clock factor and sync divisor for a given
|
|
* synchronous factor period.
|
|
*/
|
|
static int
|
|
sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
|
|
{
|
|
u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */
|
|
int div = np->clock_divn; /* Number of divisors supported */
|
|
u32 fak; /* Sync factor in sxfer */
|
|
u32 per; /* Period in tenths of ns */
|
|
u32 kpc; /* (per * clk) */
|
|
int ret;
|
|
|
|
/*
|
|
* Compute the synchronous period in tenths of nano-seconds
|
|
*/
|
|
if (dt && sfac <= 9) per = 125;
|
|
else if (sfac <= 10) per = 250;
|
|
else if (sfac == 11) per = 303;
|
|
else if (sfac == 12) per = 500;
|
|
else per = 40 * sfac;
|
|
ret = per;
|
|
|
|
kpc = per * clk;
|
|
if (dt)
|
|
kpc <<= 1;
|
|
|
|
/*
|
|
* For earliest C10 revision 0, we cannot use extra
|
|
* clocks for the setting of the SCSI clocking.
|
|
* Note that this limits the lowest sync data transfer
|
|
* to 5 Mega-transfers per second and may result in
|
|
* using higher clock divisors.
|
|
*/
|
|
#if 1
|
|
if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
|
|
/*
|
|
* Look for the lowest clock divisor that allows an
|
|
* output speed not faster than the period.
|
|
*/
|
|
while (div > 0) {
|
|
--div;
|
|
if (kpc > (div_10M[div] << 2)) {
|
|
++div;
|
|
break;
|
|
}
|
|
}
|
|
fak = 0; /* No extra clocks */
|
|
if (div == np->clock_divn) { /* Are we too fast ? */
|
|
ret = -1;
|
|
}
|
|
*divp = div;
|
|
*fakp = fak;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Look for the greatest clock divisor that allows an
|
|
* input speed faster than the period.
|
|
*/
|
|
while (div-- > 0)
|
|
if (kpc >= (div_10M[div] << 2)) break;
|
|
|
|
/*
|
|
* Calculate the lowest clock factor that allows an output
|
|
* speed not faster than the period, and the max output speed.
|
|
* If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
|
|
* If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
|
|
*/
|
|
if (dt) {
|
|
fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
|
|
/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
|
|
} else {
|
|
fak = (kpc - 1) / div_10M[div] + 1 - 4;
|
|
/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
|
|
}
|
|
|
|
/*
|
|
* Check against our hardware limits, or bugs :).
|
|
*/
|
|
if (fak > 2) {
|
|
fak = 2;
|
|
ret = -1;
|
|
}
|
|
|
|
/*
|
|
* Compute and return sync parameters.
|
|
*/
|
|
*divp = div;
|
|
*fakp = fak;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
|
|
* 128 transfers. All chips support at least 16 transfers
|
|
* bursts. The 825A, 875 and 895 chips support bursts of up
|
|
* to 128 transfers and the 895A and 896 support bursts of up
|
|
* to 64 transfers. All other chips support up to 16
|
|
* transfers bursts.
|
|
*
|
|
* For PCI 32 bit data transfers each transfer is a DWORD.
|
|
* It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
|
|
*
|
|
* We use log base 2 (burst length) as internal code, with
|
|
* value 0 meaning "burst disabled".
|
|
*/
|
|
|
|
/*
|
|
* Burst length from burst code.
|
|
*/
|
|
#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
|
|
|
|
/*
|
|
* Burst code from io register bits.
|
|
*/
|
|
#define burst_code(dmode, ctest4, ctest5) \
|
|
(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
|
|
|
|
/*
|
|
* Set initial io register bits from burst code.
|
|
*/
|
|
static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
|
|
{
|
|
np->rv_ctest4 &= ~0x80;
|
|
np->rv_dmode &= ~(0x3 << 6);
|
|
np->rv_ctest5 &= ~0x4;
|
|
|
|
if (!bc) {
|
|
np->rv_ctest4 |= 0x80;
|
|
}
|
|
else {
|
|
--bc;
|
|
np->rv_dmode |= ((bc & 0x3) << 6);
|
|
np->rv_ctest5 |= (bc & 0x4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Save initial settings of some IO registers.
|
|
* Assumed to have been set by BIOS.
|
|
* We cannot reset the chip prior to reading the
|
|
* IO registers, since informations will be lost.
|
|
* Since the SCRIPTS processor may be running, this
|
|
* is not safe on paper, but it seems to work quite
|
|
* well. :)
|
|
*/
|
|
static void sym_save_initial_setting (struct sym_hcb *np)
|
|
{
|
|
np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a;
|
|
np->sv_scntl3 = INB(np, nc_scntl3) & 0x07;
|
|
np->sv_dmode = INB(np, nc_dmode) & 0xce;
|
|
np->sv_dcntl = INB(np, nc_dcntl) & 0xa8;
|
|
np->sv_ctest3 = INB(np, nc_ctest3) & 0x01;
|
|
np->sv_ctest4 = INB(np, nc_ctest4) & 0x80;
|
|
np->sv_gpcntl = INB(np, nc_gpcntl);
|
|
np->sv_stest1 = INB(np, nc_stest1);
|
|
np->sv_stest2 = INB(np, nc_stest2) & 0x20;
|
|
np->sv_stest4 = INB(np, nc_stest4);
|
|
if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */
|
|
np->sv_scntl4 = INB(np, nc_scntl4);
|
|
np->sv_ctest5 = INB(np, nc_ctest5) & 0x04;
|
|
}
|
|
else
|
|
np->sv_ctest5 = INB(np, nc_ctest5) & 0x24;
|
|
}
|
|
|
|
/*
|
|
* Set SCSI BUS mode.
|
|
* - LVD capable chips (895/895A/896/1010) report the current BUS mode
|
|
* through the STEST4 IO register.
|
|
* - For previous generation chips (825/825A/875), the user has to tell us
|
|
* how to check against HVD, since a 100% safe algorithm is not possible.
|
|
*/
|
|
static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
|
|
{
|
|
if (np->scsi_mode)
|
|
return;
|
|
|
|
np->scsi_mode = SMODE_SE;
|
|
if (np->features & (FE_ULTRA2|FE_ULTRA3))
|
|
np->scsi_mode = (np->sv_stest4 & SMODE);
|
|
else if (np->features & FE_DIFF) {
|
|
if (SYM_SETUP_SCSI_DIFF == 1) {
|
|
if (np->sv_scntl3) {
|
|
if (np->sv_stest2 & 0x20)
|
|
np->scsi_mode = SMODE_HVD;
|
|
} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
|
|
if (!(INB(np, nc_gpreg) & 0x08))
|
|
np->scsi_mode = SMODE_HVD;
|
|
}
|
|
} else if (SYM_SETUP_SCSI_DIFF == 2)
|
|
np->scsi_mode = SMODE_HVD;
|
|
}
|
|
if (np->scsi_mode == SMODE_HVD)
|
|
np->rv_stest2 |= 0x20;
|
|
}
|
|
|
|
/*
|
|
* Prepare io register values used by sym_start_up()
|
|
* according to selected and supported features.
|
|
*/
|
|
static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
|
|
{
|
|
u_char burst_max;
|
|
u32 period;
|
|
int i;
|
|
|
|
np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
|
|
|
|
/*
|
|
* Guess the frequency of the chip's clock.
|
|
*/
|
|
if (np->features & (FE_ULTRA3 | FE_ULTRA2))
|
|
np->clock_khz = 160000;
|
|
else if (np->features & FE_ULTRA)
|
|
np->clock_khz = 80000;
|
|
else
|
|
np->clock_khz = 40000;
|
|
|
|
/*
|
|
* Get the clock multiplier factor.
|
|
*/
|
|
if (np->features & FE_QUAD)
|
|
np->multiplier = 4;
|
|
else if (np->features & FE_DBLR)
|
|
np->multiplier = 2;
|
|
else
|
|
np->multiplier = 1;
|
|
|
|
/*
|
|
* Measure SCSI clock frequency for chips
|
|
* it may vary from assumed one.
|
|
*/
|
|
if (np->features & FE_VARCLK)
|
|
sym_getclock(np, np->multiplier);
|
|
|
|
/*
|
|
* Divisor to be used for async (timer pre-scaler).
|
|
*/
|
|
i = np->clock_divn - 1;
|
|
while (--i >= 0) {
|
|
if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
|
|
++i;
|
|
break;
|
|
}
|
|
}
|
|
np->rv_scntl3 = i+1;
|
|
|
|
/*
|
|
* The C1010 uses hardwired divisors for async.
|
|
* So, we just throw away, the async. divisor.:-)
|
|
*/
|
|
if (np->features & FE_C10)
|
|
np->rv_scntl3 = 0;
|
|
|
|
/*
|
|
* Minimum synchronous period factor supported by the chip.
|
|
* Btw, 'period' is in tenths of nanoseconds.
|
|
*/
|
|
period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
|
|
|
|
if (period <= 250) np->minsync = 10;
|
|
else if (period <= 303) np->minsync = 11;
|
|
else if (period <= 500) np->minsync = 12;
|
|
else np->minsync = (period + 40 - 1) / 40;
|
|
|
|
/*
|
|
* Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
|
|
*/
|
|
if (np->minsync < 25 &&
|
|
!(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
|
|
np->minsync = 25;
|
|
else if (np->minsync < 12 &&
|
|
!(np->features & (FE_ULTRA2|FE_ULTRA3)))
|
|
np->minsync = 12;
|
|
|
|
/*
|
|
* Maximum synchronous period factor supported by the chip.
|
|
*/
|
|
period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
|
|
np->maxsync = period > 2540 ? 254 : period / 10;
|
|
|
|
/*
|
|
* If chip is a C1010, guess the sync limits in DT mode.
|
|
*/
|
|
if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
|
|
if (np->clock_khz == 160000) {
|
|
np->minsync_dt = 9;
|
|
np->maxsync_dt = 50;
|
|
np->maxoffs_dt = nvram->type ? 62 : 31;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 64 bit addressing (895A/896/1010) ?
|
|
*/
|
|
if (np->features & FE_DAC) {
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 0
|
|
np->rv_ccntl1 |= (DDAC);
|
|
#elif SYM_CONF_DMA_ADDRESSING_MODE == 1
|
|
if (!np->use_dac)
|
|
np->rv_ccntl1 |= (DDAC);
|
|
else
|
|
np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
|
|
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
if (!np->use_dac)
|
|
np->rv_ccntl1 |= (DDAC);
|
|
else
|
|
np->rv_ccntl1 |= (0 | EXTIBMV);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Phase mismatch handled by SCRIPTS (895A/896/1010) ?
|
|
*/
|
|
if (np->features & FE_NOPM)
|
|
np->rv_ccntl0 |= (ENPMJ);
|
|
|
|
/*
|
|
* C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
|
|
* In dual channel mode, contention occurs if internal cycles
|
|
* are used. Disable internal cycles.
|
|
*/
|
|
if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
|
|
np->revision_id < 0x1)
|
|
np->rv_ccntl0 |= DILS;
|
|
|
|
/*
|
|
* Select burst length (dwords)
|
|
*/
|
|
burst_max = SYM_SETUP_BURST_ORDER;
|
|
if (burst_max == 255)
|
|
burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
|
|
np->sv_ctest5);
|
|
if (burst_max > 7)
|
|
burst_max = 7;
|
|
if (burst_max > np->maxburst)
|
|
burst_max = np->maxburst;
|
|
|
|
/*
|
|
* DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
|
|
* This chip and the 860 Rev 1 may wrongly use PCI cache line
|
|
* based transactions on LOAD/STORE instructions. So we have
|
|
* to prevent these chips from using such PCI transactions in
|
|
* this driver. The generic ncr driver that does not use
|
|
* LOAD/STORE instructions does not need this work-around.
|
|
*/
|
|
if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
|
|
np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
|
|
(np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
|
|
np->revision_id <= 0x1))
|
|
np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
|
|
|
|
/*
|
|
* Select all supported special features.
|
|
* If we are using on-board RAM for scripts, prefetch (PFEN)
|
|
* does not help, but burst op fetch (BOF) does.
|
|
* Disabling PFEN makes sure BOF will be used.
|
|
*/
|
|
if (np->features & FE_ERL)
|
|
np->rv_dmode |= ERL; /* Enable Read Line */
|
|
if (np->features & FE_BOF)
|
|
np->rv_dmode |= BOF; /* Burst Opcode Fetch */
|
|
if (np->features & FE_ERMP)
|
|
np->rv_dmode |= ERMP; /* Enable Read Multiple */
|
|
#if 1
|
|
if ((np->features & FE_PFEN) && !np->ram_ba)
|
|
#else
|
|
if (np->features & FE_PFEN)
|
|
#endif
|
|
np->rv_dcntl |= PFEN; /* Prefetch Enable */
|
|
if (np->features & FE_CLSE)
|
|
np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
|
|
if (np->features & FE_WRIE)
|
|
np->rv_ctest3 |= WRIE; /* Write and Invalidate */
|
|
if (np->features & FE_DFS)
|
|
np->rv_ctest5 |= DFS; /* Dma Fifo Size */
|
|
|
|
/*
|
|
* Select some other
|
|
*/
|
|
np->rv_ctest4 |= MPEE; /* Master parity checking */
|
|
np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
|
|
|
|
/*
|
|
* Get parity checking, host ID and verbose mode from NVRAM
|
|
*/
|
|
np->myaddr = 255;
|
|
np->scsi_mode = 0;
|
|
sym_nvram_setup_host(shost, np, nvram);
|
|
|
|
/*
|
|
* Get SCSI addr of host adapter (set by bios?).
|
|
*/
|
|
if (np->myaddr == 255) {
|
|
np->myaddr = INB(np, nc_scid) & 0x07;
|
|
if (!np->myaddr)
|
|
np->myaddr = SYM_SETUP_HOST_ID;
|
|
}
|
|
|
|
/*
|
|
* Prepare initial io register bits for burst length
|
|
*/
|
|
sym_init_burst(np, burst_max);
|
|
|
|
sym_set_bus_mode(np, nvram);
|
|
|
|
/*
|
|
* Set LED support from SCRIPTS.
|
|
* Ignore this feature for boards known to use a
|
|
* specific GPIO wiring and for the 895A, 896
|
|
* and 1010 that drive the LED directly.
|
|
*/
|
|
if ((SYM_SETUP_SCSI_LED ||
|
|
(nvram->type == SYM_SYMBIOS_NVRAM ||
|
|
(nvram->type == SYM_TEKRAM_NVRAM &&
|
|
np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
|
|
!(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
|
|
np->features |= FE_LED0;
|
|
|
|
/*
|
|
* Set irq mode.
|
|
*/
|
|
switch(SYM_SETUP_IRQ_MODE & 3) {
|
|
case 2:
|
|
np->rv_dcntl |= IRQM;
|
|
break;
|
|
case 1:
|
|
np->rv_dcntl |= (np->sv_dcntl & IRQM);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Configure targets according to driver setup.
|
|
* If NVRAM present get targets setup from NVRAM.
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
struct sym_tcb *tp = &np->target[i];
|
|
|
|
tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
|
|
tp->usrtags = SYM_SETUP_MAX_TAG;
|
|
tp->usr_width = np->maxwide;
|
|
tp->usr_period = 9;
|
|
|
|
sym_nvram_setup_target(tp, i, nvram);
|
|
|
|
if (!tp->usrtags)
|
|
tp->usrflags &= ~SYM_TAGS_ENABLED;
|
|
}
|
|
|
|
/*
|
|
* Let user know about the settings.
|
|
*/
|
|
printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
|
|
sym_nvram_type(nvram), np->myaddr,
|
|
(np->features & FE_ULTRA3) ? 80 :
|
|
(np->features & FE_ULTRA2) ? 40 :
|
|
(np->features & FE_ULTRA) ? 20 : 10,
|
|
sym_scsi_bus_mode(np->scsi_mode),
|
|
(np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity");
|
|
/*
|
|
* Tell him more on demand.
|
|
*/
|
|
if (sym_verbose) {
|
|
printf("%s: %s IRQ line driver%s\n",
|
|
sym_name(np),
|
|
np->rv_dcntl & IRQM ? "totem pole" : "open drain",
|
|
np->ram_ba ? ", using on-chip SRAM" : "");
|
|
printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
|
|
if (np->features & FE_NOPM)
|
|
printf("%s: handling phase mismatch from SCRIPTS.\n",
|
|
sym_name(np));
|
|
}
|
|
/*
|
|
* And still more.
|
|
*/
|
|
if (sym_verbose >= 2) {
|
|
printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
|
|
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
|
|
sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
|
|
np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
|
|
|
|
printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
|
|
"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
|
|
sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
|
|
np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test the pci bus snoop logic :-(
|
|
*
|
|
* Has to be called with interrupts disabled.
|
|
*/
|
|
#ifdef CONFIG_SCSI_SYM53C8XX_MMIO
|
|
static int sym_regtest(struct sym_hcb *np)
|
|
{
|
|
register volatile u32 data;
|
|
/*
|
|
* chip registers may NOT be cached.
|
|
* write 0xffffffff to a read only register area,
|
|
* and try to read it back.
|
|
*/
|
|
data = 0xffffffff;
|
|
OUTL(np, nc_dstat, data);
|
|
data = INL(np, nc_dstat);
|
|
#if 1
|
|
if (data == 0xffffffff) {
|
|
#else
|
|
if ((data & 0xe2f0fffd) != 0x02000080) {
|
|
#endif
|
|
printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
|
|
(unsigned) data);
|
|
return 0x10;
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int sym_regtest(struct sym_hcb *np)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int sym_snooptest(struct sym_hcb *np)
|
|
{
|
|
u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
|
|
int i, err;
|
|
|
|
err = sym_regtest(np);
|
|
if (err)
|
|
return err;
|
|
restart_test:
|
|
/*
|
|
* Enable Master Parity Checking as we intend
|
|
* to enable it for normal operations.
|
|
*/
|
|
OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
|
|
/*
|
|
* init
|
|
*/
|
|
pc = SCRIPTZ_BA(np, snooptest);
|
|
host_wr = 1;
|
|
sym_wr = 2;
|
|
/*
|
|
* Set memory and register.
|
|
*/
|
|
np->scratch = cpu_to_scr(host_wr);
|
|
OUTL(np, nc_temp, sym_wr);
|
|
/*
|
|
* Start script (exchange values)
|
|
*/
|
|
OUTL(np, nc_dsa, np->hcb_ba);
|
|
OUTL_DSP(np, pc);
|
|
/*
|
|
* Wait 'til done (with timeout)
|
|
*/
|
|
for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
|
|
if (INB(np, nc_istat) & (INTF|SIP|DIP))
|
|
break;
|
|
if (i>=SYM_SNOOP_TIMEOUT) {
|
|
printf ("CACHE TEST FAILED: timeout.\n");
|
|
return (0x20);
|
|
}
|
|
/*
|
|
* Check for fatal DMA errors.
|
|
*/
|
|
dstat = INB(np, nc_dstat);
|
|
#if 1 /* Band aiding for broken hardwares that fail PCI parity */
|
|
if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
|
|
printf ("%s: PCI DATA PARITY ERROR DETECTED - "
|
|
"DISABLING MASTER DATA PARITY CHECKING.\n",
|
|
sym_name(np));
|
|
np->rv_ctest4 &= ~MPEE;
|
|
goto restart_test;
|
|
}
|
|
#endif
|
|
if (dstat & (MDPE|BF|IID)) {
|
|
printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
|
|
return (0x80);
|
|
}
|
|
/*
|
|
* Save termination position.
|
|
*/
|
|
pc = INL(np, nc_dsp);
|
|
/*
|
|
* Read memory and register.
|
|
*/
|
|
host_rd = scr_to_cpu(np->scratch);
|
|
sym_rd = INL(np, nc_scratcha);
|
|
sym_bk = INL(np, nc_temp);
|
|
/*
|
|
* Check termination position.
|
|
*/
|
|
if (pc != SCRIPTZ_BA(np, snoopend)+8) {
|
|
printf ("CACHE TEST FAILED: script execution failed.\n");
|
|
printf ("start=%08lx, pc=%08lx, end=%08lx\n",
|
|
(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
|
|
(u_long) SCRIPTZ_BA(np, snoopend) +8);
|
|
return (0x40);
|
|
}
|
|
/*
|
|
* Show results.
|
|
*/
|
|
if (host_wr != sym_rd) {
|
|
printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
|
|
(int) host_wr, (int) sym_rd);
|
|
err |= 1;
|
|
}
|
|
if (host_rd != sym_wr) {
|
|
printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
|
|
(int) sym_wr, (int) host_rd);
|
|
err |= 2;
|
|
}
|
|
if (sym_bk != sym_wr) {
|
|
printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
|
|
(int) sym_wr, (int) sym_bk);
|
|
err |= 4;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* log message for real hard errors
|
|
*
|
|
* sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
|
|
* reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
|
|
*
|
|
* exception register:
|
|
* ds: dstat
|
|
* si: sist
|
|
*
|
|
* SCSI bus lines:
|
|
* so: control lines as driven by chip.
|
|
* si: control lines as seen by chip.
|
|
* sd: scsi data lines as seen by chip.
|
|
*
|
|
* wide/fastmode:
|
|
* sx: sxfer (see the manual)
|
|
* s3: scntl3 (see the manual)
|
|
* s4: scntl4 (see the manual)
|
|
*
|
|
* current script command:
|
|
* dsp: script address (relative to start of script).
|
|
* dbc: first word of script command.
|
|
*
|
|
* First 24 register of the chip:
|
|
* r0..rf
|
|
*/
|
|
static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
|
|
{
|
|
u32 dsp;
|
|
int script_ofs;
|
|
int script_size;
|
|
char *script_name;
|
|
u_char *script_base;
|
|
int i;
|
|
|
|
dsp = INL(np, nc_dsp);
|
|
|
|
if (dsp > np->scripta_ba &&
|
|
dsp <= np->scripta_ba + np->scripta_sz) {
|
|
script_ofs = dsp - np->scripta_ba;
|
|
script_size = np->scripta_sz;
|
|
script_base = (u_char *) np->scripta0;
|
|
script_name = "scripta";
|
|
}
|
|
else if (np->scriptb_ba < dsp &&
|
|
dsp <= np->scriptb_ba + np->scriptb_sz) {
|
|
script_ofs = dsp - np->scriptb_ba;
|
|
script_size = np->scriptb_sz;
|
|
script_base = (u_char *) np->scriptb0;
|
|
script_name = "scriptb";
|
|
} else {
|
|
script_ofs = dsp;
|
|
script_size = 0;
|
|
script_base = NULL;
|
|
script_name = "mem";
|
|
}
|
|
|
|
printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
|
|
sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
|
|
(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
|
|
(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
|
|
(unsigned)INB(np, nc_scntl3),
|
|
(np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0,
|
|
script_name, script_ofs, (unsigned)INL(np, nc_dbc));
|
|
|
|
if (((script_ofs & 3) == 0) &&
|
|
(unsigned)script_ofs < script_size) {
|
|
printf ("%s: script cmd = %08x\n", sym_name(np),
|
|
scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
|
|
}
|
|
|
|
printf ("%s: regdump:", sym_name(np));
|
|
for (i=0; i<24;i++)
|
|
printf (" %02x", (unsigned)INB_OFF(np, i));
|
|
printf (".\n");
|
|
|
|
/*
|
|
* PCI BUS error.
|
|
*/
|
|
if (dstat & (MDPE|BF))
|
|
sym_log_bus_error(np);
|
|
}
|
|
|
|
static struct sym_chip sym_dev_table[] = {
|
|
{PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
|
|
FE_ERL}
|
|
,
|
|
#ifdef SYM_DEBUG_GENERIC_SUPPORT
|
|
{PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
|
|
FE_BOF}
|
|
,
|
|
#else
|
|
{PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1,
|
|
FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
|
|
,
|
|
#endif
|
|
{PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64,
|
|
FE_BOF|FE_ERL}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64,
|
|
FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2,
|
|
FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1,
|
|
FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF|FE_VARCLK}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF|FE_VARCLK}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF|FE_VARCLK}
|
|
,
|
|
{PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
|
|
FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DIFF|FE_VARCLK}
|
|
,
|
|
#ifdef SYM_DEBUG_GENERIC_SUPPORT
|
|
{PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
|
|
FE_RAM|FE_LCKFRQ}
|
|
,
|
|
#else
|
|
{PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_LCKFRQ}
|
|
,
|
|
#endif
|
|
{PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
|
|
,
|
|
{PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
|
|
,
|
|
{PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
|
|
,
|
|
{PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
|
|
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
|
|
FE_C10}
|
|
,
|
|
{PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
|
|
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
|
|
FE_C10|FE_U3EN}
|
|
,
|
|
{PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
|
|
FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
|
|
FE_C10|FE_U3EN}
|
|
,
|
|
{PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
|
|
FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
|
|
FE_RAM|FE_IO256|FE_LEDC}
|
|
};
|
|
|
|
#define sym_num_devs (ARRAY_SIZE(sym_dev_table))
|
|
|
|
/*
|
|
* Look up the chip table.
|
|
*
|
|
* Return a pointer to the chip entry if found,
|
|
* zero otherwise.
|
|
*/
|
|
struct sym_chip *
|
|
sym_lookup_chip_table (u_short device_id, u_char revision)
|
|
{
|
|
struct sym_chip *chip;
|
|
int i;
|
|
|
|
for (i = 0; i < sym_num_devs; i++) {
|
|
chip = &sym_dev_table[i];
|
|
if (device_id != chip->device_id)
|
|
continue;
|
|
if (revision > chip->revision_id)
|
|
continue;
|
|
return chip;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
/*
|
|
* Lookup the 64 bit DMA segments map.
|
|
* This is only used if the direct mapping
|
|
* has been unsuccessful.
|
|
*/
|
|
int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
|
|
{
|
|
int i;
|
|
|
|
if (!np->use_dac)
|
|
goto weird;
|
|
|
|
/* Look up existing mappings */
|
|
for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
|
|
if (h == np->dmap_bah[i])
|
|
return i;
|
|
}
|
|
/* If direct mapping is free, get it */
|
|
if (!np->dmap_bah[s])
|
|
goto new;
|
|
/* Collision -> lookup free mappings */
|
|
for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
|
|
if (!np->dmap_bah[s])
|
|
goto new;
|
|
}
|
|
weird:
|
|
panic("sym: ran out of 64 bit DMA segment registers");
|
|
return -1;
|
|
new:
|
|
np->dmap_bah[s] = h;
|
|
np->dmap_dirty = 1;
|
|
return s;
|
|
}
|
|
|
|
/*
|
|
* Update IO registers scratch C..R so they will be
|
|
* in sync. with queued CCB expectations.
|
|
*/
|
|
static void sym_update_dmap_regs(struct sym_hcb *np)
|
|
{
|
|
int o, i;
|
|
|
|
if (!np->dmap_dirty)
|
|
return;
|
|
o = offsetof(struct sym_reg, nc_scrx[0]);
|
|
for (i = 0; i < SYM_DMAP_SIZE; i++) {
|
|
OUTL_OFF(np, o, np->dmap_bah[i]);
|
|
o += 4;
|
|
}
|
|
np->dmap_dirty = 0;
|
|
}
|
|
#endif
|
|
|
|
/* Enforce all the fiddly SPI rules and the chip limitations */
|
|
static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
|
|
struct sym_trans *goal)
|
|
{
|
|
if (!spi_support_wide(starget))
|
|
goal->width = 0;
|
|
|
|
if (!spi_support_sync(starget)) {
|
|
goal->iu = 0;
|
|
goal->dt = 0;
|
|
goal->qas = 0;
|
|
goal->offset = 0;
|
|
return;
|
|
}
|
|
|
|
if (spi_support_dt(starget)) {
|
|
if (spi_support_dt_only(starget))
|
|
goal->dt = 1;
|
|
|
|
if (goal->offset == 0)
|
|
goal->dt = 0;
|
|
} else {
|
|
goal->dt = 0;
|
|
}
|
|
|
|
/* Some targets fail to properly negotiate DT in SE mode */
|
|
if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
|
|
goal->dt = 0;
|
|
|
|
if (goal->dt) {
|
|
/* all DT transfers must be wide */
|
|
goal->width = 1;
|
|
if (goal->offset > np->maxoffs_dt)
|
|
goal->offset = np->maxoffs_dt;
|
|
if (goal->period < np->minsync_dt)
|
|
goal->period = np->minsync_dt;
|
|
if (goal->period > np->maxsync_dt)
|
|
goal->period = np->maxsync_dt;
|
|
} else {
|
|
goal->iu = goal->qas = 0;
|
|
if (goal->offset > np->maxoffs)
|
|
goal->offset = np->maxoffs;
|
|
if (goal->period < np->minsync)
|
|
goal->period = np->minsync;
|
|
if (goal->period > np->maxsync)
|
|
goal->period = np->maxsync;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare the next negotiation message if needed.
|
|
*
|
|
* Fill in the part of message buffer that contains the
|
|
* negotiation and the nego_status field of the CCB.
|
|
* Returns the size of the message in bytes.
|
|
*/
|
|
static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
|
|
{
|
|
struct sym_tcb *tp = &np->target[cp->target];
|
|
struct scsi_target *starget = tp->starget;
|
|
struct sym_trans *goal = &tp->tgoal;
|
|
int msglen = 0;
|
|
int nego;
|
|
|
|
sym_check_goals(np, starget, goal);
|
|
|
|
/*
|
|
* Many devices implement PPR in a buggy way, so only use it if we
|
|
* really want to.
|
|
*/
|
|
if (goal->offset &&
|
|
(goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
|
|
nego = NS_PPR;
|
|
} else if (spi_width(starget) != goal->width) {
|
|
nego = NS_WIDE;
|
|
} else if (spi_period(starget) != goal->period ||
|
|
spi_offset(starget) != goal->offset) {
|
|
nego = NS_SYNC;
|
|
} else {
|
|
goal->check_nego = 0;
|
|
nego = 0;
|
|
}
|
|
|
|
switch (nego) {
|
|
case NS_SYNC:
|
|
msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
|
|
goal->offset);
|
|
break;
|
|
case NS_WIDE:
|
|
msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
|
|
break;
|
|
case NS_PPR:
|
|
msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
|
|
goal->offset, goal->width,
|
|
(goal->iu ? PPR_OPT_IU : 0) |
|
|
(goal->dt ? PPR_OPT_DT : 0) |
|
|
(goal->qas ? PPR_OPT_QAS : 0));
|
|
break;
|
|
}
|
|
|
|
cp->nego_status = nego;
|
|
|
|
if (nego) {
|
|
tp->nego_cp = cp; /* Keep track a nego will be performed */
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, cp->target,
|
|
nego == NS_SYNC ? "sync msgout" :
|
|
nego == NS_WIDE ? "wide msgout" :
|
|
"ppr msgout", msgptr);
|
|
}
|
|
}
|
|
|
|
return msglen;
|
|
}
|
|
|
|
/*
|
|
* Insert a job into the start queue.
|
|
*/
|
|
void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
|
|
{
|
|
u_short qidx;
|
|
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If the previously queued CCB is not yet done,
|
|
* set the IARB hint. The SCRIPTS will go with IARB
|
|
* for this job when starting the previous one.
|
|
* We leave devices a chance to win arbitration by
|
|
* not using more than 'iarb_max' consecutive
|
|
* immediate arbitrations.
|
|
*/
|
|
if (np->last_cp && np->iarb_count < np->iarb_max) {
|
|
np->last_cp->host_flags |= HF_HINT_IARB;
|
|
++np->iarb_count;
|
|
}
|
|
else
|
|
np->iarb_count = 0;
|
|
np->last_cp = cp;
|
|
#endif
|
|
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
/*
|
|
* Make SCRIPTS aware of the 64 bit DMA
|
|
* segment registers not being up-to-date.
|
|
*/
|
|
if (np->dmap_dirty)
|
|
cp->host_xflags |= HX_DMAP_DIRTY;
|
|
#endif
|
|
|
|
/*
|
|
* Insert first the idle task and then our job.
|
|
* The MBs should ensure proper ordering.
|
|
*/
|
|
qidx = np->squeueput + 2;
|
|
if (qidx >= MAX_QUEUE*2) qidx = 0;
|
|
|
|
np->squeue [qidx] = cpu_to_scr(np->idletask_ba);
|
|
MEMORY_WRITE_BARRIER();
|
|
np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
|
|
|
|
np->squeueput = qidx;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_QUEUE)
|
|
printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
|
|
|
|
/*
|
|
* Script processor may be waiting for reselect.
|
|
* Wake it up.
|
|
*/
|
|
MEMORY_WRITE_BARRIER();
|
|
OUTB(np, nc_istat, SIGP|np->istat_sem);
|
|
}
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
/*
|
|
* Start next ready-to-start CCBs.
|
|
*/
|
|
void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
struct sym_ccb *cp;
|
|
|
|
/*
|
|
* Paranoia, as usual. :-)
|
|
*/
|
|
assert(!lp->started_tags || !lp->started_no_tag);
|
|
|
|
/*
|
|
* Try to start as many commands as asked by caller.
|
|
* Prevent from having both tagged and untagged
|
|
* commands queued to the device at the same time.
|
|
*/
|
|
while (maxn--) {
|
|
qp = sym_remque_head(&lp->waiting_ccbq);
|
|
if (!qp)
|
|
break;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
|
|
if (cp->tag != NO_TAG) {
|
|
if (lp->started_no_tag ||
|
|
lp->started_tags >= lp->started_max) {
|
|
sym_insque_head(qp, &lp->waiting_ccbq);
|
|
break;
|
|
}
|
|
lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
|
|
lp->head.resel_sa =
|
|
cpu_to_scr(SCRIPTA_BA(np, resel_tag));
|
|
++lp->started_tags;
|
|
} else {
|
|
if (lp->started_no_tag || lp->started_tags) {
|
|
sym_insque_head(qp, &lp->waiting_ccbq);
|
|
break;
|
|
}
|
|
lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
|
|
lp->head.resel_sa =
|
|
cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
|
|
++lp->started_no_tag;
|
|
}
|
|
cp->started = 1;
|
|
sym_insque_tail(qp, &lp->started_ccbq);
|
|
sym_put_start_queue(np, cp);
|
|
}
|
|
}
|
|
#endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
|
|
|
|
/*
|
|
* The chip may have completed jobs. Look at the DONE QUEUE.
|
|
*
|
|
* On paper, memory read barriers may be needed here to
|
|
* prevent out of order LOADs by the CPU from having
|
|
* prefetched stale data prior to DMA having occurred.
|
|
*/
|
|
static int sym_wakeup_done (struct sym_hcb *np)
|
|
{
|
|
struct sym_ccb *cp;
|
|
int i, n;
|
|
u32 dsa;
|
|
|
|
n = 0;
|
|
i = np->dqueueget;
|
|
|
|
/* MEMORY_READ_BARRIER(); */
|
|
while (1) {
|
|
dsa = scr_to_cpu(np->dqueue[i]);
|
|
if (!dsa)
|
|
break;
|
|
np->dqueue[i] = 0;
|
|
if ((i = i+2) >= MAX_QUEUE*2)
|
|
i = 0;
|
|
|
|
cp = sym_ccb_from_dsa(np, dsa);
|
|
if (cp) {
|
|
MEMORY_READ_BARRIER();
|
|
sym_complete_ok (np, cp);
|
|
++n;
|
|
}
|
|
else
|
|
printf ("%s: bad DSA (%x) in done queue.\n",
|
|
sym_name(np), (u_int) dsa);
|
|
}
|
|
np->dqueueget = i;
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Complete all CCBs queued to the COMP queue.
|
|
*
|
|
* These CCBs are assumed:
|
|
* - Not to be referenced either by devices or
|
|
* SCRIPTS-related queues and datas.
|
|
* - To have to be completed with an error condition
|
|
* or requeued.
|
|
*
|
|
* The device queue freeze count is incremented
|
|
* for each CCB that does not prevent this.
|
|
* This function is called when all CCBs involved
|
|
* in error handling/recovery have been reaped.
|
|
*/
|
|
static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
struct sym_ccb *cp;
|
|
|
|
while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
|
|
struct scsi_cmnd *cmd;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
|
|
/* Leave quiet CCBs waiting for resources */
|
|
if (cp->host_status == HS_WAIT)
|
|
continue;
|
|
cmd = cp->cmd;
|
|
if (cam_status)
|
|
sym_set_cam_status(cmd, cam_status);
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
|
|
struct sym_tcb *tp = &np->target[cp->target];
|
|
struct sym_lcb *lp = sym_lp(tp, cp->lun);
|
|
if (lp) {
|
|
sym_remque(&cp->link2_ccbq);
|
|
sym_insque_tail(&cp->link2_ccbq,
|
|
&lp->waiting_ccbq);
|
|
if (cp->started) {
|
|
if (cp->tag != NO_TAG)
|
|
--lp->started_tags;
|
|
else
|
|
--lp->started_no_tag;
|
|
}
|
|
}
|
|
cp->started = 0;
|
|
continue;
|
|
}
|
|
#endif
|
|
sym_free_ccb(np, cp);
|
|
sym_xpt_done(np, cmd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Complete all active CCBs with error.
|
|
* Used on CHIP/SCSI RESET.
|
|
*/
|
|
static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
|
|
{
|
|
/*
|
|
* Move all active CCBs to the COMP queue
|
|
* and flush this queue.
|
|
*/
|
|
sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
|
|
sym_que_init(&np->busy_ccbq);
|
|
sym_flush_comp_queue(np, cam_status);
|
|
}
|
|
|
|
/*
|
|
* Start chip.
|
|
*
|
|
* 'reason' means:
|
|
* 0: initialisation.
|
|
* 1: SCSI BUS RESET delivered or received.
|
|
* 2: SCSI BUS MODE changed.
|
|
*/
|
|
void sym_start_up (struct sym_hcb *np, int reason)
|
|
{
|
|
int i;
|
|
u32 phys;
|
|
|
|
/*
|
|
* Reset chip if asked, otherwise just clear fifos.
|
|
*/
|
|
if (reason == 1)
|
|
sym_soft_reset(np);
|
|
else {
|
|
OUTB(np, nc_stest3, TE|CSF);
|
|
OUTONB(np, nc_ctest3, CLF);
|
|
}
|
|
|
|
/*
|
|
* Clear Start Queue
|
|
*/
|
|
phys = np->squeue_ba;
|
|
for (i = 0; i < MAX_QUEUE*2; i += 2) {
|
|
np->squeue[i] = cpu_to_scr(np->idletask_ba);
|
|
np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
|
|
}
|
|
np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
|
|
|
|
/*
|
|
* Start at first entry.
|
|
*/
|
|
np->squeueput = 0;
|
|
|
|
/*
|
|
* Clear Done Queue
|
|
*/
|
|
phys = np->dqueue_ba;
|
|
for (i = 0; i < MAX_QUEUE*2; i += 2) {
|
|
np->dqueue[i] = 0;
|
|
np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
|
|
}
|
|
np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
|
|
|
|
/*
|
|
* Start at first entry.
|
|
*/
|
|
np->dqueueget = 0;
|
|
|
|
/*
|
|
* Install patches in scripts.
|
|
* This also let point to first position the start
|
|
* and done queue pointers used from SCRIPTS.
|
|
*/
|
|
np->fw_patch(np);
|
|
|
|
/*
|
|
* Wakeup all pending jobs.
|
|
*/
|
|
sym_flush_busy_queue(np, DID_RESET);
|
|
|
|
/*
|
|
* Init chip.
|
|
*/
|
|
OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */
|
|
INB(np, nc_mbox1);
|
|
udelay(2000); /* The 895 needs time for the bus mode to settle */
|
|
|
|
OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
|
|
/* full arb., ena parity, par->ATN */
|
|
OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
|
|
|
|
sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
|
|
|
|
OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
|
|
OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */
|
|
OUTB(np, nc_istat , SIGP ); /* Signal Process */
|
|
OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */
|
|
OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
|
|
|
|
OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
|
|
OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */
|
|
OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */
|
|
|
|
/* Extended Sreq/Sack filtering not supported on the C10 */
|
|
if (np->features & FE_C10)
|
|
OUTB(np, nc_stest2, np->rv_stest2);
|
|
else
|
|
OUTB(np, nc_stest2, EXT|np->rv_stest2);
|
|
|
|
OUTB(np, nc_stest3, TE); /* TolerANT enable */
|
|
OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */
|
|
|
|
/*
|
|
* For now, disable AIP generation on C1010-66.
|
|
*/
|
|
if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
|
|
OUTB(np, nc_aipcntl1, DISAIP);
|
|
|
|
/*
|
|
* C10101 rev. 0 errata.
|
|
* Errant SGE's when in narrow. Write bits 4 & 5 of
|
|
* STEST1 register to disable SGE. We probably should do
|
|
* that from SCRIPTS for each selection/reselection, but
|
|
* I just don't want. :)
|
|
*/
|
|
if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
|
|
np->revision_id < 1)
|
|
OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
|
|
|
|
/*
|
|
* DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
|
|
* Disable overlapped arbitration for some dual function devices,
|
|
* regardless revision id (kind of post-chip-design feature. ;-))
|
|
*/
|
|
if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
|
|
OUTB(np, nc_ctest0, (1<<5));
|
|
else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
|
|
np->rv_ccntl0 |= DPR;
|
|
|
|
/*
|
|
* Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
|
|
* and/or hardware phase mismatch, since only such chips
|
|
* seem to support those IO registers.
|
|
*/
|
|
if (np->features & (FE_DAC|FE_NOPM)) {
|
|
OUTB(np, nc_ccntl0, np->rv_ccntl0);
|
|
OUTB(np, nc_ccntl1, np->rv_ccntl1);
|
|
}
|
|
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
/*
|
|
* Set up scratch C and DRS IO registers to map the 32 bit
|
|
* DMA address range our data structures are located in.
|
|
*/
|
|
if (np->use_dac) {
|
|
np->dmap_bah[0] = 0; /* ??? */
|
|
OUTL(np, nc_scrx[0], np->dmap_bah[0]);
|
|
OUTL(np, nc_drs, np->dmap_bah[0]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If phase mismatch handled by scripts (895A/896/1010),
|
|
* set PM jump addresses.
|
|
*/
|
|
if (np->features & FE_NOPM) {
|
|
OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
|
|
OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
|
|
}
|
|
|
|
/*
|
|
* Enable GPIO0 pin for writing if LED support from SCRIPTS.
|
|
* Also set GPIO5 and clear GPIO6 if hardware LED control.
|
|
*/
|
|
if (np->features & FE_LED0)
|
|
OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
|
|
else if (np->features & FE_LEDC)
|
|
OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
|
|
|
|
/*
|
|
* enable ints
|
|
*/
|
|
OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
|
|
OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
|
|
|
|
/*
|
|
* For 895/6 enable SBMC interrupt and save current SCSI bus mode.
|
|
* Try to eat the spurious SBMC interrupt that may occur when
|
|
* we reset the chip but not the SCSI BUS (at initialization).
|
|
*/
|
|
if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
|
|
OUTONW(np, nc_sien, SBMC);
|
|
if (reason == 0) {
|
|
INB(np, nc_mbox1);
|
|
mdelay(100);
|
|
INW(np, nc_sist);
|
|
}
|
|
np->scsi_mode = INB(np, nc_stest4) & SMODE;
|
|
}
|
|
|
|
/*
|
|
* Fill in target structure.
|
|
* Reinitialize usrsync.
|
|
* Reinitialize usrwide.
|
|
* Prepare sync negotiation according to actual SCSI bus mode.
|
|
*/
|
|
for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
|
|
struct sym_tcb *tp = &np->target[i];
|
|
|
|
tp->to_reset = 0;
|
|
tp->head.sval = 0;
|
|
tp->head.wval = np->rv_scntl3;
|
|
tp->head.uval = 0;
|
|
}
|
|
|
|
/*
|
|
* Download SCSI SCRIPTS to on-chip RAM if present,
|
|
* and start script processor.
|
|
* We do the download preferently from the CPU.
|
|
* For platforms that may not support PCI memory mapping,
|
|
* we use simple SCRIPTS that performs MEMORY MOVEs.
|
|
*/
|
|
phys = SCRIPTA_BA(np, init);
|
|
if (np->ram_ba) {
|
|
if (sym_verbose >= 2)
|
|
printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
|
|
memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
|
|
if (np->ram_ws == 8192) {
|
|
memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
|
|
phys = scr_to_cpu(np->scr_ram_seg);
|
|
OUTL(np, nc_mmws, phys);
|
|
OUTL(np, nc_mmrs, phys);
|
|
OUTL(np, nc_sfs, phys);
|
|
phys = SCRIPTB_BA(np, start64);
|
|
}
|
|
}
|
|
|
|
np->istat_sem = 0;
|
|
|
|
OUTL(np, nc_dsa, np->hcb_ba);
|
|
OUTL_DSP(np, phys);
|
|
|
|
/*
|
|
* Notify the XPT about the RESET condition.
|
|
*/
|
|
if (reason != 0)
|
|
sym_xpt_async_bus_reset(np);
|
|
}
|
|
|
|
/*
|
|
* Switch trans mode for current job and its target.
|
|
*/
|
|
static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
|
|
u_char per, u_char wide, u_char div, u_char fak)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
u_char sval, wval, uval;
|
|
struct sym_tcb *tp = &np->target[target];
|
|
|
|
assert(target == (INB(np, nc_sdid) & 0x0f));
|
|
|
|
sval = tp->head.sval;
|
|
wval = tp->head.wval;
|
|
uval = tp->head.uval;
|
|
|
|
#if 0
|
|
printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
|
|
sval, wval, uval, np->rv_scntl3);
|
|
#endif
|
|
/*
|
|
* Set the offset.
|
|
*/
|
|
if (!(np->features & FE_C10))
|
|
sval = (sval & ~0x1f) | ofs;
|
|
else
|
|
sval = (sval & ~0x3f) | ofs;
|
|
|
|
/*
|
|
* Set the sync divisor and extra clock factor.
|
|
*/
|
|
if (ofs != 0) {
|
|
wval = (wval & ~0x70) | ((div+1) << 4);
|
|
if (!(np->features & FE_C10))
|
|
sval = (sval & ~0xe0) | (fak << 5);
|
|
else {
|
|
uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
|
|
if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
|
|
if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the bus width.
|
|
*/
|
|
wval = wval & ~EWS;
|
|
if (wide != 0)
|
|
wval |= EWS;
|
|
|
|
/*
|
|
* Set misc. ultra enable bits.
|
|
*/
|
|
if (np->features & FE_C10) {
|
|
uval = uval & ~(U3EN|AIPCKEN);
|
|
if (opts) {
|
|
assert(np->features & FE_U3EN);
|
|
uval |= U3EN;
|
|
}
|
|
} else {
|
|
wval = wval & ~ULTRA;
|
|
if (per <= 12) wval |= ULTRA;
|
|
}
|
|
|
|
/*
|
|
* Stop there if sync parameters are unchanged.
|
|
*/
|
|
if (tp->head.sval == sval &&
|
|
tp->head.wval == wval &&
|
|
tp->head.uval == uval)
|
|
return;
|
|
tp->head.sval = sval;
|
|
tp->head.wval = wval;
|
|
tp->head.uval = uval;
|
|
|
|
/*
|
|
* Disable extended Sreq/Sack filtering if per < 50.
|
|
* Not supported on the C1010.
|
|
*/
|
|
if (per < 50 && !(np->features & FE_C10))
|
|
OUTOFFB(np, nc_stest2, EXT);
|
|
|
|
/*
|
|
* set actual value and sync_status
|
|
*/
|
|
OUTB(np, nc_sxfer, tp->head.sval);
|
|
OUTB(np, nc_scntl3, tp->head.wval);
|
|
|
|
if (np->features & FE_C10) {
|
|
OUTB(np, nc_scntl4, tp->head.uval);
|
|
}
|
|
|
|
/*
|
|
* patch ALL busy ccbs of this target.
|
|
*/
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
struct sym_ccb *cp;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp->target != target)
|
|
continue;
|
|
cp->phys.select.sel_scntl3 = tp->head.wval;
|
|
cp->phys.select.sel_sxfer = tp->head.sval;
|
|
if (np->features & FE_C10) {
|
|
cp->phys.select.sel_scntl4 = tp->head.uval;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We received a WDTR.
|
|
* Let everything be aware of the changes.
|
|
*/
|
|
static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
|
|
{
|
|
struct sym_tcb *tp = &np->target[target];
|
|
struct scsi_target *starget = tp->starget;
|
|
|
|
if (spi_width(starget) == wide)
|
|
return;
|
|
|
|
sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
|
|
|
|
tp->tgoal.width = wide;
|
|
spi_offset(starget) = 0;
|
|
spi_period(starget) = 0;
|
|
spi_width(starget) = wide;
|
|
spi_iu(starget) = 0;
|
|
spi_dt(starget) = 0;
|
|
spi_qas(starget) = 0;
|
|
|
|
if (sym_verbose >= 3)
|
|
spi_display_xfer_agreement(starget);
|
|
}
|
|
|
|
/*
|
|
* We received a SDTR.
|
|
* Let everything be aware of the changes.
|
|
*/
|
|
static void
|
|
sym_setsync(struct sym_hcb *np, int target,
|
|
u_char ofs, u_char per, u_char div, u_char fak)
|
|
{
|
|
struct sym_tcb *tp = &np->target[target];
|
|
struct scsi_target *starget = tp->starget;
|
|
u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
|
|
|
|
sym_settrans(np, target, 0, ofs, per, wide, div, fak);
|
|
|
|
spi_period(starget) = per;
|
|
spi_offset(starget) = ofs;
|
|
spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
|
|
|
|
if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
|
|
tp->tgoal.period = per;
|
|
tp->tgoal.offset = ofs;
|
|
tp->tgoal.check_nego = 0;
|
|
}
|
|
|
|
spi_display_xfer_agreement(starget);
|
|
}
|
|
|
|
/*
|
|
* We received a PPR.
|
|
* Let everything be aware of the changes.
|
|
*/
|
|
static void
|
|
sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
|
|
u_char per, u_char wide, u_char div, u_char fak)
|
|
{
|
|
struct sym_tcb *tp = &np->target[target];
|
|
struct scsi_target *starget = tp->starget;
|
|
|
|
sym_settrans(np, target, opts, ofs, per, wide, div, fak);
|
|
|
|
spi_width(starget) = tp->tgoal.width = wide;
|
|
spi_period(starget) = tp->tgoal.period = per;
|
|
spi_offset(starget) = tp->tgoal.offset = ofs;
|
|
spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
|
|
spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
|
|
spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
|
|
tp->tgoal.check_nego = 0;
|
|
|
|
spi_display_xfer_agreement(starget);
|
|
}
|
|
|
|
/*
|
|
* generic recovery from scsi interrupt
|
|
*
|
|
* The doc says that when the chip gets an SCSI interrupt,
|
|
* it tries to stop in an orderly fashion, by completing
|
|
* an instruction fetch that had started or by flushing
|
|
* the DMA fifo for a write to memory that was executing.
|
|
* Such a fashion is not enough to know if the instruction
|
|
* that was just before the current DSP value has been
|
|
* executed or not.
|
|
*
|
|
* There are some small SCRIPTS sections that deal with
|
|
* the start queue and the done queue that may break any
|
|
* assomption from the C code if we are interrupted
|
|
* inside, so we reset if this happens. Btw, since these
|
|
* SCRIPTS sections are executed while the SCRIPTS hasn't
|
|
* started SCSI operations, it is very unlikely to happen.
|
|
*
|
|
* All the driver data structures are supposed to be
|
|
* allocated from the same 4 GB memory window, so there
|
|
* is a 1 to 1 relationship between DSA and driver data
|
|
* structures. Since we are careful :) to invalidate the
|
|
* DSA when we complete a command or when the SCRIPTS
|
|
* pushes a DSA into a queue, we can trust it when it
|
|
* points to a CCB.
|
|
*/
|
|
static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
|
|
{
|
|
u32 dsp = INL(np, nc_dsp);
|
|
u32 dsa = INL(np, nc_dsa);
|
|
struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
|
|
|
|
/*
|
|
* If we haven't been interrupted inside the SCRIPTS
|
|
* critical pathes, we can safely restart the SCRIPTS
|
|
* and trust the DSA value if it matches a CCB.
|
|
*/
|
|
if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
|
|
dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
|
|
(!(dsp > SCRIPTA_BA(np, ungetjob) &&
|
|
dsp < SCRIPTA_BA(np, reselect) + 1)) &&
|
|
(!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
|
|
dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
|
|
(!(dsp > SCRIPTA_BA(np, done) &&
|
|
dsp < SCRIPTA_BA(np, done_end) + 1))) {
|
|
OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
|
|
OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
|
|
/*
|
|
* If we have a CCB, let the SCRIPTS call us back for
|
|
* the handling of the error with SCRATCHA filled with
|
|
* STARTPOS. This way, we will be able to freeze the
|
|
* device queue and requeue awaiting IOs.
|
|
*/
|
|
if (cp) {
|
|
cp->host_status = hsts;
|
|
OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
|
|
}
|
|
/*
|
|
* Otherwise just restart the SCRIPTS.
|
|
*/
|
|
else {
|
|
OUTL(np, nc_dsa, 0xffffff);
|
|
OUTL_DSP(np, SCRIPTA_BA(np, start));
|
|
}
|
|
}
|
|
else
|
|
goto reset_all;
|
|
|
|
return;
|
|
|
|
reset_all:
|
|
sym_start_reset(np);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for selection timeout
|
|
*/
|
|
static void sym_int_sto (struct sym_hcb *np)
|
|
{
|
|
u32 dsp = INL(np, nc_dsp);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
|
|
|
|
if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
|
|
sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
|
|
else
|
|
sym_start_reset(np);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for unexpected disconnect
|
|
*/
|
|
static void sym_int_udc (struct sym_hcb *np)
|
|
{
|
|
printf ("%s: unexpected disconnect\n", sym_name(np));
|
|
sym_recover_scsi_int(np, HS_UNEXPECTED);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for SCSI bus mode change
|
|
*
|
|
* spi2-r12 11.2.3 says a transceiver mode change must
|
|
* generate a reset event and a device that detects a reset
|
|
* event shall initiate a hard reset. It says also that a
|
|
* device that detects a mode change shall set data transfer
|
|
* mode to eight bit asynchronous, etc...
|
|
* So, just reinitializing all except chip should be enough.
|
|
*/
|
|
static void sym_int_sbmc (struct sym_hcb *np)
|
|
{
|
|
u_char scsi_mode = INB(np, nc_stest4) & SMODE;
|
|
|
|
/*
|
|
* Notify user.
|
|
*/
|
|
printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
|
|
sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
|
|
|
|
/*
|
|
* Should suspend command processing for a few seconds and
|
|
* reinitialize all except the chip.
|
|
*/
|
|
sym_start_up (np, 2);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for SCSI parity error.
|
|
*
|
|
* When the chip detects a SCSI parity error and is
|
|
* currently executing a (CH)MOV instruction, it does
|
|
* not interrupt immediately, but tries to finish the
|
|
* transfer of the current scatter entry before
|
|
* interrupting. The following situations may occur:
|
|
*
|
|
* - The complete scatter entry has been transferred
|
|
* without the device having changed phase.
|
|
* The chip will then interrupt with the DSP pointing
|
|
* to the instruction that follows the MOV.
|
|
*
|
|
* - A phase mismatch occurs before the MOV finished
|
|
* and phase errors are to be handled by the C code.
|
|
* The chip will then interrupt with both PAR and MA
|
|
* conditions set.
|
|
*
|
|
* - A phase mismatch occurs before the MOV finished and
|
|
* phase errors are to be handled by SCRIPTS.
|
|
* The chip will load the DSP with the phase mismatch
|
|
* JUMP address and interrupt the host processor.
|
|
*/
|
|
static void sym_int_par (struct sym_hcb *np, u_short sist)
|
|
{
|
|
u_char hsts = INB(np, HS_PRT);
|
|
u32 dsp = INL(np, nc_dsp);
|
|
u32 dbc = INL(np, nc_dbc);
|
|
u32 dsa = INL(np, nc_dsa);
|
|
u_char sbcl = INB(np, nc_sbcl);
|
|
u_char cmd = dbc >> 24;
|
|
int phase = cmd & 7;
|
|
struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
|
|
|
|
printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
|
|
sym_name(np), hsts, dbc, sbcl);
|
|
|
|
/*
|
|
* Check that the chip is connected to the SCSI BUS.
|
|
*/
|
|
if (!(INB(np, nc_scntl1) & ISCON)) {
|
|
sym_recover_scsi_int(np, HS_UNEXPECTED);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the nexus is not clearly identified, reset the bus.
|
|
* We will try to do better later.
|
|
*/
|
|
if (!cp)
|
|
goto reset_all;
|
|
|
|
/*
|
|
* Check instruction was a MOV, direction was INPUT and
|
|
* ATN is asserted.
|
|
*/
|
|
if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
|
|
goto reset_all;
|
|
|
|
/*
|
|
* Keep track of the parity error.
|
|
*/
|
|
OUTONB(np, HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_PARITY_ERR;
|
|
|
|
/*
|
|
* Prepare the message to send to the device.
|
|
*/
|
|
np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
|
|
|
|
/*
|
|
* If the old phase was DATA IN phase, we have to deal with
|
|
* the 3 situations described above.
|
|
* For other input phases (MSG IN and STATUS), the device
|
|
* must resend the whole thing that failed parity checking
|
|
* or signal error. So, jumping to dispatcher should be OK.
|
|
*/
|
|
if (phase == 1 || phase == 5) {
|
|
/* Phase mismatch handled by SCRIPTS */
|
|
if (dsp == SCRIPTB_BA(np, pm_handle))
|
|
OUTL_DSP(np, dsp);
|
|
/* Phase mismatch handled by the C code */
|
|
else if (sist & MA)
|
|
sym_int_ma (np);
|
|
/* No phase mismatch occurred */
|
|
else {
|
|
sym_set_script_dp (np, cp, dsp);
|
|
OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
|
|
}
|
|
}
|
|
else if (phase == 7) /* We definitely cannot handle parity errors */
|
|
#if 1 /* in message-in phase due to the relection */
|
|
goto reset_all; /* path and various message anticipations. */
|
|
#else
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
#endif
|
|
else
|
|
OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
|
|
return;
|
|
|
|
reset_all:
|
|
sym_start_reset(np);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for phase errors.
|
|
*
|
|
* We have to construct a new transfer descriptor,
|
|
* to transfer the rest of the current block.
|
|
*/
|
|
static void sym_int_ma (struct sym_hcb *np)
|
|
{
|
|
u32 dbc;
|
|
u32 rest;
|
|
u32 dsp;
|
|
u32 dsa;
|
|
u32 nxtdsp;
|
|
u32 *vdsp;
|
|
u32 oadr, olen;
|
|
u32 *tblp;
|
|
u32 newcmd;
|
|
u_int delta;
|
|
u_char cmd;
|
|
u_char hflags, hflags0;
|
|
struct sym_pmc *pm;
|
|
struct sym_ccb *cp;
|
|
|
|
dsp = INL(np, nc_dsp);
|
|
dbc = INL(np, nc_dbc);
|
|
dsa = INL(np, nc_dsa);
|
|
|
|
cmd = dbc >> 24;
|
|
rest = dbc & 0xffffff;
|
|
delta = 0;
|
|
|
|
/*
|
|
* locate matching cp if any.
|
|
*/
|
|
cp = sym_ccb_from_dsa(np, dsa);
|
|
|
|
/*
|
|
* Donnot take into account dma fifo and various buffers in
|
|
* INPUT phase since the chip flushes everything before
|
|
* raising the MA interrupt for interrupted INPUT phases.
|
|
* For DATA IN phase, we will check for the SWIDE later.
|
|
*/
|
|
if ((cmd & 7) != 1 && (cmd & 7) != 5) {
|
|
u_char ss0, ss2;
|
|
|
|
if (np->features & FE_DFBC)
|
|
delta = INW(np, nc_dfbc);
|
|
else {
|
|
u32 dfifo;
|
|
|
|
/*
|
|
* Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
|
|
*/
|
|
dfifo = INL(np, nc_dfifo);
|
|
|
|
/*
|
|
* Calculate remaining bytes in DMA fifo.
|
|
* (CTEST5 = dfifo >> 16)
|
|
*/
|
|
if (dfifo & (DFS << 16))
|
|
delta = ((((dfifo >> 8) & 0x300) |
|
|
(dfifo & 0xff)) - rest) & 0x3ff;
|
|
else
|
|
delta = ((dfifo & 0xff) - rest) & 0x7f;
|
|
}
|
|
|
|
/*
|
|
* The data in the dma fifo has not been transfered to
|
|
* the target -> add the amount to the rest
|
|
* and clear the data.
|
|
* Check the sstat2 register in case of wide transfer.
|
|
*/
|
|
rest += delta;
|
|
ss0 = INB(np, nc_sstat0);
|
|
if (ss0 & OLF) rest++;
|
|
if (!(np->features & FE_C10))
|
|
if (ss0 & ORF) rest++;
|
|
if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
|
|
ss2 = INB(np, nc_sstat2);
|
|
if (ss2 & OLF1) rest++;
|
|
if (!(np->features & FE_C10))
|
|
if (ss2 & ORF1) rest++;
|
|
}
|
|
|
|
/*
|
|
* Clear fifos.
|
|
*/
|
|
OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */
|
|
OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */
|
|
}
|
|
|
|
/*
|
|
* log the information
|
|
*/
|
|
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
|
|
printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
|
|
(unsigned) rest, (unsigned) delta);
|
|
|
|
/*
|
|
* try to find the interrupted script command,
|
|
* and the address at which to continue.
|
|
*/
|
|
vdsp = NULL;
|
|
nxtdsp = 0;
|
|
if (dsp > np->scripta_ba &&
|
|
dsp <= np->scripta_ba + np->scripta_sz) {
|
|
vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
|
|
nxtdsp = dsp;
|
|
}
|
|
else if (dsp > np->scriptb_ba &&
|
|
dsp <= np->scriptb_ba + np->scriptb_sz) {
|
|
vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
|
|
nxtdsp = dsp;
|
|
}
|
|
|
|
/*
|
|
* log the information
|
|
*/
|
|
if (DEBUG_FLAGS & DEBUG_PHASE) {
|
|
printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
|
|
cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
|
|
}
|
|
|
|
if (!vdsp) {
|
|
printf ("%s: interrupted SCRIPT address not found.\n",
|
|
sym_name (np));
|
|
goto reset_all;
|
|
}
|
|
|
|
if (!cp) {
|
|
printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
|
|
sym_name (np));
|
|
goto reset_all;
|
|
}
|
|
|
|
/*
|
|
* get old startaddress and old length.
|
|
*/
|
|
oadr = scr_to_cpu(vdsp[1]);
|
|
|
|
if (cmd & 0x10) { /* Table indirect */
|
|
tblp = (u32 *) ((char*) &cp->phys + oadr);
|
|
olen = scr_to_cpu(tblp[0]);
|
|
oadr = scr_to_cpu(tblp[1]);
|
|
} else {
|
|
tblp = (u32 *) 0;
|
|
olen = scr_to_cpu(vdsp[0]) & 0xffffff;
|
|
}
|
|
|
|
if (DEBUG_FLAGS & DEBUG_PHASE) {
|
|
printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
|
|
(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
|
|
tblp,
|
|
(unsigned) olen,
|
|
(unsigned) oadr);
|
|
}
|
|
|
|
/*
|
|
* check cmd against assumed interrupted script command.
|
|
* If dt data phase, the MOVE instruction hasn't bit 4 of
|
|
* the phase.
|
|
*/
|
|
if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
|
|
sym_print_addr(cp->cmd,
|
|
"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
|
|
cmd, scr_to_cpu(vdsp[0]) >> 24);
|
|
|
|
goto reset_all;
|
|
}
|
|
|
|
/*
|
|
* if old phase not dataphase, leave here.
|
|
*/
|
|
if (cmd & 2) {
|
|
sym_print_addr(cp->cmd,
|
|
"phase change %x-%x %d@%08x resid=%d.\n",
|
|
cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
|
|
(unsigned)oadr, (unsigned)rest);
|
|
goto unexpected_phase;
|
|
}
|
|
|
|
/*
|
|
* Choose the correct PM save area.
|
|
*
|
|
* Look at the PM_SAVE SCRIPT if you want to understand
|
|
* this stuff. The equivalent code is implemented in
|
|
* SCRIPTS for the 895A, 896 and 1010 that are able to
|
|
* handle PM from the SCRIPTS processor.
|
|
*/
|
|
hflags0 = INB(np, HF_PRT);
|
|
hflags = hflags0;
|
|
|
|
if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
|
|
if (hflags & HF_IN_PM0)
|
|
nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
|
|
else if (hflags & HF_IN_PM1)
|
|
nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
|
|
|
|
if (hflags & HF_DP_SAVED)
|
|
hflags ^= HF_ACT_PM;
|
|
}
|
|
|
|
if (!(hflags & HF_ACT_PM)) {
|
|
pm = &cp->phys.pm0;
|
|
newcmd = SCRIPTA_BA(np, pm0_data);
|
|
}
|
|
else {
|
|
pm = &cp->phys.pm1;
|
|
newcmd = SCRIPTA_BA(np, pm1_data);
|
|
}
|
|
|
|
hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
|
|
if (hflags != hflags0)
|
|
OUTB(np, HF_PRT, hflags);
|
|
|
|
/*
|
|
* fillin the phase mismatch context
|
|
*/
|
|
pm->sg.addr = cpu_to_scr(oadr + olen - rest);
|
|
pm->sg.size = cpu_to_scr(rest);
|
|
pm->ret = cpu_to_scr(nxtdsp);
|
|
|
|
/*
|
|
* If we have a SWIDE,
|
|
* - prepare the address to write the SWIDE from SCRIPTS,
|
|
* - compute the SCRIPTS address to restart from,
|
|
* - move current data pointer context by one byte.
|
|
*/
|
|
nxtdsp = SCRIPTA_BA(np, dispatch);
|
|
if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
|
|
(INB(np, nc_scntl2) & WSR)) {
|
|
u32 tmp;
|
|
|
|
/*
|
|
* Set up the table indirect for the MOVE
|
|
* of the residual byte and adjust the data
|
|
* pointer context.
|
|
*/
|
|
tmp = scr_to_cpu(pm->sg.addr);
|
|
cp->phys.wresid.addr = cpu_to_scr(tmp);
|
|
pm->sg.addr = cpu_to_scr(tmp + 1);
|
|
tmp = scr_to_cpu(pm->sg.size);
|
|
cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
|
|
pm->sg.size = cpu_to_scr(tmp - 1);
|
|
|
|
/*
|
|
* If only the residual byte is to be moved,
|
|
* no PM context is needed.
|
|
*/
|
|
if ((tmp&0xffffff) == 1)
|
|
newcmd = pm->ret;
|
|
|
|
/*
|
|
* Prepare the address of SCRIPTS that will
|
|
* move the residual byte to memory.
|
|
*/
|
|
nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
|
|
}
|
|
|
|
if (DEBUG_FLAGS & DEBUG_PHASE) {
|
|
sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
|
|
hflags0, hflags, newcmd,
|
|
(unsigned)scr_to_cpu(pm->sg.addr),
|
|
(unsigned)scr_to_cpu(pm->sg.size),
|
|
(unsigned)scr_to_cpu(pm->ret));
|
|
}
|
|
|
|
/*
|
|
* Restart the SCRIPTS processor.
|
|
*/
|
|
sym_set_script_dp (np, cp, newcmd);
|
|
OUTL_DSP(np, nxtdsp);
|
|
return;
|
|
|
|
/*
|
|
* Unexpected phase changes that occurs when the current phase
|
|
* is not a DATA IN or DATA OUT phase are due to error conditions.
|
|
* Such event may only happen when the SCRIPTS is using a
|
|
* multibyte SCSI MOVE.
|
|
*
|
|
* Phase change Some possible cause
|
|
*
|
|
* COMMAND --> MSG IN SCSI parity error detected by target.
|
|
* COMMAND --> STATUS Bad command or refused by target.
|
|
* MSG OUT --> MSG IN Message rejected by target.
|
|
* MSG OUT --> COMMAND Bogus target that discards extended
|
|
* negotiation messages.
|
|
*
|
|
* The code below does not care of the new phase and so
|
|
* trusts the target. Why to annoy it ?
|
|
* If the interrupted phase is COMMAND phase, we restart at
|
|
* dispatcher.
|
|
* If a target does not get all the messages after selection,
|
|
* the code assumes blindly that the target discards extended
|
|
* messages and clears the negotiation status.
|
|
* If the target does not want all our response to negotiation,
|
|
* we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
|
|
* bloat for such a should_not_happen situation).
|
|
* In all other situation, we reset the BUS.
|
|
* Are these assumptions reasonnable ? (Wait and see ...)
|
|
*/
|
|
unexpected_phase:
|
|
dsp -= 8;
|
|
nxtdsp = 0;
|
|
|
|
switch (cmd & 7) {
|
|
case 2: /* COMMAND phase */
|
|
nxtdsp = SCRIPTA_BA(np, dispatch);
|
|
break;
|
|
#if 0
|
|
case 3: /* STATUS phase */
|
|
nxtdsp = SCRIPTA_BA(np, dispatch);
|
|
break;
|
|
#endif
|
|
case 6: /* MSG OUT phase */
|
|
/*
|
|
* If the device may want to use untagged when we want
|
|
* tagged, we prepare an IDENTIFY without disc. granted,
|
|
* since we will not be able to handle reselect.
|
|
* Otherwise, we just don't care.
|
|
*/
|
|
if (dsp == SCRIPTA_BA(np, send_ident)) {
|
|
if (cp->tag != NO_TAG && olen - rest <= 3) {
|
|
cp->host_status = HS_BUSY;
|
|
np->msgout[0] = IDENTIFY(0, cp->lun);
|
|
nxtdsp = SCRIPTB_BA(np, ident_break_atn);
|
|
}
|
|
else
|
|
nxtdsp = SCRIPTB_BA(np, ident_break);
|
|
}
|
|
else if (dsp == SCRIPTB_BA(np, send_wdtr) ||
|
|
dsp == SCRIPTB_BA(np, send_sdtr) ||
|
|
dsp == SCRIPTB_BA(np, send_ppr)) {
|
|
nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
|
|
if (dsp == SCRIPTB_BA(np, send_ppr)) {
|
|
struct scsi_device *dev = cp->cmd->device;
|
|
dev->ppr = 0;
|
|
}
|
|
}
|
|
break;
|
|
#if 0
|
|
case 7: /* MSG IN phase */
|
|
nxtdsp = SCRIPTA_BA(np, clrack);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
if (nxtdsp) {
|
|
OUTL_DSP(np, nxtdsp);
|
|
return;
|
|
}
|
|
|
|
reset_all:
|
|
sym_start_reset(np);
|
|
}
|
|
|
|
/*
|
|
* chip interrupt handler
|
|
*
|
|
* In normal situations, interrupt conditions occur one at
|
|
* a time. But when something bad happens on the SCSI BUS,
|
|
* the chip may raise several interrupt flags before
|
|
* stopping and interrupting the CPU. The additionnal
|
|
* interrupt flags are stacked in some extra registers
|
|
* after the SIP and/or DIP flag has been raised in the
|
|
* ISTAT. After the CPU has read the interrupt condition
|
|
* flag from SIST or DSTAT, the chip unstacks the other
|
|
* interrupt flags and sets the corresponding bits in
|
|
* SIST or DSTAT. Since the chip starts stacking once the
|
|
* SIP or DIP flag is set, there is a small window of time
|
|
* where the stacking does not occur.
|
|
*
|
|
* Typically, multiple interrupt conditions may happen in
|
|
* the following situations:
|
|
*
|
|
* - SCSI parity error + Phase mismatch (PAR|MA)
|
|
* When an parity error is detected in input phase
|
|
* and the device switches to msg-in phase inside a
|
|
* block MOV.
|
|
* - SCSI parity error + Unexpected disconnect (PAR|UDC)
|
|
* When a stupid device does not want to handle the
|
|
* recovery of an SCSI parity error.
|
|
* - Some combinations of STO, PAR, UDC, ...
|
|
* When using non compliant SCSI stuff, when user is
|
|
* doing non compliant hot tampering on the BUS, when
|
|
* something really bad happens to a device, etc ...
|
|
*
|
|
* The heuristic suggested by SYMBIOS to handle
|
|
* multiple interrupts is to try unstacking all
|
|
* interrupts conditions and to handle them on some
|
|
* priority based on error severity.
|
|
* This will work when the unstacking has been
|
|
* successful, but we cannot be 100 % sure of that,
|
|
* since the CPU may have been faster to unstack than
|
|
* the chip is able to stack. Hmmm ... But it seems that
|
|
* such a situation is very unlikely to happen.
|
|
*
|
|
* If this happen, for example STO caught by the CPU
|
|
* then UDC happenning before the CPU have restarted
|
|
* the SCRIPTS, the driver may wrongly complete the
|
|
* same command on UDC, since the SCRIPTS didn't restart
|
|
* and the DSA still points to the same command.
|
|
* We avoid this situation by setting the DSA to an
|
|
* invalid value when the CCB is completed and before
|
|
* restarting the SCRIPTS.
|
|
*
|
|
* Another issue is that we need some section of our
|
|
* recovery procedures to be somehow uninterruptible but
|
|
* the SCRIPTS processor does not provides such a
|
|
* feature. For this reason, we handle recovery preferently
|
|
* from the C code and check against some SCRIPTS critical
|
|
* sections from the C code.
|
|
*
|
|
* Hopefully, the interrupt handling of the driver is now
|
|
* able to resist to weird BUS error conditions, but donnot
|
|
* ask me for any guarantee that it will never fail. :-)
|
|
* Use at your own decision and risk.
|
|
*/
|
|
|
|
void sym_interrupt (struct sym_hcb *np)
|
|
{
|
|
u_char istat, istatc;
|
|
u_char dstat;
|
|
u_short sist;
|
|
|
|
/*
|
|
* interrupt on the fly ?
|
|
* (SCRIPTS may still be running)
|
|
*
|
|
* A `dummy read' is needed to ensure that the
|
|
* clear of the INTF flag reaches the device
|
|
* and that posted writes are flushed to memory
|
|
* before the scanning of the DONE queue.
|
|
* Note that SCRIPTS also (dummy) read to memory
|
|
* prior to deliver the INTF interrupt condition.
|
|
*/
|
|
istat = INB(np, nc_istat);
|
|
if (istat & INTF) {
|
|
OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
|
|
istat = INB(np, nc_istat); /* DUMMY READ */
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
|
|
sym_wakeup_done(np);
|
|
}
|
|
|
|
if (!(istat & (SIP|DIP)))
|
|
return;
|
|
|
|
#if 0 /* We should never get this one */
|
|
if (istat & CABRT)
|
|
OUTB(np, nc_istat, CABRT);
|
|
#endif
|
|
|
|
/*
|
|
* PAR and MA interrupts may occur at the same time,
|
|
* and we need to know of both in order to handle
|
|
* this situation properly. We try to unstack SCSI
|
|
* interrupts for that reason. BTW, I dislike a LOT
|
|
* such a loop inside the interrupt routine.
|
|
* Even if DMA interrupt stacking is very unlikely to
|
|
* happen, we also try unstacking these ones, since
|
|
* this has no performance impact.
|
|
*/
|
|
sist = 0;
|
|
dstat = 0;
|
|
istatc = istat;
|
|
do {
|
|
if (istatc & SIP)
|
|
sist |= INW(np, nc_sist);
|
|
if (istatc & DIP)
|
|
dstat |= INB(np, nc_dstat);
|
|
istatc = INB(np, nc_istat);
|
|
istat |= istatc;
|
|
} while (istatc & (SIP|DIP));
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TINY)
|
|
printf ("<%d|%x:%x|%x:%x>",
|
|
(int)INB(np, nc_scr0),
|
|
dstat,sist,
|
|
(unsigned)INL(np, nc_dsp),
|
|
(unsigned)INL(np, nc_dbc));
|
|
/*
|
|
* On paper, a memory read barrier may be needed here to
|
|
* prevent out of order LOADs by the CPU from having
|
|
* prefetched stale data prior to DMA having occurred.
|
|
* And since we are paranoid ... :)
|
|
*/
|
|
MEMORY_READ_BARRIER();
|
|
|
|
/*
|
|
* First, interrupts we want to service cleanly.
|
|
*
|
|
* Phase mismatch (MA) is the most frequent interrupt
|
|
* for chip earlier than the 896 and so we have to service
|
|
* it as quickly as possible.
|
|
* A SCSI parity error (PAR) may be combined with a phase
|
|
* mismatch condition (MA).
|
|
* Programmed interrupts (SIR) are used to call the C code
|
|
* from SCRIPTS.
|
|
* The single step interrupt (SSI) is not used in this
|
|
* driver.
|
|
*/
|
|
if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
|
|
!(dstat & (MDPE|BF|ABRT|IID))) {
|
|
if (sist & PAR) sym_int_par (np, sist);
|
|
else if (sist & MA) sym_int_ma (np);
|
|
else if (dstat & SIR) sym_int_sir (np);
|
|
else if (dstat & SSI) OUTONB_STD();
|
|
else goto unknown_int;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now, interrupts that donnot happen in normal
|
|
* situations and that we may need to recover from.
|
|
*
|
|
* On SCSI RESET (RST), we reset everything.
|
|
* On SCSI BUS MODE CHANGE (SBMC), we complete all
|
|
* active CCBs with RESET status, prepare all devices
|
|
* for negotiating again and restart the SCRIPTS.
|
|
* On STO and UDC, we complete the CCB with the corres-
|
|
* ponding status and restart the SCRIPTS.
|
|
*/
|
|
if (sist & RST) {
|
|
printf("%s: SCSI BUS reset detected.\n", sym_name(np));
|
|
sym_start_up (np, 1);
|
|
return;
|
|
}
|
|
|
|
OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */
|
|
OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */
|
|
|
|
if (!(sist & (GEN|HTH|SGE)) &&
|
|
!(dstat & (MDPE|BF|ABRT|IID))) {
|
|
if (sist & SBMC) sym_int_sbmc (np);
|
|
else if (sist & STO) sym_int_sto (np);
|
|
else if (sist & UDC) sym_int_udc (np);
|
|
else goto unknown_int;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now, interrupts we are not able to recover cleanly.
|
|
*
|
|
* Log message for hard errors.
|
|
* Reset everything.
|
|
*/
|
|
|
|
sym_log_hard_error(np, sist, dstat);
|
|
|
|
if ((sist & (GEN|HTH|SGE)) ||
|
|
(dstat & (MDPE|BF|ABRT|IID))) {
|
|
sym_start_reset(np);
|
|
return;
|
|
}
|
|
|
|
unknown_int:
|
|
/*
|
|
* We just miss the cause of the interrupt. :(
|
|
* Print a message. The timeout will do the real work.
|
|
*/
|
|
printf( "%s: unknown interrupt(s) ignored, "
|
|
"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
|
|
sym_name(np), istat, dstat, sist);
|
|
}
|
|
|
|
/*
|
|
* Dequeue from the START queue all CCBs that match
|
|
* a given target/lun/task condition (-1 means all),
|
|
* and move them from the BUSY queue to the COMP queue
|
|
* with DID_SOFT_ERROR status condition.
|
|
* This function is used during error handling/recovery.
|
|
* It is called with SCRIPTS not running.
|
|
*/
|
|
static int
|
|
sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
|
|
{
|
|
int j;
|
|
struct sym_ccb *cp;
|
|
|
|
/*
|
|
* Make sure the starting index is within range.
|
|
*/
|
|
assert((i >= 0) && (i < 2*MAX_QUEUE));
|
|
|
|
/*
|
|
* Walk until end of START queue and dequeue every job
|
|
* that matches the target/lun/task condition.
|
|
*/
|
|
j = i;
|
|
while (i != np->squeueput) {
|
|
cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
|
|
assert(cp);
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/* Forget hints for IARB, they may be no longer relevant */
|
|
cp->host_flags &= ~HF_HINT_IARB;
|
|
#endif
|
|
if ((target == -1 || cp->target == target) &&
|
|
(lun == -1 || cp->lun == lun) &&
|
|
(task == -1 || cp->tag == task)) {
|
|
sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
|
|
}
|
|
else {
|
|
if (i != j)
|
|
np->squeue[j] = np->squeue[i];
|
|
if ((j += 2) >= MAX_QUEUE*2) j = 0;
|
|
}
|
|
if ((i += 2) >= MAX_QUEUE*2) i = 0;
|
|
}
|
|
if (i != j) /* Copy back the idle task if needed */
|
|
np->squeue[j] = np->squeue[i];
|
|
np->squeueput = j; /* Update our current start queue pointer */
|
|
|
|
return (i - j) / 2;
|
|
}
|
|
|
|
/*
|
|
* chip handler for bad SCSI status condition
|
|
*
|
|
* In case of bad SCSI status, we unqueue all the tasks
|
|
* currently queued to the controller but not yet started
|
|
* and then restart the SCRIPTS processor immediately.
|
|
*
|
|
* QUEUE FULL and BUSY conditions are handled the same way.
|
|
* Basically all the not yet started tasks are requeued in
|
|
* device queue and the queue is frozen until a completion.
|
|
*
|
|
* For CHECK CONDITION and COMMAND TERMINATED status, we use
|
|
* the CCB of the failed command to prepare a REQUEST SENSE
|
|
* SCSI command and queue it to the controller queue.
|
|
*
|
|
* SCRATCHA is assumed to have been loaded with STARTPOS
|
|
* before the SCRIPTS called the C code.
|
|
*/
|
|
static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
|
|
{
|
|
u32 startp;
|
|
u_char s_status = cp->ssss_status;
|
|
u_char h_flags = cp->host_flags;
|
|
int msglen;
|
|
int i;
|
|
|
|
/*
|
|
* Compute the index of the next job to start from SCRIPTS.
|
|
*/
|
|
i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
|
|
|
|
/*
|
|
* The last CCB queued used for IARB hint may be
|
|
* no longer relevant. Forget it.
|
|
*/
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
if (np->last_cp)
|
|
np->last_cp = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Now deal with the SCSI status.
|
|
*/
|
|
switch(s_status) {
|
|
case S_BUSY:
|
|
case S_QUEUE_FULL:
|
|
if (sym_verbose >= 2) {
|
|
sym_print_addr(cp->cmd, "%s\n",
|
|
s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
|
|
}
|
|
default: /* S_INT, S_INT_COND_MET, S_CONFLICT */
|
|
sym_complete_error (np, cp);
|
|
break;
|
|
case S_TERMINATED:
|
|
case S_CHECK_COND:
|
|
/*
|
|
* If we get an SCSI error when requesting sense, give up.
|
|
*/
|
|
if (h_flags & HF_SENSE) {
|
|
sym_complete_error (np, cp);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Dequeue all queued CCBs for that device not yet started,
|
|
* and restart the SCRIPTS processor immediately.
|
|
*/
|
|
sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
|
|
OUTL_DSP(np, SCRIPTA_BA(np, start));
|
|
|
|
/*
|
|
* Save some info of the actual IO.
|
|
* Compute the data residual.
|
|
*/
|
|
cp->sv_scsi_status = cp->ssss_status;
|
|
cp->sv_xerr_status = cp->xerr_status;
|
|
cp->sv_resid = sym_compute_residual(np, cp);
|
|
|
|
/*
|
|
* Prepare all needed data structures for
|
|
* requesting sense data.
|
|
*/
|
|
|
|
cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
|
|
msglen = 1;
|
|
|
|
/*
|
|
* If we are currently using anything different from
|
|
* async. 8 bit data transfers with that target,
|
|
* start a negotiation, since the device may want
|
|
* to report us a UNIT ATTENTION condition due to
|
|
* a cause we currently ignore, and we donnot want
|
|
* to be stuck with WIDE and/or SYNC data transfer.
|
|
*
|
|
* cp->nego_status is filled by sym_prepare_nego().
|
|
*/
|
|
cp->nego_status = 0;
|
|
msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
|
|
/*
|
|
* Message table indirect structure.
|
|
*/
|
|
cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2);
|
|
cp->phys.smsg.size = cpu_to_scr(msglen);
|
|
|
|
/*
|
|
* sense command
|
|
*/
|
|
cp->phys.cmd.addr = CCB_BA(cp, sensecmd);
|
|
cp->phys.cmd.size = cpu_to_scr(6);
|
|
|
|
/*
|
|
* patch requested size into sense command
|
|
*/
|
|
cp->sensecmd[0] = REQUEST_SENSE;
|
|
cp->sensecmd[1] = 0;
|
|
if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
|
|
cp->sensecmd[1] = cp->lun << 5;
|
|
cp->sensecmd[4] = SYM_SNS_BBUF_LEN;
|
|
cp->data_len = SYM_SNS_BBUF_LEN;
|
|
|
|
/*
|
|
* sense data
|
|
*/
|
|
memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
|
|
cp->phys.sense.addr = CCB_BA(cp, sns_bbuf);
|
|
cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN);
|
|
|
|
/*
|
|
* requeue the command.
|
|
*/
|
|
startp = SCRIPTB_BA(np, sdata_in);
|
|
|
|
cp->phys.head.savep = cpu_to_scr(startp);
|
|
cp->phys.head.lastp = cpu_to_scr(startp);
|
|
cp->startp = cpu_to_scr(startp);
|
|
cp->goalp = cpu_to_scr(startp + 16);
|
|
|
|
cp->host_xflags = 0;
|
|
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
|
|
cp->ssss_status = S_ILLEGAL;
|
|
cp->host_flags = (HF_SENSE|HF_DATA_IN);
|
|
cp->xerr_status = 0;
|
|
cp->extra_bytes = 0;
|
|
|
|
cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
|
|
|
|
/*
|
|
* Requeue the command.
|
|
*/
|
|
sym_put_start_queue(np, cp);
|
|
|
|
/*
|
|
* Give back to upper layer everything we have dequeued.
|
|
*/
|
|
sym_flush_comp_queue(np, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After a device has accepted some management message
|
|
* as BUS DEVICE RESET, ABORT TASK, etc ..., or when
|
|
* a device signals a UNIT ATTENTION condition, some
|
|
* tasks are thrown away by the device. We are required
|
|
* to reflect that on our tasks list since the device
|
|
* will never complete these tasks.
|
|
*
|
|
* This function move from the BUSY queue to the COMP
|
|
* queue all disconnected CCBs for a given target that
|
|
* match the following criteria:
|
|
* - lun=-1 means any logical UNIT otherwise a given one.
|
|
* - task=-1 means any task, otherwise a given one.
|
|
*/
|
|
int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
|
|
{
|
|
SYM_QUEHEAD qtmp, *qp;
|
|
int i = 0;
|
|
struct sym_ccb *cp;
|
|
|
|
/*
|
|
* Move the entire BUSY queue to our temporary queue.
|
|
*/
|
|
sym_que_init(&qtmp);
|
|
sym_que_splice(&np->busy_ccbq, &qtmp);
|
|
sym_que_init(&np->busy_ccbq);
|
|
|
|
/*
|
|
* Put all CCBs that matches our criteria into
|
|
* the COMP queue and put back other ones into
|
|
* the BUSY queue.
|
|
*/
|
|
while ((qp = sym_remque_head(&qtmp)) != 0) {
|
|
struct scsi_cmnd *cmd;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
cmd = cp->cmd;
|
|
if (cp->host_status != HS_DISCONNECT ||
|
|
cp->target != target ||
|
|
(lun != -1 && cp->lun != lun) ||
|
|
(task != -1 &&
|
|
(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
|
|
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
|
|
continue;
|
|
}
|
|
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
|
|
|
|
/* Preserve the software timeout condition */
|
|
if (sym_get_cam_status(cmd) != DID_TIME_OUT)
|
|
sym_set_cam_status(cmd, cam_status);
|
|
++i;
|
|
#if 0
|
|
printf("XXXX TASK @%p CLEARED\n", cp);
|
|
#endif
|
|
}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* chip handler for TASKS recovery
|
|
*
|
|
* We cannot safely abort a command, while the SCRIPTS
|
|
* processor is running, since we just would be in race
|
|
* with it.
|
|
*
|
|
* As long as we have tasks to abort, we keep the SEM
|
|
* bit set in the ISTAT. When this bit is set, the
|
|
* SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
|
|
* each time it enters the scheduler.
|
|
*
|
|
* If we have to reset a target, clear tasks of a unit,
|
|
* or to perform the abort of a disconnected job, we
|
|
* restart the SCRIPTS for selecting the target. Once
|
|
* selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
|
|
* If it loses arbitration, the SCRIPTS will interrupt again
|
|
* the next time it will enter its scheduler, and so on ...
|
|
*
|
|
* On SIR_TARGET_SELECTED, we scan for the more
|
|
* appropriate thing to do:
|
|
*
|
|
* - If nothing, we just sent a M_ABORT message to the
|
|
* target to get rid of the useless SCSI bus ownership.
|
|
* According to the specs, no tasks shall be affected.
|
|
* - If the target is to be reset, we send it a M_RESET
|
|
* message.
|
|
* - If a logical UNIT is to be cleared , we send the
|
|
* IDENTIFY(lun) + M_ABORT.
|
|
* - If an untagged task is to be aborted, we send the
|
|
* IDENTIFY(lun) + M_ABORT.
|
|
* - If a tagged task is to be aborted, we send the
|
|
* IDENTIFY(lun) + task attributes + M_ABORT_TAG.
|
|
*
|
|
* Once our 'kiss of death' :) message has been accepted
|
|
* by the target, the SCRIPTS interrupts again
|
|
* (SIR_ABORT_SENT). On this interrupt, we complete
|
|
* all the CCBs that should have been aborted by the
|
|
* target according to our message.
|
|
*/
|
|
static void sym_sir_task_recovery(struct sym_hcb *np, int num)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
struct sym_ccb *cp;
|
|
struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
|
|
struct scsi_target *starget;
|
|
int target=-1, lun=-1, task;
|
|
int i, k;
|
|
|
|
switch(num) {
|
|
/*
|
|
* The SCRIPTS processor stopped before starting
|
|
* the next command in order to allow us to perform
|
|
* some task recovery.
|
|
*/
|
|
case SIR_SCRIPT_STOPPED:
|
|
/*
|
|
* Do we have any target to reset or unit to clear ?
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
tp = &np->target[i];
|
|
if (tp->to_reset ||
|
|
(tp->lun0p && tp->lun0p->to_clear)) {
|
|
target = i;
|
|
break;
|
|
}
|
|
if (!tp->lunmp)
|
|
continue;
|
|
for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
|
|
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
|
|
target = i;
|
|
break;
|
|
}
|
|
}
|
|
if (target != -1)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If not, walk the busy queue for any
|
|
* disconnected CCB to be aborted.
|
|
*/
|
|
if (target == -1) {
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
|
|
if (cp->host_status != HS_DISCONNECT)
|
|
continue;
|
|
if (cp->to_abort) {
|
|
target = cp->target;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If some target is to be selected,
|
|
* prepare and start the selection.
|
|
*/
|
|
if (target != -1) {
|
|
tp = &np->target[target];
|
|
np->abrt_sel.sel_id = target;
|
|
np->abrt_sel.sel_scntl3 = tp->head.wval;
|
|
np->abrt_sel.sel_sxfer = tp->head.sval;
|
|
OUTL(np, nc_dsa, np->hcb_ba);
|
|
OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Now look for a CCB to abort that haven't started yet.
|
|
* Btw, the SCRIPTS processor is still stopped, so
|
|
* we are not in race.
|
|
*/
|
|
i = 0;
|
|
cp = NULL;
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp->host_status != HS_BUSY &&
|
|
cp->host_status != HS_NEGOTIATE)
|
|
continue;
|
|
if (!cp->to_abort)
|
|
continue;
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If we are using IMMEDIATE ARBITRATION, we donnot
|
|
* want to cancel the last queued CCB, since the
|
|
* SCRIPTS may have anticipated the selection.
|
|
*/
|
|
if (cp == np->last_cp) {
|
|
cp->to_abort = 0;
|
|
continue;
|
|
}
|
|
#endif
|
|
i = 1; /* Means we have found some */
|
|
break;
|
|
}
|
|
if (!i) {
|
|
/*
|
|
* We are done, so we donnot need
|
|
* to synchronize with the SCRIPTS anylonger.
|
|
* Remove the SEM flag from the ISTAT.
|
|
*/
|
|
np->istat_sem = 0;
|
|
OUTB(np, nc_istat, SIGP);
|
|
break;
|
|
}
|
|
/*
|
|
* Compute index of next position in the start
|
|
* queue the SCRIPTS intends to start and dequeue
|
|
* all CCBs for that device that haven't been started.
|
|
*/
|
|
i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
|
|
i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
|
|
|
|
/*
|
|
* Make sure at least our IO to abort has been dequeued.
|
|
*/
|
|
#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
|
|
#else
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
|
|
#endif
|
|
/*
|
|
* Keep track in cam status of the reason of the abort.
|
|
*/
|
|
if (cp->to_abort == 2)
|
|
sym_set_cam_status(cp->cmd, DID_TIME_OUT);
|
|
else
|
|
sym_set_cam_status(cp->cmd, DID_ABORT);
|
|
|
|
/*
|
|
* Complete with error everything that we have dequeued.
|
|
*/
|
|
sym_flush_comp_queue(np, 0);
|
|
break;
|
|
/*
|
|
* The SCRIPTS processor has selected a target
|
|
* we may have some manual recovery to perform for.
|
|
*/
|
|
case SIR_TARGET_SELECTED:
|
|
target = INB(np, nc_sdid) & 0xf;
|
|
tp = &np->target[target];
|
|
|
|
np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
|
|
|
|
/*
|
|
* If the target is to be reset, prepare a
|
|
* M_RESET message and clear the to_reset flag
|
|
* since we donnot expect this operation to fail.
|
|
*/
|
|
if (tp->to_reset) {
|
|
np->abrt_msg[0] = M_RESET;
|
|
np->abrt_tbl.size = 1;
|
|
tp->to_reset = 0;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, look for some logical unit to be cleared.
|
|
*/
|
|
if (tp->lun0p && tp->lun0p->to_clear)
|
|
lun = 0;
|
|
else if (tp->lunmp) {
|
|
for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
|
|
if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
|
|
lun = k;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a logical unit is to be cleared, prepare
|
|
* an IDENTIFY(lun) + ABORT MESSAGE.
|
|
*/
|
|
if (lun != -1) {
|
|
struct sym_lcb *lp = sym_lp(tp, lun);
|
|
lp->to_clear = 0; /* We don't expect to fail here */
|
|
np->abrt_msg[0] = IDENTIFY(0, lun);
|
|
np->abrt_msg[1] = M_ABORT;
|
|
np->abrt_tbl.size = 2;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, look for some disconnected job to
|
|
* abort for this target.
|
|
*/
|
|
i = 0;
|
|
cp = NULL;
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp->host_status != HS_DISCONNECT)
|
|
continue;
|
|
if (cp->target != target)
|
|
continue;
|
|
if (!cp->to_abort)
|
|
continue;
|
|
i = 1; /* Means we have some */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we have none, probably since the device has
|
|
* completed the command before we won abitration,
|
|
* send a M_ABORT message without IDENTIFY.
|
|
* According to the specs, the device must just
|
|
* disconnect the BUS and not abort any task.
|
|
*/
|
|
if (!i) {
|
|
np->abrt_msg[0] = M_ABORT;
|
|
np->abrt_tbl.size = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have some task to abort.
|
|
* Set the IDENTIFY(lun)
|
|
*/
|
|
np->abrt_msg[0] = IDENTIFY(0, cp->lun);
|
|
|
|
/*
|
|
* If we want to abort an untagged command, we
|
|
* will send a IDENTIFY + M_ABORT.
|
|
* Otherwise (tagged command), we will send
|
|
* a IDENTITFY + task attributes + ABORT TAG.
|
|
*/
|
|
if (cp->tag == NO_TAG) {
|
|
np->abrt_msg[1] = M_ABORT;
|
|
np->abrt_tbl.size = 2;
|
|
} else {
|
|
np->abrt_msg[1] = cp->scsi_smsg[1];
|
|
np->abrt_msg[2] = cp->scsi_smsg[2];
|
|
np->abrt_msg[3] = M_ABORT_TAG;
|
|
np->abrt_tbl.size = 4;
|
|
}
|
|
/*
|
|
* Keep track of software timeout condition, since the
|
|
* peripheral driver may not count retries on abort
|
|
* conditions not due to timeout.
|
|
*/
|
|
if (cp->to_abort == 2)
|
|
sym_set_cam_status(cp->cmd, DID_TIME_OUT);
|
|
cp->to_abort = 0; /* We donnot expect to fail here */
|
|
break;
|
|
|
|
/*
|
|
* The target has accepted our message and switched
|
|
* to BUS FREE phase as we expected.
|
|
*/
|
|
case SIR_ABORT_SENT:
|
|
target = INB(np, nc_sdid) & 0xf;
|
|
tp = &np->target[target];
|
|
starget = tp->starget;
|
|
|
|
/*
|
|
** If we didn't abort anything, leave here.
|
|
*/
|
|
if (np->abrt_msg[0] == M_ABORT)
|
|
break;
|
|
|
|
/*
|
|
* If we sent a M_RESET, then a hardware reset has
|
|
* been performed by the target.
|
|
* - Reset everything to async 8 bit
|
|
* - Tell ourself to negotiate next time :-)
|
|
* - Prepare to clear all disconnected CCBs for
|
|
* this target from our task list (lun=task=-1)
|
|
*/
|
|
lun = -1;
|
|
task = -1;
|
|
if (np->abrt_msg[0] == M_RESET) {
|
|
tp->head.sval = 0;
|
|
tp->head.wval = np->rv_scntl3;
|
|
tp->head.uval = 0;
|
|
spi_period(starget) = 0;
|
|
spi_offset(starget) = 0;
|
|
spi_width(starget) = 0;
|
|
spi_iu(starget) = 0;
|
|
spi_dt(starget) = 0;
|
|
spi_qas(starget) = 0;
|
|
tp->tgoal.check_nego = 1;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, check for the LUN and TASK(s)
|
|
* concerned by the cancelation.
|
|
* If it is not ABORT_TAG then it is CLEAR_QUEUE
|
|
* or an ABORT message :-)
|
|
*/
|
|
else {
|
|
lun = np->abrt_msg[0] & 0x3f;
|
|
if (np->abrt_msg[1] == M_ABORT_TAG)
|
|
task = np->abrt_msg[2];
|
|
}
|
|
|
|
/*
|
|
* Complete all the CCBs the device should have
|
|
* aborted due to our 'kiss of death' message.
|
|
*/
|
|
i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
|
|
sym_dequeue_from_squeue(np, i, target, lun, -1);
|
|
sym_clear_tasks(np, DID_ABORT, target, lun, task);
|
|
sym_flush_comp_queue(np, 0);
|
|
|
|
/*
|
|
* If we sent a BDR, make upper layer aware of that.
|
|
*/
|
|
if (np->abrt_msg[0] == M_RESET)
|
|
sym_xpt_async_sent_bdr(np, target);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Print to the log the message we intend to send.
|
|
*/
|
|
if (num == SIR_TARGET_SELECTED) {
|
|
dev_info(&tp->starget->dev, "control msgout:");
|
|
sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
|
|
np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
|
|
}
|
|
|
|
/*
|
|
* Let the SCRIPTS processor continue.
|
|
*/
|
|
OUTONB_STD();
|
|
}
|
|
|
|
/*
|
|
* Gerard's alchemy:) that deals with with the data
|
|
* pointer for both MDP and the residual calculation.
|
|
*
|
|
* I didn't want to bloat the code by more than 200
|
|
* lines for the handling of both MDP and the residual.
|
|
* This has been achieved by using a data pointer
|
|
* representation consisting in an index in the data
|
|
* array (dp_sg) and a negative offset (dp_ofs) that
|
|
* have the following meaning:
|
|
*
|
|
* - dp_sg = SYM_CONF_MAX_SG
|
|
* we are at the end of the data script.
|
|
* - dp_sg < SYM_CONF_MAX_SG
|
|
* dp_sg points to the next entry of the scatter array
|
|
* we want to transfer.
|
|
* - dp_ofs < 0
|
|
* dp_ofs represents the residual of bytes of the
|
|
* previous entry scatter entry we will send first.
|
|
* - dp_ofs = 0
|
|
* no residual to send first.
|
|
*
|
|
* The function sym_evaluate_dp() accepts an arbitray
|
|
* offset (basically from the MDP message) and returns
|
|
* the corresponding values of dp_sg and dp_ofs.
|
|
*/
|
|
|
|
static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
|
|
{
|
|
u32 dp_scr;
|
|
int dp_ofs, dp_sg, dp_sgmin;
|
|
int tmp;
|
|
struct sym_pmc *pm;
|
|
|
|
/*
|
|
* Compute the resulted data pointer in term of a script
|
|
* address within some DATA script and a signed byte offset.
|
|
*/
|
|
dp_scr = scr;
|
|
dp_ofs = *ofs;
|
|
if (dp_scr == SCRIPTA_BA(np, pm0_data))
|
|
pm = &cp->phys.pm0;
|
|
else if (dp_scr == SCRIPTA_BA(np, pm1_data))
|
|
pm = &cp->phys.pm1;
|
|
else
|
|
pm = NULL;
|
|
|
|
if (pm) {
|
|
dp_scr = scr_to_cpu(pm->ret);
|
|
dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
|
|
}
|
|
|
|
/*
|
|
* If we are auto-sensing, then we are done.
|
|
*/
|
|
if (cp->host_flags & HF_SENSE) {
|
|
*ofs = dp_ofs;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deduce the index of the sg entry.
|
|
* Keep track of the index of the first valid entry.
|
|
* If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
|
|
* end of the data.
|
|
*/
|
|
tmp = scr_to_cpu(cp->goalp);
|
|
dp_sg = SYM_CONF_MAX_SG;
|
|
if (dp_scr != tmp)
|
|
dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
|
|
dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
|
|
|
|
/*
|
|
* Move to the sg entry the data pointer belongs to.
|
|
*
|
|
* If we are inside the data area, we expect result to be:
|
|
*
|
|
* Either,
|
|
* dp_ofs = 0 and dp_sg is the index of the sg entry
|
|
* the data pointer belongs to (or the end of the data)
|
|
* Or,
|
|
* dp_ofs < 0 and dp_sg is the index of the sg entry
|
|
* the data pointer belongs to + 1.
|
|
*/
|
|
if (dp_ofs < 0) {
|
|
int n;
|
|
while (dp_sg > dp_sgmin) {
|
|
--dp_sg;
|
|
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
|
|
n = dp_ofs + (tmp & 0xffffff);
|
|
if (n > 0) {
|
|
++dp_sg;
|
|
break;
|
|
}
|
|
dp_ofs = n;
|
|
}
|
|
}
|
|
else if (dp_ofs > 0) {
|
|
while (dp_sg < SYM_CONF_MAX_SG) {
|
|
tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
|
|
dp_ofs -= (tmp & 0xffffff);
|
|
++dp_sg;
|
|
if (dp_ofs <= 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make sure the data pointer is inside the data area.
|
|
* If not, return some error.
|
|
*/
|
|
if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
|
|
goto out_err;
|
|
else if (dp_sg > SYM_CONF_MAX_SG ||
|
|
(dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
|
|
goto out_err;
|
|
|
|
/*
|
|
* Save the extreme pointer if needed.
|
|
*/
|
|
if (dp_sg > cp->ext_sg ||
|
|
(dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
|
|
cp->ext_sg = dp_sg;
|
|
cp->ext_ofs = dp_ofs;
|
|
}
|
|
|
|
/*
|
|
* Return data.
|
|
*/
|
|
*ofs = dp_ofs;
|
|
return dp_sg;
|
|
|
|
out_err:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* chip handler for MODIFY DATA POINTER MESSAGE
|
|
*
|
|
* We also call this function on IGNORE WIDE RESIDUE
|
|
* messages that do not match a SWIDE full condition.
|
|
* Btw, we assume in that situation that such a message
|
|
* is equivalent to a MODIFY DATA POINTER (offset=-1).
|
|
*/
|
|
|
|
static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
|
|
{
|
|
int dp_ofs = ofs;
|
|
u32 dp_scr = sym_get_script_dp (np, cp);
|
|
u32 dp_ret;
|
|
u32 tmp;
|
|
u_char hflags;
|
|
int dp_sg;
|
|
struct sym_pmc *pm;
|
|
|
|
/*
|
|
* Not supported for auto-sense.
|
|
*/
|
|
if (cp->host_flags & HF_SENSE)
|
|
goto out_reject;
|
|
|
|
/*
|
|
* Apply our alchemy:) (see comments in sym_evaluate_dp()),
|
|
* to the resulted data pointer.
|
|
*/
|
|
dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
|
|
if (dp_sg < 0)
|
|
goto out_reject;
|
|
|
|
/*
|
|
* And our alchemy:) allows to easily calculate the data
|
|
* script address we want to return for the next data phase.
|
|
*/
|
|
dp_ret = cpu_to_scr(cp->goalp);
|
|
dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
|
|
|
|
/*
|
|
* If offset / scatter entry is zero we donnot need
|
|
* a context for the new current data pointer.
|
|
*/
|
|
if (dp_ofs == 0) {
|
|
dp_scr = dp_ret;
|
|
goto out_ok;
|
|
}
|
|
|
|
/*
|
|
* Get a context for the new current data pointer.
|
|
*/
|
|
hflags = INB(np, HF_PRT);
|
|
|
|
if (hflags & HF_DP_SAVED)
|
|
hflags ^= HF_ACT_PM;
|
|
|
|
if (!(hflags & HF_ACT_PM)) {
|
|
pm = &cp->phys.pm0;
|
|
dp_scr = SCRIPTA_BA(np, pm0_data);
|
|
}
|
|
else {
|
|
pm = &cp->phys.pm1;
|
|
dp_scr = SCRIPTA_BA(np, pm1_data);
|
|
}
|
|
|
|
hflags &= ~(HF_DP_SAVED);
|
|
|
|
OUTB(np, HF_PRT, hflags);
|
|
|
|
/*
|
|
* Set up the new current data pointer.
|
|
* ofs < 0 there, and for the next data phase, we
|
|
* want to transfer part of the data of the sg entry
|
|
* corresponding to index dp_sg-1 prior to returning
|
|
* to the main data script.
|
|
*/
|
|
pm->ret = cpu_to_scr(dp_ret);
|
|
tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
|
|
tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
|
|
pm->sg.addr = cpu_to_scr(tmp);
|
|
pm->sg.size = cpu_to_scr(-dp_ofs);
|
|
|
|
out_ok:
|
|
sym_set_script_dp (np, cp, dp_scr);
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
return;
|
|
|
|
out_reject:
|
|
OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
|
|
}
|
|
|
|
|
|
/*
|
|
* chip calculation of the data residual.
|
|
*
|
|
* As I used to say, the requirement of data residual
|
|
* in SCSI is broken, useless and cannot be achieved
|
|
* without huge complexity.
|
|
* But most OSes and even the official CAM require it.
|
|
* When stupidity happens to be so widely spread inside
|
|
* a community, it gets hard to convince.
|
|
*
|
|
* Anyway, I don't care, since I am not going to use
|
|
* any software that considers this data residual as
|
|
* a relevant information. :)
|
|
*/
|
|
|
|
int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
|
|
{
|
|
int dp_sg, dp_sgmin, resid = 0;
|
|
int dp_ofs = 0;
|
|
|
|
/*
|
|
* Check for some data lost or just thrown away.
|
|
* We are not required to be quite accurate in this
|
|
* situation. Btw, if we are odd for output and the
|
|
* device claims some more data, it may well happen
|
|
* than our residual be zero. :-)
|
|
*/
|
|
if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
|
|
if (cp->xerr_status & XE_EXTRA_DATA)
|
|
resid -= cp->extra_bytes;
|
|
if (cp->xerr_status & XE_SODL_UNRUN)
|
|
++resid;
|
|
if (cp->xerr_status & XE_SWIDE_OVRUN)
|
|
--resid;
|
|
}
|
|
|
|
/*
|
|
* If all data has been transferred,
|
|
* there is no residual.
|
|
*/
|
|
if (cp->phys.head.lastp == cp->goalp)
|
|
return resid;
|
|
|
|
/*
|
|
* If no data transfer occurs, or if the data
|
|
* pointer is weird, return full residual.
|
|
*/
|
|
if (cp->startp == cp->phys.head.lastp ||
|
|
sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
|
|
&dp_ofs) < 0) {
|
|
return cp->data_len;
|
|
}
|
|
|
|
/*
|
|
* If we were auto-sensing, then we are done.
|
|
*/
|
|
if (cp->host_flags & HF_SENSE) {
|
|
return -dp_ofs;
|
|
}
|
|
|
|
/*
|
|
* We are now full comfortable in the computation
|
|
* of the data residual (2's complement).
|
|
*/
|
|
dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
|
|
resid = -cp->ext_ofs;
|
|
for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
|
|
u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
|
|
resid += (tmp & 0xffffff);
|
|
}
|
|
|
|
resid -= cp->odd_byte_adjustment;
|
|
|
|
/*
|
|
* Hopefully, the result is not too wrong.
|
|
*/
|
|
return resid;
|
|
}
|
|
|
|
/*
|
|
* Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
|
|
*
|
|
* When we try to negotiate, we append the negotiation message
|
|
* to the identify and (maybe) simple tag message.
|
|
* The host status field is set to HS_NEGOTIATE to mark this
|
|
* situation.
|
|
*
|
|
* If the target doesn't answer this message immediately
|
|
* (as required by the standard), the SIR_NEGO_FAILED interrupt
|
|
* will be raised eventually.
|
|
* The handler removes the HS_NEGOTIATE status, and sets the
|
|
* negotiated value to the default (async / nowide).
|
|
*
|
|
* If we receive a matching answer immediately, we check it
|
|
* for validity, and set the values.
|
|
*
|
|
* If we receive a Reject message immediately, we assume the
|
|
* negotiation has failed, and fall back to standard values.
|
|
*
|
|
* If we receive a negotiation message while not in HS_NEGOTIATE
|
|
* state, it's a target initiated negotiation. We prepare a
|
|
* (hopefully) valid answer, set our parameters, and send back
|
|
* this answer to the target.
|
|
*
|
|
* If the target doesn't fetch the answer (no message out phase),
|
|
* we assume the negotiation has failed, and fall back to default
|
|
* settings (SIR_NEGO_PROTO interrupt).
|
|
*
|
|
* When we set the values, we adjust them in all ccbs belonging
|
|
* to this target, in the controller's register, and in the "phys"
|
|
* field of the controller's struct sym_hcb.
|
|
*/
|
|
|
|
/*
|
|
* chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
|
|
*/
|
|
static int
|
|
sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
|
|
{
|
|
int target = cp->target;
|
|
u_char chg, ofs, per, fak, div;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, target, "sync msgin", np->msgin);
|
|
}
|
|
|
|
/*
|
|
* Get requested values.
|
|
*/
|
|
chg = 0;
|
|
per = np->msgin[3];
|
|
ofs = np->msgin[4];
|
|
|
|
/*
|
|
* Check values against our limits.
|
|
*/
|
|
if (ofs) {
|
|
if (ofs > np->maxoffs)
|
|
{chg = 1; ofs = np->maxoffs;}
|
|
}
|
|
|
|
if (ofs) {
|
|
if (per < np->minsync)
|
|
{chg = 1; per = np->minsync;}
|
|
}
|
|
|
|
/*
|
|
* Get new chip synchronous parameters value.
|
|
*/
|
|
div = fak = 0;
|
|
if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
|
|
goto reject_it;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_addr(cp->cmd,
|
|
"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
|
|
ofs, per, div, fak, chg);
|
|
}
|
|
|
|
/*
|
|
* If it was an answer we want to change,
|
|
* then it isn't acceptable. Reject it.
|
|
*/
|
|
if (!req && chg)
|
|
goto reject_it;
|
|
|
|
/*
|
|
* Apply new values.
|
|
*/
|
|
sym_setsync (np, target, ofs, per, div, fak);
|
|
|
|
/*
|
|
* It was an answer. We are done.
|
|
*/
|
|
if (!req)
|
|
return 0;
|
|
|
|
/*
|
|
* It was a request. Prepare an answer message.
|
|
*/
|
|
spi_populate_sync_msg(np->msgout, per, ofs);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, target, "sync msgout", np->msgout);
|
|
}
|
|
|
|
np->msgin [0] = M_NOOP;
|
|
|
|
return 0;
|
|
|
|
reject_it:
|
|
sym_setsync (np, target, 0, 0, 0, 0);
|
|
return -1;
|
|
}
|
|
|
|
static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
|
|
{
|
|
int req = 1;
|
|
int result;
|
|
|
|
/*
|
|
* Request or answer ?
|
|
*/
|
|
if (INB(np, HS_PRT) == HS_NEGOTIATE) {
|
|
OUTB(np, HS_PRT, HS_BUSY);
|
|
if (cp->nego_status && cp->nego_status != NS_SYNC)
|
|
goto reject_it;
|
|
req = 0;
|
|
}
|
|
|
|
/*
|
|
* Check and apply new values.
|
|
*/
|
|
result = sym_sync_nego_check(np, req, cp);
|
|
if (result) /* Not acceptable, reject it */
|
|
goto reject_it;
|
|
if (req) { /* Was a request, send response. */
|
|
cp->nego_status = NS_SYNC;
|
|
OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
|
|
}
|
|
else /* Was a response, we are done. */
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
return;
|
|
|
|
reject_it:
|
|
OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
|
|
}
|
|
|
|
/*
|
|
* chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
|
|
*/
|
|
static int
|
|
sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
|
|
{
|
|
struct sym_tcb *tp = &np->target[target];
|
|
unsigned char fak, div;
|
|
int dt, chg = 0;
|
|
|
|
unsigned char per = np->msgin[3];
|
|
unsigned char ofs = np->msgin[5];
|
|
unsigned char wide = np->msgin[6];
|
|
unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
|
|
}
|
|
|
|
/*
|
|
* Check values against our limits.
|
|
*/
|
|
if (wide > np->maxwide) {
|
|
chg = 1;
|
|
wide = np->maxwide;
|
|
}
|
|
if (!wide || !(np->features & FE_U3EN))
|
|
opts = 0;
|
|
|
|
if (opts != (np->msgin[7] & PPR_OPT_MASK))
|
|
chg = 1;
|
|
|
|
dt = opts & PPR_OPT_DT;
|
|
|
|
if (ofs) {
|
|
unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
|
|
if (ofs > maxoffs) {
|
|
chg = 1;
|
|
ofs = maxoffs;
|
|
}
|
|
}
|
|
|
|
if (ofs) {
|
|
unsigned char minsync = dt ? np->minsync_dt : np->minsync;
|
|
if (per < minsync) {
|
|
chg = 1;
|
|
per = minsync;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get new chip synchronous parameters value.
|
|
*/
|
|
div = fak = 0;
|
|
if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
|
|
goto reject_it;
|
|
|
|
/*
|
|
* If it was an answer we want to change,
|
|
* then it isn't acceptable. Reject it.
|
|
*/
|
|
if (!req && chg)
|
|
goto reject_it;
|
|
|
|
/*
|
|
* Apply new values.
|
|
*/
|
|
sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
|
|
|
|
/*
|
|
* It was an answer. We are done.
|
|
*/
|
|
if (!req)
|
|
return 0;
|
|
|
|
/*
|
|
* It was a request. Prepare an answer message.
|
|
*/
|
|
spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
|
|
}
|
|
|
|
np->msgin [0] = M_NOOP;
|
|
|
|
return 0;
|
|
|
|
reject_it:
|
|
sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
|
|
/*
|
|
* If it is a device response that should result in
|
|
* ST, we may want to try a legacy negotiation later.
|
|
*/
|
|
if (!req && !opts) {
|
|
tp->tgoal.period = per;
|
|
tp->tgoal.offset = ofs;
|
|
tp->tgoal.width = wide;
|
|
tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
|
|
tp->tgoal.check_nego = 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
|
|
{
|
|
int req = 1;
|
|
int result;
|
|
|
|
/*
|
|
* Request or answer ?
|
|
*/
|
|
if (INB(np, HS_PRT) == HS_NEGOTIATE) {
|
|
OUTB(np, HS_PRT, HS_BUSY);
|
|
if (cp->nego_status && cp->nego_status != NS_PPR)
|
|
goto reject_it;
|
|
req = 0;
|
|
}
|
|
|
|
/*
|
|
* Check and apply new values.
|
|
*/
|
|
result = sym_ppr_nego_check(np, req, cp->target);
|
|
if (result) /* Not acceptable, reject it */
|
|
goto reject_it;
|
|
if (req) { /* Was a request, send response. */
|
|
cp->nego_status = NS_PPR;
|
|
OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
|
|
}
|
|
else /* Was a response, we are done. */
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
return;
|
|
|
|
reject_it:
|
|
OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
|
|
}
|
|
|
|
/*
|
|
* chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
|
|
*/
|
|
static int
|
|
sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
|
|
{
|
|
int target = cp->target;
|
|
u_char chg, wide;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, target, "wide msgin", np->msgin);
|
|
}
|
|
|
|
/*
|
|
* Get requested values.
|
|
*/
|
|
chg = 0;
|
|
wide = np->msgin[3];
|
|
|
|
/*
|
|
* Check values against our limits.
|
|
*/
|
|
if (wide > np->maxwide) {
|
|
chg = 1;
|
|
wide = np->maxwide;
|
|
}
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
|
|
wide, chg);
|
|
}
|
|
|
|
/*
|
|
* If it was an answer we want to change,
|
|
* then it isn't acceptable. Reject it.
|
|
*/
|
|
if (!req && chg)
|
|
goto reject_it;
|
|
|
|
/*
|
|
* Apply new values.
|
|
*/
|
|
sym_setwide (np, target, wide);
|
|
|
|
/*
|
|
* It was an answer. We are done.
|
|
*/
|
|
if (!req)
|
|
return 0;
|
|
|
|
/*
|
|
* It was a request. Prepare an answer message.
|
|
*/
|
|
spi_populate_width_msg(np->msgout, wide);
|
|
|
|
np->msgin [0] = M_NOOP;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, target, "wide msgout", np->msgout);
|
|
}
|
|
|
|
return 0;
|
|
|
|
reject_it:
|
|
return -1;
|
|
}
|
|
|
|
static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
|
|
{
|
|
int req = 1;
|
|
int result;
|
|
|
|
/*
|
|
* Request or answer ?
|
|
*/
|
|
if (INB(np, HS_PRT) == HS_NEGOTIATE) {
|
|
OUTB(np, HS_PRT, HS_BUSY);
|
|
if (cp->nego_status && cp->nego_status != NS_WIDE)
|
|
goto reject_it;
|
|
req = 0;
|
|
}
|
|
|
|
/*
|
|
* Check and apply new values.
|
|
*/
|
|
result = sym_wide_nego_check(np, req, cp);
|
|
if (result) /* Not acceptable, reject it */
|
|
goto reject_it;
|
|
if (req) { /* Was a request, send response. */
|
|
cp->nego_status = NS_WIDE;
|
|
OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
|
|
} else { /* Was a response. */
|
|
/*
|
|
* Negotiate for SYNC immediately after WIDE response.
|
|
* This allows to negotiate for both WIDE and SYNC on
|
|
* a single SCSI command (Suggested by Justin Gibbs).
|
|
*/
|
|
if (tp->tgoal.offset) {
|
|
spi_populate_sync_msg(np->msgout, tp->tgoal.period,
|
|
tp->tgoal.offset);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_NEGO) {
|
|
sym_print_nego_msg(np, cp->target,
|
|
"sync msgout", np->msgout);
|
|
}
|
|
|
|
cp->nego_status = NS_SYNC;
|
|
OUTB(np, HS_PRT, HS_NEGOTIATE);
|
|
OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
|
|
return;
|
|
} else
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
}
|
|
|
|
return;
|
|
|
|
reject_it:
|
|
OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
|
|
}
|
|
|
|
/*
|
|
* Reset DT, SYNC or WIDE to default settings.
|
|
*
|
|
* Called when a negotiation does not succeed either
|
|
* on rejection or on protocol error.
|
|
*
|
|
* A target that understands a PPR message should never
|
|
* reject it, and messing with it is very unlikely.
|
|
* So, if a PPR makes problems, we may just want to
|
|
* try a legacy negotiation later.
|
|
*/
|
|
static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
|
|
{
|
|
switch (cp->nego_status) {
|
|
case NS_PPR:
|
|
#if 0
|
|
sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
|
|
#else
|
|
if (tp->tgoal.period < np->minsync)
|
|
tp->tgoal.period = np->minsync;
|
|
if (tp->tgoal.offset > np->maxoffs)
|
|
tp->tgoal.offset = np->maxoffs;
|
|
tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
|
|
tp->tgoal.check_nego = 1;
|
|
#endif
|
|
break;
|
|
case NS_SYNC:
|
|
sym_setsync (np, cp->target, 0, 0, 0, 0);
|
|
break;
|
|
case NS_WIDE:
|
|
sym_setwide (np, cp->target, 0);
|
|
break;
|
|
}
|
|
np->msgin [0] = M_NOOP;
|
|
np->msgout[0] = M_NOOP;
|
|
cp->nego_status = 0;
|
|
}
|
|
|
|
/*
|
|
* chip handler for MESSAGE REJECT received in response to
|
|
* PPR, WIDE or SYNCHRONOUS negotiation.
|
|
*/
|
|
static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
|
|
{
|
|
sym_nego_default(np, tp, cp);
|
|
OUTB(np, HS_PRT, HS_BUSY);
|
|
}
|
|
|
|
/*
|
|
* chip exception handler for programmed interrupts.
|
|
*/
|
|
static void sym_int_sir (struct sym_hcb *np)
|
|
{
|
|
u_char num = INB(np, nc_dsps);
|
|
u32 dsa = INL(np, nc_dsa);
|
|
struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa);
|
|
u_char target = INB(np, nc_sdid) & 0x0f;
|
|
struct sym_tcb *tp = &np->target[target];
|
|
int tmp;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
|
|
|
|
switch (num) {
|
|
#if SYM_CONF_DMA_ADDRESSING_MODE == 2
|
|
/*
|
|
* SCRIPTS tell us that we may have to update
|
|
* 64 bit DMA segment registers.
|
|
*/
|
|
case SIR_DMAP_DIRTY:
|
|
sym_update_dmap_regs(np);
|
|
goto out;
|
|
#endif
|
|
/*
|
|
* Command has been completed with error condition
|
|
* or has been auto-sensed.
|
|
*/
|
|
case SIR_COMPLETE_ERROR:
|
|
sym_complete_error(np, cp);
|
|
return;
|
|
/*
|
|
* The C code is currently trying to recover from something.
|
|
* Typically, user want to abort some command.
|
|
*/
|
|
case SIR_SCRIPT_STOPPED:
|
|
case SIR_TARGET_SELECTED:
|
|
case SIR_ABORT_SENT:
|
|
sym_sir_task_recovery(np, num);
|
|
return;
|
|
/*
|
|
* The device didn't go to MSG OUT phase after having
|
|
* been selected with ATN. We donnot want to handle
|
|
* that.
|
|
*/
|
|
case SIR_SEL_ATN_NO_MSG_OUT:
|
|
printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
|
|
sym_name (np), target);
|
|
goto out_stuck;
|
|
/*
|
|
* The device didn't switch to MSG IN phase after
|
|
* having reseleted the initiator.
|
|
*/
|
|
case SIR_RESEL_NO_MSG_IN:
|
|
printf ("%s:%d: No MSG IN phase after reselection.\n",
|
|
sym_name (np), target);
|
|
goto out_stuck;
|
|
/*
|
|
* After reselection, the device sent a message that wasn't
|
|
* an IDENTIFY.
|
|
*/
|
|
case SIR_RESEL_NO_IDENTIFY:
|
|
printf ("%s:%d: No IDENTIFY after reselection.\n",
|
|
sym_name (np), target);
|
|
goto out_stuck;
|
|
/*
|
|
* The device reselected a LUN we donnot know about.
|
|
*/
|
|
case SIR_RESEL_BAD_LUN:
|
|
np->msgout[0] = M_RESET;
|
|
goto out;
|
|
/*
|
|
* The device reselected for an untagged nexus and we
|
|
* haven't any.
|
|
*/
|
|
case SIR_RESEL_BAD_I_T_L:
|
|
np->msgout[0] = M_ABORT;
|
|
goto out;
|
|
/*
|
|
* The device reselected for a tagged nexus that we donnot
|
|
* have.
|
|
*/
|
|
case SIR_RESEL_BAD_I_T_L_Q:
|
|
np->msgout[0] = M_ABORT_TAG;
|
|
goto out;
|
|
/*
|
|
* The SCRIPTS let us know that the device has grabbed
|
|
* our message and will abort the job.
|
|
*/
|
|
case SIR_RESEL_ABORTED:
|
|
np->lastmsg = np->msgout[0];
|
|
np->msgout[0] = M_NOOP;
|
|
printf ("%s:%d: message %x sent on bad reselection.\n",
|
|
sym_name (np), target, np->lastmsg);
|
|
goto out;
|
|
/*
|
|
* The SCRIPTS let us know that a message has been
|
|
* successfully sent to the device.
|
|
*/
|
|
case SIR_MSG_OUT_DONE:
|
|
np->lastmsg = np->msgout[0];
|
|
np->msgout[0] = M_NOOP;
|
|
/* Should we really care of that */
|
|
if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
|
|
if (cp) {
|
|
cp->xerr_status &= ~XE_PARITY_ERR;
|
|
if (!cp->xerr_status)
|
|
OUTOFFB(np, HF_PRT, HF_EXT_ERR);
|
|
}
|
|
}
|
|
goto out;
|
|
/*
|
|
* The device didn't send a GOOD SCSI status.
|
|
* We may have some work to do prior to allow
|
|
* the SCRIPTS processor to continue.
|
|
*/
|
|
case SIR_BAD_SCSI_STATUS:
|
|
if (!cp)
|
|
goto out;
|
|
sym_sir_bad_scsi_status(np, num, cp);
|
|
return;
|
|
/*
|
|
* We are asked by the SCRIPTS to prepare a
|
|
* REJECT message.
|
|
*/
|
|
case SIR_REJECT_TO_SEND:
|
|
sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
|
|
np->msgout[0] = M_REJECT;
|
|
goto out;
|
|
/*
|
|
* We have been ODD at the end of a DATA IN
|
|
* transfer and the device didn't send a
|
|
* IGNORE WIDE RESIDUE message.
|
|
* It is a data overrun condition.
|
|
*/
|
|
case SIR_SWIDE_OVERRUN:
|
|
if (cp) {
|
|
OUTONB(np, HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_SWIDE_OVRUN;
|
|
}
|
|
goto out;
|
|
/*
|
|
* We have been ODD at the end of a DATA OUT
|
|
* transfer.
|
|
* It is a data underrun condition.
|
|
*/
|
|
case SIR_SODL_UNDERRUN:
|
|
if (cp) {
|
|
OUTONB(np, HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_SODL_UNRUN;
|
|
}
|
|
goto out;
|
|
/*
|
|
* The device wants us to tranfer more data than
|
|
* expected or in the wrong direction.
|
|
* The number of extra bytes is in scratcha.
|
|
* It is a data overrun condition.
|
|
*/
|
|
case SIR_DATA_OVERRUN:
|
|
if (cp) {
|
|
OUTONB(np, HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_EXTRA_DATA;
|
|
cp->extra_bytes += INL(np, nc_scratcha);
|
|
}
|
|
goto out;
|
|
/*
|
|
* The device switched to an illegal phase (4/5).
|
|
*/
|
|
case SIR_BAD_PHASE:
|
|
if (cp) {
|
|
OUTONB(np, HF_PRT, HF_EXT_ERR);
|
|
cp->xerr_status |= XE_BAD_PHASE;
|
|
}
|
|
goto out;
|
|
/*
|
|
* We received a message.
|
|
*/
|
|
case SIR_MSG_RECEIVED:
|
|
if (!cp)
|
|
goto out_stuck;
|
|
switch (np->msgin [0]) {
|
|
/*
|
|
* We received an extended message.
|
|
* We handle MODIFY DATA POINTER, SDTR, WDTR
|
|
* and reject all other extended messages.
|
|
*/
|
|
case M_EXTENDED:
|
|
switch (np->msgin [2]) {
|
|
case M_X_MODIFY_DP:
|
|
if (DEBUG_FLAGS & DEBUG_POINTER)
|
|
sym_print_msg(cp, NULL, np->msgin);
|
|
tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
|
|
(np->msgin[5]<<8) + (np->msgin[6]);
|
|
sym_modify_dp(np, tp, cp, tmp);
|
|
return;
|
|
case M_X_SYNC_REQ:
|
|
sym_sync_nego(np, tp, cp);
|
|
return;
|
|
case M_X_PPR_REQ:
|
|
sym_ppr_nego(np, tp, cp);
|
|
return;
|
|
case M_X_WIDE_REQ:
|
|
sym_wide_nego(np, tp, cp);
|
|
return;
|
|
default:
|
|
goto out_reject;
|
|
}
|
|
break;
|
|
/*
|
|
* We received a 1/2 byte message not handled from SCRIPTS.
|
|
* We are only expecting MESSAGE REJECT and IGNORE WIDE
|
|
* RESIDUE messages that haven't been anticipated by
|
|
* SCRIPTS on SWIDE full condition. Unanticipated IGNORE
|
|
* WIDE RESIDUE messages are aliased as MODIFY DP (-1).
|
|
*/
|
|
case M_IGN_RESIDUE:
|
|
if (DEBUG_FLAGS & DEBUG_POINTER)
|
|
sym_print_msg(cp, NULL, np->msgin);
|
|
if (cp->host_flags & HF_SENSE)
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
else
|
|
sym_modify_dp(np, tp, cp, -1);
|
|
return;
|
|
case M_REJECT:
|
|
if (INB(np, HS_PRT) == HS_NEGOTIATE)
|
|
sym_nego_rejected(np, tp, cp);
|
|
else {
|
|
sym_print_addr(cp->cmd,
|
|
"M_REJECT received (%x:%x).\n",
|
|
scr_to_cpu(np->lastmsg), np->msgout[0]);
|
|
}
|
|
goto out_clrack;
|
|
break;
|
|
default:
|
|
goto out_reject;
|
|
}
|
|
break;
|
|
/*
|
|
* We received an unknown message.
|
|
* Ignore all MSG IN phases and reject it.
|
|
*/
|
|
case SIR_MSG_WEIRD:
|
|
sym_print_msg(cp, "WEIRD message received", np->msgin);
|
|
OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
|
|
return;
|
|
/*
|
|
* Negotiation failed.
|
|
* Target does not send us the reply.
|
|
* Remove the HS_NEGOTIATE status.
|
|
*/
|
|
case SIR_NEGO_FAILED:
|
|
OUTB(np, HS_PRT, HS_BUSY);
|
|
/*
|
|
* Negotiation failed.
|
|
* Target does not want answer message.
|
|
*/
|
|
case SIR_NEGO_PROTO:
|
|
sym_nego_default(np, tp, cp);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
OUTONB_STD();
|
|
return;
|
|
out_reject:
|
|
OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
|
|
return;
|
|
out_clrack:
|
|
OUTL_DSP(np, SCRIPTA_BA(np, clrack));
|
|
return;
|
|
out_stuck:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Acquire a control block
|
|
*/
|
|
struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
|
|
{
|
|
u_char tn = cmd->device->id;
|
|
u_char ln = cmd->device->lun;
|
|
struct sym_tcb *tp = &np->target[tn];
|
|
struct sym_lcb *lp = sym_lp(tp, ln);
|
|
u_short tag = NO_TAG;
|
|
SYM_QUEHEAD *qp;
|
|
struct sym_ccb *cp = NULL;
|
|
|
|
/*
|
|
* Look for a free CCB
|
|
*/
|
|
if (sym_que_empty(&np->free_ccbq))
|
|
sym_alloc_ccb(np);
|
|
qp = sym_remque_head(&np->free_ccbq);
|
|
if (!qp)
|
|
goto out;
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
|
|
{
|
|
/*
|
|
* If we have been asked for a tagged command.
|
|
*/
|
|
if (tag_order) {
|
|
/*
|
|
* Debugging purpose.
|
|
*/
|
|
#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (lp->busy_itl != 0)
|
|
goto out_free;
|
|
#endif
|
|
/*
|
|
* Allocate resources for tags if not yet.
|
|
*/
|
|
if (!lp->cb_tags) {
|
|
sym_alloc_lcb_tags(np, tn, ln);
|
|
if (!lp->cb_tags)
|
|
goto out_free;
|
|
}
|
|
/*
|
|
* Get a tag for this SCSI IO and set up
|
|
* the CCB bus address for reselection,
|
|
* and count it for this LUN.
|
|
* Toggle reselect path to tagged.
|
|
*/
|
|
if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
|
|
tag = lp->cb_tags[lp->ia_tag];
|
|
if (++lp->ia_tag == SYM_CONF_MAX_TASK)
|
|
lp->ia_tag = 0;
|
|
++lp->busy_itlq;
|
|
#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
|
|
lp->head.resel_sa =
|
|
cpu_to_scr(SCRIPTA_BA(np, resel_tag));
|
|
#endif
|
|
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
cp->tags_si = lp->tags_si;
|
|
++lp->tags_sum[cp->tags_si];
|
|
++lp->tags_since;
|
|
#endif
|
|
}
|
|
else
|
|
goto out_free;
|
|
}
|
|
/*
|
|
* This command will not be tagged.
|
|
* If we already have either a tagged or untagged
|
|
* one, refuse to overlap this untagged one.
|
|
*/
|
|
else {
|
|
/*
|
|
* Debugging purpose.
|
|
*/
|
|
#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (lp->busy_itl != 0 || lp->busy_itlq != 0)
|
|
goto out_free;
|
|
#endif
|
|
/*
|
|
* Count this nexus for this LUN.
|
|
* Set up the CCB bus address for reselection.
|
|
* Toggle reselect path to untagged.
|
|
*/
|
|
++lp->busy_itl;
|
|
#ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (lp->busy_itl == 1) {
|
|
lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
|
|
lp->head.resel_sa =
|
|
cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
|
|
}
|
|
else
|
|
goto out_free;
|
|
#endif
|
|
}
|
|
}
|
|
/*
|
|
* Put the CCB into the busy queue.
|
|
*/
|
|
sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (lp) {
|
|
sym_remque(&cp->link2_ccbq);
|
|
sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
|
|
}
|
|
|
|
#endif
|
|
cp->to_abort = 0;
|
|
cp->odd_byte_adjustment = 0;
|
|
cp->tag = tag;
|
|
cp->order = tag_order;
|
|
cp->target = tn;
|
|
cp->lun = ln;
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TAGS) {
|
|
sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
|
|
}
|
|
|
|
out:
|
|
return cp;
|
|
out_free:
|
|
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Release one control block
|
|
*/
|
|
void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
|
|
{
|
|
struct sym_tcb *tp = &np->target[cp->target];
|
|
struct sym_lcb *lp = sym_lp(tp, cp->lun);
|
|
|
|
if (DEBUG_FLAGS & DEBUG_TAGS) {
|
|
sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
|
|
cp, cp->tag);
|
|
}
|
|
|
|
/*
|
|
* If LCB available,
|
|
*/
|
|
if (lp) {
|
|
/*
|
|
* If tagged, release the tag, set the relect path
|
|
*/
|
|
if (cp->tag != NO_TAG) {
|
|
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
--lp->tags_sum[cp->tags_si];
|
|
#endif
|
|
/*
|
|
* Free the tag value.
|
|
*/
|
|
lp->cb_tags[lp->if_tag] = cp->tag;
|
|
if (++lp->if_tag == SYM_CONF_MAX_TASK)
|
|
lp->if_tag = 0;
|
|
/*
|
|
* Make the reselect path invalid,
|
|
* and uncount this CCB.
|
|
*/
|
|
lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
|
|
--lp->busy_itlq;
|
|
} else { /* Untagged */
|
|
/*
|
|
* Make the reselect path invalid,
|
|
* and uncount this CCB.
|
|
*/
|
|
lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
|
|
--lp->busy_itl;
|
|
}
|
|
/*
|
|
* If no JOB active, make the LUN reselect path invalid.
|
|
*/
|
|
if (lp->busy_itlq == 0 && lp->busy_itl == 0)
|
|
lp->head.resel_sa =
|
|
cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
|
|
}
|
|
|
|
/*
|
|
* We donnot queue more than 1 ccb per target
|
|
* with negotiation at any time. If this ccb was
|
|
* used for negotiation, clear this info in the tcb.
|
|
*/
|
|
if (cp == tp->nego_cp)
|
|
tp->nego_cp = NULL;
|
|
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If we just complete the last queued CCB,
|
|
* clear this info that is no longer relevant.
|
|
*/
|
|
if (cp == np->last_cp)
|
|
np->last_cp = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Make this CCB available.
|
|
*/
|
|
cp->cmd = NULL;
|
|
cp->host_status = HS_IDLE;
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (lp) {
|
|
sym_remque(&cp->link2_ccbq);
|
|
sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
|
|
if (cp->started) {
|
|
if (cp->tag != NO_TAG)
|
|
--lp->started_tags;
|
|
else
|
|
--lp->started_no_tag;
|
|
}
|
|
}
|
|
cp->started = 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Allocate a CCB from memory and initialize its fixed part.
|
|
*/
|
|
static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
|
|
{
|
|
struct sym_ccb *cp = NULL;
|
|
int hcode;
|
|
|
|
/*
|
|
* Prevent from allocating more CCBs than we can
|
|
* queue to the controller.
|
|
*/
|
|
if (np->actccbs >= SYM_CONF_MAX_START)
|
|
return NULL;
|
|
|
|
/*
|
|
* Allocate memory for this CCB.
|
|
*/
|
|
cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
|
|
if (!cp)
|
|
goto out_free;
|
|
|
|
/*
|
|
* Count it.
|
|
*/
|
|
np->actccbs++;
|
|
|
|
/*
|
|
* Compute the bus address of this ccb.
|
|
*/
|
|
cp->ccb_ba = vtobus(cp);
|
|
|
|
/*
|
|
* Insert this ccb into the hashed list.
|
|
*/
|
|
hcode = CCB_HASH_CODE(cp->ccb_ba);
|
|
cp->link_ccbh = np->ccbh[hcode];
|
|
np->ccbh[hcode] = cp;
|
|
|
|
/*
|
|
* Initialyze the start and restart actions.
|
|
*/
|
|
cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle));
|
|
cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
|
|
|
|
/*
|
|
* Initilialyze some other fields.
|
|
*/
|
|
cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
|
|
|
|
/*
|
|
* Chain into free ccb queue.
|
|
*/
|
|
sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
|
|
|
|
/*
|
|
* Chain into optionnal lists.
|
|
*/
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
|
|
#endif
|
|
return cp;
|
|
out_free:
|
|
if (cp)
|
|
sym_mfree_dma(cp, sizeof(*cp), "CCB");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Look up a CCB from a DSA value.
|
|
*/
|
|
static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
|
|
{
|
|
int hcode;
|
|
struct sym_ccb *cp;
|
|
|
|
hcode = CCB_HASH_CODE(dsa);
|
|
cp = np->ccbh[hcode];
|
|
while (cp) {
|
|
if (cp->ccb_ba == dsa)
|
|
break;
|
|
cp = cp->link_ccbh;
|
|
}
|
|
|
|
return cp;
|
|
}
|
|
|
|
/*
|
|
* Target control block initialisation.
|
|
* Nothing important to do at the moment.
|
|
*/
|
|
static void sym_init_tcb (struct sym_hcb *np, u_char tn)
|
|
{
|
|
#if 0 /* Hmmm... this checking looks paranoid. */
|
|
/*
|
|
* Check some alignments required by the chip.
|
|
*/
|
|
assert (((offsetof(struct sym_reg, nc_sxfer) ^
|
|
offsetof(struct sym_tcb, head.sval)) &3) == 0);
|
|
assert (((offsetof(struct sym_reg, nc_scntl3) ^
|
|
offsetof(struct sym_tcb, head.wval)) &3) == 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Lun control block allocation and initialization.
|
|
*/
|
|
struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
|
|
{
|
|
struct sym_tcb *tp = &np->target[tn];
|
|
struct sym_lcb *lp = NULL;
|
|
|
|
/*
|
|
* Initialize the target control block if not yet.
|
|
*/
|
|
sym_init_tcb (np, tn);
|
|
|
|
/*
|
|
* Allocate the LCB bus address array.
|
|
* Compute the bus address of this table.
|
|
*/
|
|
if (ln && !tp->luntbl) {
|
|
int i;
|
|
|
|
tp->luntbl = sym_calloc_dma(256, "LUNTBL");
|
|
if (!tp->luntbl)
|
|
goto fail;
|
|
for (i = 0 ; i < 64 ; i++)
|
|
tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
|
|
tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
|
|
}
|
|
|
|
/*
|
|
* Allocate the table of pointers for LUN(s) > 0, if needed.
|
|
*/
|
|
if (ln && !tp->lunmp) {
|
|
tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
|
|
GFP_KERNEL);
|
|
if (!tp->lunmp)
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate the lcb.
|
|
* Make it available to the chip.
|
|
*/
|
|
lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
|
|
if (!lp)
|
|
goto fail;
|
|
if (ln) {
|
|
tp->lunmp[ln] = lp;
|
|
tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
|
|
}
|
|
else {
|
|
tp->lun0p = lp;
|
|
tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
|
|
}
|
|
|
|
/*
|
|
* Let the itl task point to error handling.
|
|
*/
|
|
lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
|
|
|
|
/*
|
|
* Set the reselect pattern to our default. :)
|
|
*/
|
|
lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
|
|
|
|
/*
|
|
* Set user capabilities.
|
|
*/
|
|
lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
/*
|
|
* Initialize device queueing.
|
|
*/
|
|
sym_que_init(&lp->waiting_ccbq);
|
|
sym_que_init(&lp->started_ccbq);
|
|
lp->started_max = SYM_CONF_MAX_TASK;
|
|
lp->started_limit = SYM_CONF_MAX_TASK;
|
|
#endif
|
|
|
|
fail:
|
|
return lp;
|
|
}
|
|
|
|
/*
|
|
* Allocate LCB resources for tagged command queuing.
|
|
*/
|
|
static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
|
|
{
|
|
struct sym_tcb *tp = &np->target[tn];
|
|
struct sym_lcb *lp = sym_lp(tp, ln);
|
|
int i;
|
|
|
|
/*
|
|
* Allocate the task table and and the tag allocation
|
|
* circular buffer. We want both or none.
|
|
*/
|
|
lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
|
|
if (!lp->itlq_tbl)
|
|
goto fail;
|
|
lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
|
|
if (!lp->cb_tags) {
|
|
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
|
|
lp->itlq_tbl = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Initialize the task table with invalid entries.
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
|
|
lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
|
|
|
|
/*
|
|
* Fill up the tag buffer with tag numbers.
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
|
|
lp->cb_tags[i] = i;
|
|
|
|
/*
|
|
* Make the task table available to SCRIPTS,
|
|
* And accept tagged commands now.
|
|
*/
|
|
lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
|
|
|
|
return;
|
|
fail:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Queue a SCSI IO to the controller.
|
|
*/
|
|
int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
|
|
{
|
|
struct scsi_device *sdev = cmd->device;
|
|
struct sym_tcb *tp;
|
|
struct sym_lcb *lp;
|
|
u_char *msgptr;
|
|
u_int msglen;
|
|
int can_disconnect;
|
|
|
|
/*
|
|
* Keep track of the IO in our CCB.
|
|
*/
|
|
cp->cmd = cmd;
|
|
|
|
/*
|
|
* Retrieve the target descriptor.
|
|
*/
|
|
tp = &np->target[cp->target];
|
|
|
|
/*
|
|
* Retrieve the lun descriptor.
|
|
*/
|
|
lp = sym_lp(tp, sdev->lun);
|
|
|
|
can_disconnect = (cp->tag != NO_TAG) ||
|
|
(lp && (lp->curr_flags & SYM_DISC_ENABLED));
|
|
|
|
msgptr = cp->scsi_smsg;
|
|
msglen = 0;
|
|
msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
|
|
|
|
/*
|
|
* Build the tag message if present.
|
|
*/
|
|
if (cp->tag != NO_TAG) {
|
|
u_char order = cp->order;
|
|
|
|
switch(order) {
|
|
case M_ORDERED_TAG:
|
|
break;
|
|
case M_HEAD_TAG:
|
|
break;
|
|
default:
|
|
order = M_SIMPLE_TAG;
|
|
}
|
|
#ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
|
|
/*
|
|
* Avoid too much reordering of SCSI commands.
|
|
* The algorithm tries to prevent completion of any
|
|
* tagged command from being delayed against more
|
|
* than 3 times the max number of queued commands.
|
|
*/
|
|
if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
|
|
lp->tags_si = !(lp->tags_si);
|
|
if (lp->tags_sum[lp->tags_si]) {
|
|
order = M_ORDERED_TAG;
|
|
if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
|
|
sym_print_addr(cmd,
|
|
"ordered tag forced.\n");
|
|
}
|
|
}
|
|
lp->tags_since = 0;
|
|
}
|
|
#endif
|
|
msgptr[msglen++] = order;
|
|
|
|
/*
|
|
* For less than 128 tags, actual tags are numbered
|
|
* 1,3,5,..2*MAXTAGS+1,since we may have to deal
|
|
* with devices that have problems with #TAG 0 or too
|
|
* great #TAG numbers. For more tags (up to 256),
|
|
* we use directly our tag number.
|
|
*/
|
|
#if SYM_CONF_MAX_TASK > (512/4)
|
|
msgptr[msglen++] = cp->tag;
|
|
#else
|
|
msgptr[msglen++] = (cp->tag << 1) + 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Build a negotiation message if needed.
|
|
* (nego_status is filled by sym_prepare_nego())
|
|
*/
|
|
cp->nego_status = 0;
|
|
if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
|
|
msglen += sym_prepare_nego(np, cp, msgptr + msglen);
|
|
}
|
|
|
|
/*
|
|
* Startqueue
|
|
*/
|
|
cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
|
|
cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
|
|
|
|
/*
|
|
* select
|
|
*/
|
|
cp->phys.select.sel_id = cp->target;
|
|
cp->phys.select.sel_scntl3 = tp->head.wval;
|
|
cp->phys.select.sel_sxfer = tp->head.sval;
|
|
cp->phys.select.sel_scntl4 = tp->head.uval;
|
|
|
|
/*
|
|
* message
|
|
*/
|
|
cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg);
|
|
cp->phys.smsg.size = cpu_to_scr(msglen);
|
|
|
|
/*
|
|
* status
|
|
*/
|
|
cp->host_xflags = 0;
|
|
cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
|
|
cp->ssss_status = S_ILLEGAL;
|
|
cp->xerr_status = 0;
|
|
cp->host_flags = 0;
|
|
cp->extra_bytes = 0;
|
|
|
|
/*
|
|
* extreme data pointer.
|
|
* shall be positive, so -1 is lower than lowest.:)
|
|
*/
|
|
cp->ext_sg = -1;
|
|
cp->ext_ofs = 0;
|
|
|
|
/*
|
|
* Build the CDB and DATA descriptor block
|
|
* and start the IO.
|
|
*/
|
|
return sym_setup_data_and_start(np, cmd, cp);
|
|
}
|
|
|
|
/*
|
|
* Reset a SCSI target (all LUNs of this target).
|
|
*/
|
|
int sym_reset_scsi_target(struct sym_hcb *np, int target)
|
|
{
|
|
struct sym_tcb *tp;
|
|
|
|
if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
|
|
return -1;
|
|
|
|
tp = &np->target[target];
|
|
tp->to_reset = 1;
|
|
|
|
np->istat_sem = SEM;
|
|
OUTB(np, nc_istat, SIGP|SEM);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Abort a SCSI IO.
|
|
*/
|
|
static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
|
|
{
|
|
/*
|
|
* Check that the IO is active.
|
|
*/
|
|
if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
|
|
return -1;
|
|
|
|
/*
|
|
* If a previous abort didn't succeed in time,
|
|
* perform a BUS reset.
|
|
*/
|
|
if (cp->to_abort) {
|
|
sym_reset_scsi_bus(np, 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mark the CCB for abort and allow time for.
|
|
*/
|
|
cp->to_abort = timed_out ? 2 : 1;
|
|
|
|
/*
|
|
* Tell the SCRIPTS processor to stop and synchronize with us.
|
|
*/
|
|
np->istat_sem = SEM;
|
|
OUTB(np, nc_istat, SIGP|SEM);
|
|
return 0;
|
|
}
|
|
|
|
int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
|
|
{
|
|
struct sym_ccb *cp;
|
|
SYM_QUEHEAD *qp;
|
|
|
|
/*
|
|
* Look up our CCB control block.
|
|
*/
|
|
cp = NULL;
|
|
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
|
|
struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
if (cp2->cmd == cmd) {
|
|
cp = cp2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return sym_abort_ccb(np, cp, timed_out);
|
|
}
|
|
|
|
/*
|
|
* Complete execution of a SCSI command with extended
|
|
* error, SCSI status error, or having been auto-sensed.
|
|
*
|
|
* The SCRIPTS processor is not running there, so we
|
|
* can safely access IO registers and remove JOBs from
|
|
* the START queue.
|
|
* SCRATCHA is assumed to have been loaded with STARTPOS
|
|
* before the SCRIPTS called the C code.
|
|
*/
|
|
void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
|
|
{
|
|
struct scsi_device *sdev;
|
|
struct scsi_cmnd *cmd;
|
|
struct sym_tcb *tp;
|
|
struct sym_lcb *lp;
|
|
int resid;
|
|
int i;
|
|
|
|
/*
|
|
* Paranoid check. :)
|
|
*/
|
|
if (!cp || !cp->cmd)
|
|
return;
|
|
|
|
cmd = cp->cmd;
|
|
sdev = cmd->device;
|
|
if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
|
|
dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
|
|
cp->host_status, cp->ssss_status, cp->host_flags);
|
|
}
|
|
|
|
/*
|
|
* Get target and lun pointers.
|
|
*/
|
|
tp = &np->target[cp->target];
|
|
lp = sym_lp(tp, sdev->lun);
|
|
|
|
/*
|
|
* Check for extended errors.
|
|
*/
|
|
if (cp->xerr_status) {
|
|
if (sym_verbose)
|
|
sym_print_xerr(cmd, cp->xerr_status);
|
|
if (cp->host_status == HS_COMPLETE)
|
|
cp->host_status = HS_COMP_ERR;
|
|
}
|
|
|
|
/*
|
|
* Calculate the residual.
|
|
*/
|
|
resid = sym_compute_residual(np, cp);
|
|
|
|
if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
|
|
resid = 0; /* throw them away. :) */
|
|
cp->sv_resid = 0;
|
|
}
|
|
#ifdef DEBUG_2_0_X
|
|
if (resid)
|
|
printf("XXXX RESID= %d - 0x%x\n", resid, resid);
|
|
#endif
|
|
|
|
/*
|
|
* Dequeue all queued CCBs for that device
|
|
* not yet started by SCRIPTS.
|
|
*/
|
|
i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
|
|
i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
|
|
|
|
/*
|
|
* Restart the SCRIPTS processor.
|
|
*/
|
|
OUTL_DSP(np, SCRIPTA_BA(np, start));
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
if (cp->host_status == HS_COMPLETE &&
|
|
cp->ssss_status == S_QUEUE_FULL) {
|
|
if (!lp || lp->started_tags - i < 2)
|
|
goto weirdness;
|
|
/*
|
|
* Decrease queue depth as needed.
|
|
*/
|
|
lp->started_max = lp->started_tags - i - 1;
|
|
lp->num_sgood = 0;
|
|
|
|
if (sym_verbose >= 2) {
|
|
sym_print_addr(cmd, " queue depth is now %d\n",
|
|
lp->started_max);
|
|
}
|
|
|
|
/*
|
|
* Repair the CCB.
|
|
*/
|
|
cp->host_status = HS_BUSY;
|
|
cp->ssss_status = S_ILLEGAL;
|
|
|
|
/*
|
|
* Let's requeue it to device.
|
|
*/
|
|
sym_set_cam_status(cmd, DID_SOFT_ERROR);
|
|
goto finish;
|
|
}
|
|
weirdness:
|
|
#endif
|
|
/*
|
|
* Build result in CAM ccb.
|
|
*/
|
|
sym_set_cam_result_error(np, cp, resid);
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
finish:
|
|
#endif
|
|
/*
|
|
* Add this one to the COMP queue.
|
|
*/
|
|
sym_remque(&cp->link_ccbq);
|
|
sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
|
|
|
|
/*
|
|
* Complete all those commands with either error
|
|
* or requeue condition.
|
|
*/
|
|
sym_flush_comp_queue(np, 0);
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
/*
|
|
* Donnot start more than 1 command after an error.
|
|
*/
|
|
sym_start_next_ccbs(np, lp, 1);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Complete execution of a successful SCSI command.
|
|
*
|
|
* Only successful commands go to the DONE queue,
|
|
* since we need to have the SCRIPTS processor
|
|
* stopped on any error condition.
|
|
* The SCRIPTS processor is running while we are
|
|
* completing successful commands.
|
|
*/
|
|
void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
|
|
{
|
|
struct sym_tcb *tp;
|
|
struct sym_lcb *lp;
|
|
struct scsi_cmnd *cmd;
|
|
int resid;
|
|
|
|
/*
|
|
* Paranoid check. :)
|
|
*/
|
|
if (!cp || !cp->cmd)
|
|
return;
|
|
assert (cp->host_status == HS_COMPLETE);
|
|
|
|
/*
|
|
* Get user command.
|
|
*/
|
|
cmd = cp->cmd;
|
|
|
|
/*
|
|
* Get target and lun pointers.
|
|
*/
|
|
tp = &np->target[cp->target];
|
|
lp = sym_lp(tp, cp->lun);
|
|
|
|
/*
|
|
* If all data have been transferred, given than no
|
|
* extended error did occur, there is no residual.
|
|
*/
|
|
resid = 0;
|
|
if (cp->phys.head.lastp != cp->goalp)
|
|
resid = sym_compute_residual(np, cp);
|
|
|
|
/*
|
|
* Wrong transfer residuals may be worse than just always
|
|
* returning zero. User can disable this feature in
|
|
* sym53c8xx.h. Residual support is enabled by default.
|
|
*/
|
|
if (!SYM_SETUP_RESIDUAL_SUPPORT)
|
|
resid = 0;
|
|
#ifdef DEBUG_2_0_X
|
|
if (resid)
|
|
printf("XXXX RESID= %d - 0x%x\n", resid, resid);
|
|
#endif
|
|
|
|
/*
|
|
* Build result in CAM ccb.
|
|
*/
|
|
sym_set_cam_result_ok(cp, cmd, resid);
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
/*
|
|
* If max number of started ccbs had been reduced,
|
|
* increase it if 200 good status received.
|
|
*/
|
|
if (lp && lp->started_max < lp->started_limit) {
|
|
++lp->num_sgood;
|
|
if (lp->num_sgood >= 200) {
|
|
lp->num_sgood = 0;
|
|
++lp->started_max;
|
|
if (sym_verbose >= 2) {
|
|
sym_print_addr(cmd, " queue depth is now %d\n",
|
|
lp->started_max);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Free our CCB.
|
|
*/
|
|
sym_free_ccb (np, cp);
|
|
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
/*
|
|
* Requeue a couple of awaiting scsi commands.
|
|
*/
|
|
if (!sym_que_empty(&lp->waiting_ccbq))
|
|
sym_start_next_ccbs(np, lp, 2);
|
|
#endif
|
|
/*
|
|
* Complete the command.
|
|
*/
|
|
sym_xpt_done(np, cmd);
|
|
}
|
|
|
|
/*
|
|
* Soft-attach the controller.
|
|
*/
|
|
int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
|
|
{
|
|
struct sym_hcb *np = sym_get_hcb(shost);
|
|
int i;
|
|
|
|
/*
|
|
* Get some info about the firmware.
|
|
*/
|
|
np->scripta_sz = fw->a_size;
|
|
np->scriptb_sz = fw->b_size;
|
|
np->scriptz_sz = fw->z_size;
|
|
np->fw_setup = fw->setup;
|
|
np->fw_patch = fw->patch;
|
|
np->fw_name = fw->name;
|
|
|
|
/*
|
|
* Save setting of some IO registers, so we will
|
|
* be able to probe specific implementations.
|
|
*/
|
|
sym_save_initial_setting (np);
|
|
|
|
/*
|
|
* Reset the chip now, since it has been reported
|
|
* that SCSI clock calibration may not work properly
|
|
* if the chip is currently active.
|
|
*/
|
|
sym_chip_reset(np);
|
|
|
|
/*
|
|
* Prepare controller and devices settings, according
|
|
* to chip features, user set-up and driver set-up.
|
|
*/
|
|
sym_prepare_setting(shost, np, nvram);
|
|
|
|
/*
|
|
* Check the PCI clock frequency.
|
|
* Must be performed after prepare_setting since it destroys
|
|
* STEST1 that is used to probe for the clock doubler.
|
|
*/
|
|
i = sym_getpciclock(np);
|
|
if (i > 37000 && !(np->features & FE_66MHZ))
|
|
printf("%s: PCI BUS clock seems too high: %u KHz.\n",
|
|
sym_name(np), i);
|
|
|
|
/*
|
|
* Allocate the start queue.
|
|
*/
|
|
np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
|
|
if (!np->squeue)
|
|
goto attach_failed;
|
|
np->squeue_ba = vtobus(np->squeue);
|
|
|
|
/*
|
|
* Allocate the done queue.
|
|
*/
|
|
np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
|
|
if (!np->dqueue)
|
|
goto attach_failed;
|
|
np->dqueue_ba = vtobus(np->dqueue);
|
|
|
|
/*
|
|
* Allocate the target bus address array.
|
|
*/
|
|
np->targtbl = sym_calloc_dma(256, "TARGTBL");
|
|
if (!np->targtbl)
|
|
goto attach_failed;
|
|
np->targtbl_ba = vtobus(np->targtbl);
|
|
|
|
/*
|
|
* Allocate SCRIPTS areas.
|
|
*/
|
|
np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
|
|
np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
|
|
np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
|
|
if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Allocate the array of lists of CCBs hashed by DSA.
|
|
*/
|
|
np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
|
|
if (!np->ccbh)
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Initialyze the CCB free and busy queues.
|
|
*/
|
|
sym_que_init(&np->free_ccbq);
|
|
sym_que_init(&np->busy_ccbq);
|
|
sym_que_init(&np->comp_ccbq);
|
|
|
|
/*
|
|
* Initialization for optional handling
|
|
* of device queueing.
|
|
*/
|
|
#ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
|
|
sym_que_init(&np->dummy_ccbq);
|
|
#endif
|
|
/*
|
|
* Allocate some CCB. We need at least ONE.
|
|
*/
|
|
if (!sym_alloc_ccb(np))
|
|
goto attach_failed;
|
|
|
|
/*
|
|
* Calculate BUS addresses where we are going
|
|
* to load the SCRIPTS.
|
|
*/
|
|
np->scripta_ba = vtobus(np->scripta0);
|
|
np->scriptb_ba = vtobus(np->scriptb0);
|
|
np->scriptz_ba = vtobus(np->scriptz0);
|
|
|
|
if (np->ram_ba) {
|
|
np->scripta_ba = np->ram_ba;
|
|
if (np->features & FE_RAM8K) {
|
|
np->ram_ws = 8192;
|
|
np->scriptb_ba = np->scripta_ba + 4096;
|
|
#if 0 /* May get useful for 64 BIT PCI addressing */
|
|
np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
|
|
#endif
|
|
}
|
|
else
|
|
np->ram_ws = 4096;
|
|
}
|
|
|
|
/*
|
|
* Copy scripts to controller instance.
|
|
*/
|
|
memcpy(np->scripta0, fw->a_base, np->scripta_sz);
|
|
memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
|
|
memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
|
|
|
|
/*
|
|
* Setup variable parts in scripts and compute
|
|
* scripts bus addresses used from the C code.
|
|
*/
|
|
np->fw_setup(np, fw);
|
|
|
|
/*
|
|
* Bind SCRIPTS with physical addresses usable by the
|
|
* SCRIPTS processor (as seen from the BUS = BUS addresses).
|
|
*/
|
|
sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
|
|
sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
|
|
sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
|
|
|
|
#ifdef SYM_CONF_IARB_SUPPORT
|
|
/*
|
|
* If user wants IARB to be set when we win arbitration
|
|
* and have other jobs, compute the max number of consecutive
|
|
* settings of IARB hints before we leave devices a chance to
|
|
* arbitrate for reselection.
|
|
*/
|
|
#ifdef SYM_SETUP_IARB_MAX
|
|
np->iarb_max = SYM_SETUP_IARB_MAX;
|
|
#else
|
|
np->iarb_max = 4;
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Prepare the idle and invalid task actions.
|
|
*/
|
|
np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
|
|
np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
|
|
np->idletask_ba = vtobus(&np->idletask);
|
|
|
|
np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle));
|
|
np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
|
|
np->notask_ba = vtobus(&np->notask);
|
|
|
|
np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle));
|
|
np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
|
|
np->bad_itl_ba = vtobus(&np->bad_itl);
|
|
|
|
np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle));
|
|
np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
|
|
np->bad_itlq_ba = vtobus(&np->bad_itlq);
|
|
|
|
/*
|
|
* Allocate and prepare the lun JUMP table that is used
|
|
* for a target prior the probing of devices (bad lun table).
|
|
* A private table will be allocated for the target on the
|
|
* first INQUIRY response received.
|
|
*/
|
|
np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
|
|
if (!np->badluntbl)
|
|
goto attach_failed;
|
|
|
|
np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
|
|
for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */
|
|
np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
|
|
|
|
/*
|
|
* Prepare the bus address array that contains the bus
|
|
* address of each target control block.
|
|
* For now, assume all logical units are wrong. :)
|
|
*/
|
|
for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
|
|
np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
|
|
np->target[i].head.luntbl_sa =
|
|
cpu_to_scr(vtobus(np->badluntbl));
|
|
np->target[i].head.lun0_sa =
|
|
cpu_to_scr(vtobus(&np->badlun_sa));
|
|
}
|
|
|
|
/*
|
|
* Now check the cache handling of the pci chipset.
|
|
*/
|
|
if (sym_snooptest (np)) {
|
|
printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
|
|
goto attach_failed;
|
|
}
|
|
|
|
/*
|
|
* Sigh! we are done.
|
|
*/
|
|
return 0;
|
|
|
|
attach_failed:
|
|
return -ENXIO;
|
|
}
|
|
|
|
/*
|
|
* Free everything that has been allocated for this device.
|
|
*/
|
|
void sym_hcb_free(struct sym_hcb *np)
|
|
{
|
|
SYM_QUEHEAD *qp;
|
|
struct sym_ccb *cp;
|
|
struct sym_tcb *tp;
|
|
int target;
|
|
|
|
if (np->scriptz0)
|
|
sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
|
|
if (np->scriptb0)
|
|
sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
|
|
if (np->scripta0)
|
|
sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
|
|
if (np->squeue)
|
|
sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
|
|
if (np->dqueue)
|
|
sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
|
|
|
|
if (np->actccbs) {
|
|
while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
|
|
cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
|
|
sym_mfree_dma(cp, sizeof(*cp), "CCB");
|
|
}
|
|
}
|
|
kfree(np->ccbh);
|
|
|
|
if (np->badluntbl)
|
|
sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
|
|
|
|
for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
|
|
tp = &np->target[target];
|
|
#if SYM_CONF_MAX_LUN > 1
|
|
kfree(tp->lunmp);
|
|
#endif
|
|
}
|
|
if (np->targtbl)
|
|
sym_mfree_dma(np->targtbl, 256, "TARGTBL");
|
|
}
|