WSL2-Linux-Kernel/drivers/scsi/hpsa.c

3847 строки
106 KiB
C

/*
* Disk Array driver for HP Smart Array SAS controllers
* Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Questions/Comments/Bugfixes to iss_storagedev@hp.com
*
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
#include <asm/atomic.h>
#include <linux/kthread.h>
#include "hpsa_cmd.h"
#include "hpsa.h"
/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
#define HPSA_DRIVER_VERSION "2.0.2-1"
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000
/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3
/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");
static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
"Allow hpsa driver to access unknown HP Smart Array hardware");
/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
#define PCI_DEVICE_ID_HP_CISSF 0x333f
{PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x333F},
{PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
/* board_id = Subsystem Device ID & Vendor ID
* product = Marketing Name for the board
* access = Address of the struct of function pointers
*/
static struct board_type products[] = {
{0x3241103C, "Smart Array P212", &SA5_access},
{0x3243103C, "Smart Array P410", &SA5_access},
{0x3245103C, "Smart Array P410i", &SA5_access},
{0x3247103C, "Smart Array P411", &SA5_access},
{0x3249103C, "Smart Array P812", &SA5_access},
{0x324a103C, "Smart Array P712m", &SA5_access},
{0x324b103C, "Smart Array P711m", &SA5_access},
{0x3233103C, "StorageWorks P1210m", &SA5_access},
{0x333F103C, "StorageWorks P1210m", &SA5_access},
{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};
static int number_of_controllers;
static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
static void start_io(struct ctlr_info *h);
#ifdef CONFIG_COMPAT
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
#endif
static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
int cmd_type);
static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *));
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
unsigned long elapsed_time);
static int hpsa_change_queue_depth(struct scsi_device *sdev,
int qdepth, int reason);
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);
static ssize_t raid_level_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t lunid_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t unique_id_show(struct device *dev,
struct device_attribute *attr, char *buf);
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static ssize_t host_store_rescan(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static int check_for_unit_attention(struct ctlr_info *h,
struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
struct CommandList *c);
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
int nsgs, int *bucket_map);
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
static inline u32 next_command(struct ctlr_info *h);
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static struct device_attribute *hpsa_sdev_attrs[] = {
&dev_attr_raid_level,
&dev_attr_lunid,
&dev_attr_unique_id,
NULL,
};
static struct device_attribute *hpsa_shost_attrs[] = {
&dev_attr_rescan,
NULL,
};
static struct scsi_host_template hpsa_driver_template = {
.module = THIS_MODULE,
.name = "hpsa",
.proc_name = "hpsa",
.queuecommand = hpsa_scsi_queue_command,
.scan_start = hpsa_scan_start,
.scan_finished = hpsa_scan_finished,
.change_queue_depth = hpsa_change_queue_depth,
.this_id = -1,
.use_clustering = ENABLE_CLUSTERING,
.eh_device_reset_handler = hpsa_eh_device_reset_handler,
.ioctl = hpsa_ioctl,
.slave_alloc = hpsa_slave_alloc,
.slave_destroy = hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
.compat_ioctl = hpsa_compat_ioctl,
#endif
.sdev_attrs = hpsa_sdev_attrs,
.shost_attrs = hpsa_shost_attrs,
};
static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
unsigned long *priv = shost_priv(sdev->host);
return (struct ctlr_info *) *priv;
}
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
unsigned long *priv = shost_priv(sh);
return (struct ctlr_info *) *priv;
}
static int check_for_unit_attention(struct ctlr_info *h,
struct CommandList *c)
{
if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
return 0;
switch (c->err_info->SenseInfo[12]) {
case STATE_CHANGED:
dev_warn(&h->pdev->dev, "hpsa%d: a state change "
"detected, command retried\n", h->ctlr);
break;
case LUN_FAILED:
dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
"detected, action required\n", h->ctlr);
break;
case REPORT_LUNS_CHANGED:
dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
"changed, action required\n", h->ctlr);
/*
* Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
*/
break;
case POWER_OR_RESET:
dev_warn(&h->pdev->dev, "hpsa%d: a power on "
"or device reset detected\n", h->ctlr);
break;
case UNIT_ATTENTION_CLEARED:
dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
"cleared by another initiator\n", h->ctlr);
break;
default:
dev_warn(&h->pdev->dev, "hpsa%d: unknown "
"unit attention detected\n", h->ctlr);
break;
}
return 1;
}
static ssize_t host_store_rescan(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ctlr_info *h;
struct Scsi_Host *shost = class_to_shost(dev);
h = shost_to_hba(shost);
hpsa_scan_start(h->scsi_host);
return count;
}
/* Enqueuing and dequeuing functions for cmdlists. */
static inline void addQ(struct hlist_head *list, struct CommandList *c)
{
hlist_add_head(&c->list, list);
}
static inline u32 next_command(struct ctlr_info *h)
{
u32 a;
if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
return h->access.command_completed(h);
if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
a = *(h->reply_pool_head); /* Next cmd in ring buffer */
(h->reply_pool_head)++;
h->commands_outstanding--;
} else {
a = FIFO_EMPTY;
}
/* Check for wraparound */
if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
h->reply_pool_head = h->reply_pool;
h->reply_pool_wraparound ^= 1;
}
return a;
}
/* set_performant_mode: Modify the tag for cciss performant
* set bit 0 for pull model, bits 3-1 for block fetch
* register number
*/
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
if (likely(h->transMethod == CFGTBL_Trans_Performant))
c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
}
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
struct CommandList *c)
{
unsigned long flags;
set_performant_mode(h, c);
spin_lock_irqsave(&h->lock, flags);
addQ(&h->reqQ, c);
h->Qdepth++;
start_io(h);
spin_unlock_irqrestore(&h->lock, flags);
}
static inline void removeQ(struct CommandList *c)
{
if (WARN_ON(hlist_unhashed(&c->list)))
return;
hlist_del_init(&c->list);
}
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
return (scsi3addr[3] & 0xC0) == 0x40;
}
static inline int is_scsi_rev_5(struct ctlr_info *h)
{
if (!h->hba_inquiry_data)
return 0;
if ((h->hba_inquiry_data[2] & 0x07) == 5)
return 1;
return 0;
}
static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
"UNKNOWN"
};
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
static ssize_t raid_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t l = 0;
unsigned char rlevel;
struct ctlr_info *h;
struct scsi_device *sdev;
struct hpsa_scsi_dev_t *hdev;
unsigned long flags;
sdev = to_scsi_device(dev);
h = sdev_to_hba(sdev);
spin_lock_irqsave(&h->lock, flags);
hdev = sdev->hostdata;
if (!hdev) {
spin_unlock_irqrestore(&h->lock, flags);
return -ENODEV;
}
/* Is this even a logical drive? */
if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
spin_unlock_irqrestore(&h->lock, flags);
l = snprintf(buf, PAGE_SIZE, "N/A\n");
return l;
}
rlevel = hdev->raid_level;
spin_unlock_irqrestore(&h->lock, flags);
if (rlevel > RAID_UNKNOWN)
rlevel = RAID_UNKNOWN;
l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
return l;
}
static ssize_t lunid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ctlr_info *h;
struct scsi_device *sdev;
struct hpsa_scsi_dev_t *hdev;
unsigned long flags;
unsigned char lunid[8];
sdev = to_scsi_device(dev);
h = sdev_to_hba(sdev);
spin_lock_irqsave(&h->lock, flags);
hdev = sdev->hostdata;
if (!hdev) {
spin_unlock_irqrestore(&h->lock, flags);
return -ENODEV;
}
memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
spin_unlock_irqrestore(&h->lock, flags);
return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
lunid[0], lunid[1], lunid[2], lunid[3],
lunid[4], lunid[5], lunid[6], lunid[7]);
}
static ssize_t unique_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ctlr_info *h;
struct scsi_device *sdev;
struct hpsa_scsi_dev_t *hdev;
unsigned long flags;
unsigned char sn[16];
sdev = to_scsi_device(dev);
h = sdev_to_hba(sdev);
spin_lock_irqsave(&h->lock, flags);
hdev = sdev->hostdata;
if (!hdev) {
spin_unlock_irqrestore(&h->lock, flags);
return -ENODEV;
}
memcpy(sn, hdev->device_id, sizeof(sn));
spin_unlock_irqrestore(&h->lock, flags);
return snprintf(buf, 16 * 2 + 2,
"%02X%02X%02X%02X%02X%02X%02X%02X"
"%02X%02X%02X%02X%02X%02X%02X%02X\n",
sn[0], sn[1], sn[2], sn[3],
sn[4], sn[5], sn[6], sn[7],
sn[8], sn[9], sn[10], sn[11],
sn[12], sn[13], sn[14], sn[15]);
}
static int hpsa_find_target_lun(struct ctlr_info *h,
unsigned char scsi3addr[], int bus, int *target, int *lun)
{
/* finds an unused bus, target, lun for a new physical device
* assumes h->devlock is held
*/
int i, found = 0;
DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
for (i = 0; i < h->ndevices; i++) {
if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
set_bit(h->dev[i]->target, lun_taken);
}
for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
if (!test_bit(i, lun_taken)) {
/* *bus = 1; */
*target = i;
*lun = 0;
found = 1;
break;
}
}
return !found;
}
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
struct hpsa_scsi_dev_t *device,
struct hpsa_scsi_dev_t *added[], int *nadded)
{
/* assumes h->devlock is held */
int n = h->ndevices;
int i;
unsigned char addr1[8], addr2[8];
struct hpsa_scsi_dev_t *sd;
if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
dev_err(&h->pdev->dev, "too many devices, some will be "
"inaccessible.\n");
return -1;
}
/* physical devices do not have lun or target assigned until now. */
if (device->lun != -1)
/* Logical device, lun is already assigned. */
goto lun_assigned;
/* If this device a non-zero lun of a multi-lun device
* byte 4 of the 8-byte LUN addr will contain the logical
* unit no, zero otherise.
*/
if (device->scsi3addr[4] == 0) {
/* This is not a non-zero lun of a multi-lun device */
if (hpsa_find_target_lun(h, device->scsi3addr,
device->bus, &device->target, &device->lun) != 0)
return -1;
goto lun_assigned;
}
/* This is a non-zero lun of a multi-lun device.
* Search through our list and find the device which
* has the same 8 byte LUN address, excepting byte 4.
* Assign the same bus and target for this new LUN.
* Use the logical unit number from the firmware.
*/
memcpy(addr1, device->scsi3addr, 8);
addr1[4] = 0;
for (i = 0; i < n; i++) {
sd = h->dev[i];
memcpy(addr2, sd->scsi3addr, 8);
addr2[4] = 0;
/* differ only in byte 4? */
if (memcmp(addr1, addr2, 8) == 0) {
device->bus = sd->bus;
device->target = sd->target;
device->lun = device->scsi3addr[4];
break;
}
}
if (device->lun == -1) {
dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
" suspect firmware bug or unsupported hardware "
"configuration.\n");
return -1;
}
lun_assigned:
h->dev[n] = device;
h->ndevices++;
added[*nadded] = device;
(*nadded)++;
/* initially, (before registering with scsi layer) we don't
* know our hostno and we don't want to print anything first
* time anyway (the scsi layer's inquiries will show that info)
*/
/* if (hostno != -1) */
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
scsi_device_type(device->devtype), hostno,
device->bus, device->target, device->lun);
return 0;
}
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
int entry, struct hpsa_scsi_dev_t *new_entry,
struct hpsa_scsi_dev_t *added[], int *nadded,
struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
/* assumes h->devlock is held */
BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
removed[*nremoved] = h->dev[entry];
(*nremoved)++;
h->dev[entry] = new_entry;
added[*nadded] = new_entry;
(*nadded)++;
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
new_entry->target, new_entry->lun);
}
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
/* assumes h->devlock is held */
int i;
struct hpsa_scsi_dev_t *sd;
BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
sd = h->dev[entry];
removed[*nremoved] = h->dev[entry];
(*nremoved)++;
for (i = entry; i < h->ndevices-1; i++)
h->dev[i] = h->dev[i+1];
h->ndevices--;
dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
sd->lun);
}
#define SCSI3ADDR_EQ(a, b) ( \
(a)[7] == (b)[7] && \
(a)[6] == (b)[6] && \
(a)[5] == (b)[5] && \
(a)[4] == (b)[4] && \
(a)[3] == (b)[3] && \
(a)[2] == (b)[2] && \
(a)[1] == (b)[1] && \
(a)[0] == (b)[0])
static void fixup_botched_add(struct ctlr_info *h,
struct hpsa_scsi_dev_t *added)
{
/* called when scsi_add_device fails in order to re-adjust
* h->dev[] to match the mid layer's view.
*/
unsigned long flags;
int i, j;
spin_lock_irqsave(&h->lock, flags);
for (i = 0; i < h->ndevices; i++) {
if (h->dev[i] == added) {
for (j = i; j < h->ndevices-1; j++)
h->dev[j] = h->dev[j+1];
h->ndevices--;
break;
}
}
spin_unlock_irqrestore(&h->lock, flags);
kfree(added);
}
static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
struct hpsa_scsi_dev_t *dev2)
{
if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
(dev1->lun != -1 && dev2->lun != -1)) &&
dev1->devtype != 0x0C)
return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
/* we compare everything except lun and target as these
* are not yet assigned. Compare parts likely
* to differ first
*/
if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
sizeof(dev1->scsi3addr)) != 0)
return 0;
if (memcmp(dev1->device_id, dev2->device_id,
sizeof(dev1->device_id)) != 0)
return 0;
if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
return 0;
if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
return 0;
if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
return 0;
if (dev1->devtype != dev2->devtype)
return 0;
if (dev1->raid_level != dev2->raid_level)
return 0;
if (dev1->bus != dev2->bus)
return 0;
return 1;
}
/* Find needle in haystack. If exact match found, return DEVICE_SAME,
* and return needle location in *index. If scsi3addr matches, but not
* vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
* location in *index. If needle not found, return DEVICE_NOT_FOUND.
*/
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
struct hpsa_scsi_dev_t *haystack[], int haystack_size,
int *index)
{
int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
for (i = 0; i < haystack_size; i++) {
if (haystack[i] == NULL) /* previously removed. */
continue;
if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
*index = i;
if (device_is_the_same(needle, haystack[i]))
return DEVICE_SAME;
else
return DEVICE_CHANGED;
}
}
*index = -1;
return DEVICE_NOT_FOUND;
}
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
struct hpsa_scsi_dev_t *sd[], int nsds)
{
/* sd contains scsi3 addresses and devtypes, and inquiry
* data. This function takes what's in sd to be the current
* reality and updates h->dev[] to reflect that reality.
*/
int i, entry, device_change, changes = 0;
struct hpsa_scsi_dev_t *csd;
unsigned long flags;
struct hpsa_scsi_dev_t **added, **removed;
int nadded, nremoved;
struct Scsi_Host *sh = NULL;
added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
GFP_KERNEL);
removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
GFP_KERNEL);
if (!added || !removed) {
dev_warn(&h->pdev->dev, "out of memory in "
"adjust_hpsa_scsi_table\n");
goto free_and_out;
}
spin_lock_irqsave(&h->devlock, flags);
/* find any devices in h->dev[] that are not in
* sd[] and remove them from h->dev[], and for any
* devices which have changed, remove the old device
* info and add the new device info.
*/
i = 0;
nremoved = 0;
nadded = 0;
while (i < h->ndevices) {
csd = h->dev[i];
device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
if (device_change == DEVICE_NOT_FOUND) {
changes++;
hpsa_scsi_remove_entry(h, hostno, i,
removed, &nremoved);
continue; /* remove ^^^, hence i not incremented */
} else if (device_change == DEVICE_CHANGED) {
changes++;
hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
added, &nadded, removed, &nremoved);
/* Set it to NULL to prevent it from being freed
* at the bottom of hpsa_update_scsi_devices()
*/
sd[entry] = NULL;
}
i++;
}
/* Now, make sure every device listed in sd[] is also
* listed in h->dev[], adding them if they aren't found
*/
for (i = 0; i < nsds; i++) {
if (!sd[i]) /* if already added above. */
continue;
device_change = hpsa_scsi_find_entry(sd[i], h->dev,
h->ndevices, &entry);
if (device_change == DEVICE_NOT_FOUND) {
changes++;
if (hpsa_scsi_add_entry(h, hostno, sd[i],
added, &nadded) != 0)
break;
sd[i] = NULL; /* prevent from being freed later. */
} else if (device_change == DEVICE_CHANGED) {
/* should never happen... */
changes++;
dev_warn(&h->pdev->dev,
"device unexpectedly changed.\n");
/* but if it does happen, we just ignore that device */
}
}
spin_unlock_irqrestore(&h->devlock, flags);
/* Don't notify scsi mid layer of any changes the first time through
* (or if there are no changes) scsi_scan_host will do it later the
* first time through.
*/
if (hostno == -1 || !changes)
goto free_and_out;
sh = h->scsi_host;
/* Notify scsi mid layer of any removed devices */
for (i = 0; i < nremoved; i++) {
struct scsi_device *sdev =
scsi_device_lookup(sh, removed[i]->bus,
removed[i]->target, removed[i]->lun);
if (sdev != NULL) {
scsi_remove_device(sdev);
scsi_device_put(sdev);
} else {
/* We don't expect to get here.
* future cmds to this device will get selection
* timeout as if the device was gone.
*/
dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
" for removal.", hostno, removed[i]->bus,
removed[i]->target, removed[i]->lun);
}
kfree(removed[i]);
removed[i] = NULL;
}
/* Notify scsi mid layer of any added devices */
for (i = 0; i < nadded; i++) {
if (scsi_add_device(sh, added[i]->bus,
added[i]->target, added[i]->lun) == 0)
continue;
dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
"device not added.\n", hostno, added[i]->bus,
added[i]->target, added[i]->lun);
/* now we have to remove it from h->dev,
* since it didn't get added to scsi mid layer
*/
fixup_botched_add(h, added[i]);
}
free_and_out:
kfree(added);
kfree(removed);
}
/*
* Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
* Assume's h->devlock is held.
*/
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
int bus, int target, int lun)
{
int i;
struct hpsa_scsi_dev_t *sd;
for (i = 0; i < h->ndevices; i++) {
sd = h->dev[i];
if (sd->bus == bus && sd->target == target && sd->lun == lun)
return sd;
}
return NULL;
}
/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
struct hpsa_scsi_dev_t *sd;
unsigned long flags;
struct ctlr_info *h;
h = sdev_to_hba(sdev);
spin_lock_irqsave(&h->devlock, flags);
sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
sdev_id(sdev), sdev->lun);
if (sd != NULL)
sdev->hostdata = sd;
spin_unlock_irqrestore(&h->devlock, flags);
return 0;
}
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
/* nothing to do. */
}
static void hpsa_scsi_setup(struct ctlr_info *h)
{
h->ndevices = 0;
h->scsi_host = NULL;
spin_lock_init(&h->devlock);
}
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
int i;
if (!h->cmd_sg_list)
return;
for (i = 0; i < h->nr_cmds; i++) {
kfree(h->cmd_sg_list[i]);
h->cmd_sg_list[i] = NULL;
}
kfree(h->cmd_sg_list);
h->cmd_sg_list = NULL;
}
static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
int i;
if (h->chainsize <= 0)
return 0;
h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
GFP_KERNEL);
if (!h->cmd_sg_list)
return -ENOMEM;
for (i = 0; i < h->nr_cmds; i++) {
h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
h->chainsize, GFP_KERNEL);
if (!h->cmd_sg_list[i])
goto clean;
}
return 0;
clean:
hpsa_free_sg_chain_blocks(h);
return -ENOMEM;
}
static void hpsa_map_sg_chain_block(struct ctlr_info *h,
struct CommandList *c)
{
struct SGDescriptor *chain_sg, *chain_block;
u64 temp64;
chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
chain_block = h->cmd_sg_list[c->cmdindex];
chain_sg->Ext = HPSA_SG_CHAIN;
chain_sg->Len = sizeof(*chain_sg) *
(c->Header.SGTotal - h->max_cmd_sg_entries);
temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
PCI_DMA_TODEVICE);
chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
}
static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
struct CommandList *c)
{
struct SGDescriptor *chain_sg;
union u64bit temp64;
if (c->Header.SGTotal <= h->max_cmd_sg_entries)
return;
chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
temp64.val32.lower = chain_sg->Addr.lower;
temp64.val32.upper = chain_sg->Addr.upper;
pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}
static void complete_scsi_command(struct CommandList *cp,
int timeout, u32 tag)
{
struct scsi_cmnd *cmd;
struct ctlr_info *h;
struct ErrorInfo *ei;
unsigned char sense_key;
unsigned char asc; /* additional sense code */
unsigned char ascq; /* additional sense code qualifier */
ei = cp->err_info;
cmd = (struct scsi_cmnd *) cp->scsi_cmd;
h = cp->h;
scsi_dma_unmap(cmd); /* undo the DMA mappings */
if (cp->Header.SGTotal > h->max_cmd_sg_entries)
hpsa_unmap_sg_chain_block(h, cp);
cmd->result = (DID_OK << 16); /* host byte */
cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
cmd->result |= ei->ScsiStatus;
/* copy the sense data whether we need to or not. */
memcpy(cmd->sense_buffer, ei->SenseInfo,
ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
SCSI_SENSE_BUFFERSIZE :
ei->SenseLen);
scsi_set_resid(cmd, ei->ResidualCnt);
if (ei->CommandStatus == 0) {
cmd->scsi_done(cmd);
cmd_free(h, cp);
return;
}
/* an error has occurred */
switch (ei->CommandStatus) {
case CMD_TARGET_STATUS:
if (ei->ScsiStatus) {
/* Get sense key */
sense_key = 0xf & ei->SenseInfo[2];
/* Get additional sense code */
asc = ei->SenseInfo[12];
/* Get addition sense code qualifier */
ascq = ei->SenseInfo[13];
}
if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
if (check_for_unit_attention(h, cp)) {
cmd->result = DID_SOFT_ERROR << 16;
break;
}
if (sense_key == ILLEGAL_REQUEST) {
/*
* SCSI REPORT_LUNS is commonly unsupported on
* Smart Array. Suppress noisy complaint.
*/
if (cp->Request.CDB[0] == REPORT_LUNS)
break;
/* If ASC/ASCQ indicate Logical Unit
* Not Supported condition,
*/
if ((asc == 0x25) && (ascq == 0x0)) {
dev_warn(&h->pdev->dev, "cp %p "
"has check condition\n", cp);
break;
}
}
if (sense_key == NOT_READY) {
/* If Sense is Not Ready, Logical Unit
* Not ready, Manual Intervention
* required
*/
if ((asc == 0x04) && (ascq == 0x03)) {
dev_warn(&h->pdev->dev, "cp %p "
"has check condition: unit "
"not ready, manual "
"intervention required\n", cp);
break;
}
}
if (sense_key == ABORTED_COMMAND) {
/* Aborted command is retryable */
dev_warn(&h->pdev->dev, "cp %p "
"has check condition: aborted command: "
"ASC: 0x%x, ASCQ: 0x%x\n",
cp, asc, ascq);
cmd->result = DID_SOFT_ERROR << 16;
break;
}
/* Must be some other type of check condition */
dev_warn(&h->pdev->dev, "cp %p has check condition: "
"unknown type: "
"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
"Returning result: 0x%x, "
"cmd=[%02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x %02x "
"%02x %02x %02x %02x %02x]\n",
cp, sense_key, asc, ascq,
cmd->result,
cmd->cmnd[0], cmd->cmnd[1],
cmd->cmnd[2], cmd->cmnd[3],
cmd->cmnd[4], cmd->cmnd[5],
cmd->cmnd[6], cmd->cmnd[7],
cmd->cmnd[8], cmd->cmnd[9],
cmd->cmnd[10], cmd->cmnd[11],
cmd->cmnd[12], cmd->cmnd[13],
cmd->cmnd[14], cmd->cmnd[15]);
break;
}
/* Problem was not a check condition
* Pass it up to the upper layers...
*/
if (ei->ScsiStatus) {
dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
"Returning result: 0x%x\n",
cp, ei->ScsiStatus,
sense_key, asc, ascq,
cmd->result);
} else { /* scsi status is zero??? How??? */
dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
"Returning no connection.\n", cp),
/* Ordinarily, this case should never happen,
* but there is a bug in some released firmware
* revisions that allows it to happen if, for
* example, a 4100 backplane loses power and
* the tape drive is in it. We assume that
* it's a fatal error of some kind because we
* can't show that it wasn't. We will make it
* look like selection timeout since that is
* the most common reason for this to occur,
* and it's severe enough.
*/
cmd->result = DID_NO_CONNECT << 16;
}
break;
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
break;
case CMD_DATA_OVERRUN:
dev_warn(&h->pdev->dev, "cp %p has"
" completed with data overrun "
"reported\n", cp);
break;
case CMD_INVALID: {
/* print_bytes(cp, sizeof(*cp), 1, 0);
print_cmd(cp); */
/* We get CMD_INVALID if you address a non-existent device
* instead of a selection timeout (no response). You will
* see this if you yank out a drive, then try to access it.
* This is kind of a shame because it means that any other
* CMD_INVALID (e.g. driver bug) will get interpreted as a
* missing target. */
cmd->result = DID_NO_CONNECT << 16;
}
break;
case CMD_PROTOCOL_ERR:
dev_warn(&h->pdev->dev, "cp %p has "
"protocol error \n", cp);
break;
case CMD_HARDWARE_ERR:
cmd->result = DID_ERROR << 16;
dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
break;
case CMD_CONNECTION_LOST:
cmd->result = DID_ERROR << 16;
dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
break;
case CMD_ABORTED:
cmd->result = DID_ABORT << 16;
dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
cp, ei->ScsiStatus);
break;
case CMD_ABORT_FAILED:
cmd->result = DID_ERROR << 16;
dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
break;
case CMD_UNSOLICITED_ABORT:
cmd->result = DID_RESET << 16;
dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
"abort\n", cp);
break;
case CMD_TIMEOUT:
cmd->result = DID_TIME_OUT << 16;
dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
break;
default:
cmd->result = DID_ERROR << 16;
dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
cp, ei->CommandStatus);
}
cmd->scsi_done(cmd);
cmd_free(h, cp);
}
static int hpsa_scsi_detect(struct ctlr_info *h)
{
struct Scsi_Host *sh;
int error;
sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
if (sh == NULL)
goto fail;
sh->io_port = 0;
sh->n_io_port = 0;
sh->this_id = -1;
sh->max_channel = 3;
sh->max_cmd_len = MAX_COMMAND_SIZE;
sh->max_lun = HPSA_MAX_LUN;
sh->max_id = HPSA_MAX_LUN;
sh->can_queue = h->nr_cmds;
sh->cmd_per_lun = h->nr_cmds;
sh->sg_tablesize = h->maxsgentries;
h->scsi_host = sh;
sh->hostdata[0] = (unsigned long) h;
sh->irq = h->intr[PERF_MODE_INT];
sh->unique_id = sh->irq;
error = scsi_add_host(sh, &h->pdev->dev);
if (error)
goto fail_host_put;
scsi_scan_host(sh);
return 0;
fail_host_put:
dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
" failed for controller %d\n", h->ctlr);
scsi_host_put(sh);
return error;
fail:
dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
" failed for controller %d\n", h->ctlr);
return -ENOMEM;
}
static void hpsa_pci_unmap(struct pci_dev *pdev,
struct CommandList *c, int sg_used, int data_direction)
{
int i;
union u64bit addr64;
for (i = 0; i < sg_used; i++) {
addr64.val32.lower = c->SG[i].Addr.lower;
addr64.val32.upper = c->SG[i].Addr.upper;
pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
data_direction);
}
}
static void hpsa_map_one(struct pci_dev *pdev,
struct CommandList *cp,
unsigned char *buf,
size_t buflen,
int data_direction)
{
u64 addr64;
if (buflen == 0 || data_direction == PCI_DMA_NONE) {
cp->Header.SGList = 0;
cp->Header.SGTotal = 0;
return;
}
addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
cp->SG[0].Addr.lower =
(u32) (addr64 & (u64) 0x00000000FFFFFFFF);
cp->SG[0].Addr.upper =
(u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
cp->SG[0].Len = buflen;
cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
}
static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
struct CommandList *c)
{
DECLARE_COMPLETION_ONSTACK(wait);
c->waiting = &wait;
enqueue_cmd_and_start_io(h, c);
wait_for_completion(&wait);
}
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
struct CommandList *c, int data_direction)
{
int retry_count = 0;
do {
memset(c->err_info, 0, sizeof(c->err_info));
hpsa_scsi_do_simple_cmd_core(h, c);
retry_count++;
} while (check_for_unit_attention(h, c) && retry_count <= 3);
hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}
static void hpsa_scsi_interpret_error(struct CommandList *cp)
{
struct ErrorInfo *ei;
struct device *d = &cp->h->pdev->dev;
ei = cp->err_info;
switch (ei->CommandStatus) {
case CMD_TARGET_STATUS:
dev_warn(d, "cmd %p has completed with errors\n", cp);
dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
ei->ScsiStatus);
if (ei->ScsiStatus == 0)
dev_warn(d, "SCSI status is abnormally zero. "
"(probably indicates selection timeout "
"reported incorrectly due to a known "
"firmware bug, circa July, 2001.)\n");
break;
case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
dev_info(d, "UNDERRUN\n");
break;
case CMD_DATA_OVERRUN:
dev_warn(d, "cp %p has completed with data overrun\n", cp);
break;
case CMD_INVALID: {
/* controller unfortunately reports SCSI passthru's
* to non-existent targets as invalid commands.
*/
dev_warn(d, "cp %p is reported invalid (probably means "
"target device no longer present)\n", cp);
/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
print_cmd(cp); */
}
break;
case CMD_PROTOCOL_ERR:
dev_warn(d, "cp %p has protocol error \n", cp);
break;
case CMD_HARDWARE_ERR:
/* cmd->result = DID_ERROR << 16; */
dev_warn(d, "cp %p had hardware error\n", cp);
break;
case CMD_CONNECTION_LOST:
dev_warn(d, "cp %p had connection lost\n", cp);
break;
case CMD_ABORTED:
dev_warn(d, "cp %p was aborted\n", cp);
break;
case CMD_ABORT_FAILED:
dev_warn(d, "cp %p reports abort failed\n", cp);
break;
case CMD_UNSOLICITED_ABORT:
dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
break;
case CMD_TIMEOUT:
dev_warn(d, "cp %p timed out\n", cp);
break;
default:
dev_warn(d, "cp %p returned unknown status %x\n", cp,
ei->CommandStatus);
}
}
static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
unsigned char page, unsigned char *buf,
unsigned char bufsize)
{
int rc = IO_OK;
struct CommandList *c;
struct ErrorInfo *ei;
c = cmd_special_alloc(h);
if (c == NULL) { /* trouble... */
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
return -ENOMEM;
}
fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
ei = c->err_info;
if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
hpsa_scsi_interpret_error(c);
rc = -1;
}
cmd_special_free(h, c);
return rc;
}
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
{
int rc = IO_OK;
struct CommandList *c;
struct ErrorInfo *ei;
c = cmd_special_alloc(h);
if (c == NULL) { /* trouble... */
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
return -ENOMEM;
}
fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
hpsa_scsi_do_simple_cmd_core(h, c);
/* no unmap needed here because no data xfer. */
ei = c->err_info;
if (ei->CommandStatus != 0) {
hpsa_scsi_interpret_error(c);
rc = -1;
}
cmd_special_free(h, c);
return rc;
}
static void hpsa_get_raid_level(struct ctlr_info *h,
unsigned char *scsi3addr, unsigned char *raid_level)
{
int rc;
unsigned char *buf;
*raid_level = RAID_UNKNOWN;
buf = kzalloc(64, GFP_KERNEL);
if (!buf)
return;
rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
if (rc == 0)
*raid_level = buf[8];
if (*raid_level > RAID_UNKNOWN)
*raid_level = RAID_UNKNOWN;
kfree(buf);
return;
}
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
unsigned char *device_id, int buflen)
{
int rc;
unsigned char *buf;
if (buflen > 16)
buflen = 16;
buf = kzalloc(64, GFP_KERNEL);
if (!buf)
return -1;
rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
if (rc == 0)
memcpy(device_id, &buf[8], buflen);
kfree(buf);
return rc != 0;
}
static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
struct ReportLUNdata *buf, int bufsize,
int extended_response)
{
int rc = IO_OK;
struct CommandList *c;
unsigned char scsi3addr[8];
struct ErrorInfo *ei;
c = cmd_special_alloc(h);
if (c == NULL) { /* trouble... */
dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
return -1;
}
/* address the controller */
memset(scsi3addr, 0, sizeof(scsi3addr));
fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
buf, bufsize, 0, scsi3addr, TYPE_CMD);
if (extended_response)
c->Request.CDB[1] = extended_response;
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
ei = c->err_info;
if (ei->CommandStatus != 0 &&
ei->CommandStatus != CMD_DATA_UNDERRUN) {
hpsa_scsi_interpret_error(c);
rc = -1;
}
cmd_special_free(h, c);
return rc;
}
static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
struct ReportLUNdata *buf,
int bufsize, int extended_response)
{
return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}
static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
struct ReportLUNdata *buf, int bufsize)
{
return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}
static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
int bus, int target, int lun)
{
device->bus = bus;
device->target = target;
device->lun = lun;
}
static int hpsa_update_device_info(struct ctlr_info *h,
unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
{
#define OBDR_TAPE_INQ_SIZE 49
unsigned char *inq_buff;
inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
if (!inq_buff)
goto bail_out;
/* Do an inquiry to the device to see what it is. */
if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
/* Inquiry failed (msg printed already) */
dev_err(&h->pdev->dev,
"hpsa_update_device_info: inquiry failed\n");
goto bail_out;
}
/* As a side effect, record the firmware version number
* if we happen to be talking to the RAID controller.
*/
if (is_hba_lunid(scsi3addr))
memcpy(h->firm_ver, &inq_buff[32], 4);
this_device->devtype = (inq_buff[0] & 0x1f);
memcpy(this_device->scsi3addr, scsi3addr, 8);
memcpy(this_device->vendor, &inq_buff[8],
sizeof(this_device->vendor));
memcpy(this_device->model, &inq_buff[16],
sizeof(this_device->model));
memcpy(this_device->revision, &inq_buff[32],
sizeof(this_device->revision));
memset(this_device->device_id, 0,
sizeof(this_device->device_id));
hpsa_get_device_id(h, scsi3addr, this_device->device_id,
sizeof(this_device->device_id));
if (this_device->devtype == TYPE_DISK &&
is_logical_dev_addr_mode(scsi3addr))
hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
else
this_device->raid_level = RAID_UNKNOWN;
kfree(inq_buff);
return 0;
bail_out:
kfree(inq_buff);
return 1;
}
static unsigned char *msa2xxx_model[] = {
"MSA2012",
"MSA2024",
"MSA2312",
"MSA2324",
NULL,
};
static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
{
int i;
for (i = 0; msa2xxx_model[i]; i++)
if (strncmp(device->model, msa2xxx_model[i],
strlen(msa2xxx_model[i])) == 0)
return 1;
return 0;
}
/* Helper function to assign bus, target, lun mapping of devices.
* Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
* volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
* Logical drive target and lun are assigned at this time, but
* physical device lun and target assignment are deferred (assigned
* in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
*/
static void figure_bus_target_lun(struct ctlr_info *h,
u8 *lunaddrbytes, int *bus, int *target, int *lun,
struct hpsa_scsi_dev_t *device)
{
u32 lunid;
if (is_logical_dev_addr_mode(lunaddrbytes)) {
/* logical device */
if (unlikely(is_scsi_rev_5(h))) {
/* p1210m, logical drives lun assignments
* match SCSI REPORT LUNS data.
*/
lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
*bus = 0;
*target = 0;
*lun = (lunid & 0x3fff) + 1;
} else {
/* not p1210m... */
lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
if (is_msa2xxx(h, device)) {
/* msa2xxx way, put logicals on bus 1
* and match target/lun numbers box
* reports.
*/
*bus = 1;
*target = (lunid >> 16) & 0x3fff;
*lun = lunid & 0x00ff;
} else {
/* Traditional smart array way. */
*bus = 0;
*lun = 0;
*target = lunid & 0x3fff;
}
}
} else {
/* physical device */
if (is_hba_lunid(lunaddrbytes))
if (unlikely(is_scsi_rev_5(h))) {
*bus = 0; /* put p1210m ctlr at 0,0,0 */
*target = 0;
*lun = 0;
return;
} else
*bus = 3; /* traditional smartarray */
else
*bus = 2; /* physical disk */
*target = -1;
*lun = -1; /* we will fill these in later. */
}
}
/*
* If there is no lun 0 on a target, linux won't find any devices.
* For the MSA2xxx boxes, we have to manually detect the enclosure
* which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
* it for some reason. *tmpdevice is the target we're adding,
* this_device is a pointer into the current element of currentsd[]
* that we're building up in update_scsi_devices(), below.
* lunzerobits is a bitmap that tracks which targets already have a
* lun 0 assigned.
* Returns 1 if an enclosure was added, 0 if not.
*/
static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
struct hpsa_scsi_dev_t *tmpdevice,
struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
int bus, int target, int lun, unsigned long lunzerobits[],
int *nmsa2xxx_enclosures)
{
unsigned char scsi3addr[8];
if (test_bit(target, lunzerobits))
return 0; /* There is already a lun 0 on this target. */
if (!is_logical_dev_addr_mode(lunaddrbytes))
return 0; /* It's the logical targets that may lack lun 0. */
if (!is_msa2xxx(h, tmpdevice))
return 0; /* It's only the MSA2xxx that have this problem. */
if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
return 0;
if (is_hba_lunid(scsi3addr))
return 0; /* Don't add the RAID controller here. */
if (is_scsi_rev_5(h))
return 0; /* p1210m doesn't need to do this. */
#define MAX_MSA2XXX_ENCLOSURES 32
if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
"enclosures exceeded. Check your hardware "
"configuration.");
return 0;
}
memset(scsi3addr, 0, 8);
scsi3addr[3] = target;
if (hpsa_update_device_info(h, scsi3addr, this_device))
return 0;
(*nmsa2xxx_enclosures)++;
hpsa_set_bus_target_lun(this_device, bus, target, 0);
set_bit(target, lunzerobits);
return 1;
}
/*
* Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
* logdev. The number of luns in physdev and logdev are returned in
* *nphysicals and *nlogicals, respectively.
* Returns 0 on success, -1 otherwise.
*/
static int hpsa_gather_lun_info(struct ctlr_info *h,
int reportlunsize,
struct ReportLUNdata *physdev, u32 *nphysicals,
struct ReportLUNdata *logdev, u32 *nlogicals)
{
if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
return -1;
}
*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
if (*nphysicals > HPSA_MAX_PHYS_LUN) {
dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
" %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
*nphysicals - HPSA_MAX_PHYS_LUN);
*nphysicals = HPSA_MAX_PHYS_LUN;
}
if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
return -1;
}
*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
/* Reject Logicals in excess of our max capability. */
if (*nlogicals > HPSA_MAX_LUN) {
dev_warn(&h->pdev->dev,
"maximum logical LUNs (%d) exceeded. "
"%d LUNs ignored.\n", HPSA_MAX_LUN,
*nlogicals - HPSA_MAX_LUN);
*nlogicals = HPSA_MAX_LUN;
}
if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
dev_warn(&h->pdev->dev,
"maximum logical + physical LUNs (%d) exceeded. "
"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
}
return 0;
}
u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
struct ReportLUNdata *logdev_list)
{
/* Helper function, figure out where the LUN ID info is coming from
* given index i, lists of physical and logical devices, where in
* the list the raid controller is supposed to appear (first or last)
*/
int logicals_start = nphysicals + (raid_ctlr_position == 0);
int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
if (i == raid_ctlr_position)
return RAID_CTLR_LUNID;
if (i < logicals_start)
return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
if (i < last_device)
return &logdev_list->LUN[i - nphysicals -
(raid_ctlr_position == 0)][0];
BUG();
return NULL;
}
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
/* the idea here is we could get notified
* that some devices have changed, so we do a report
* physical luns and report logical luns cmd, and adjust
* our list of devices accordingly.
*
* The scsi3addr's of devices won't change so long as the
* adapter is not reset. That means we can rescan and
* tell which devices we already know about, vs. new
* devices, vs. disappearing devices.
*/
struct ReportLUNdata *physdev_list = NULL;
struct ReportLUNdata *logdev_list = NULL;
unsigned char *inq_buff = NULL;
u32 nphysicals = 0;
u32 nlogicals = 0;
u32 ndev_allocated = 0;
struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
int ncurrent = 0;
int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
int i, nmsa2xxx_enclosures, ndevs_to_allocate;
int bus, target, lun;
int raid_ctlr_position;
DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
GFP_KERNEL);
physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
if (!currentsd || !physdev_list || !logdev_list ||
!inq_buff || !tmpdevice) {
dev_err(&h->pdev->dev, "out of memory\n");
goto out;
}
memset(lunzerobits, 0, sizeof(lunzerobits));
if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
logdev_list, &nlogicals))
goto out;
/* We might see up to 32 MSA2xxx enclosures, actually 8 of them
* but each of them 4 times through different paths. The plus 1
* is for the RAID controller.
*/
ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
/* Allocate the per device structures */
for (i = 0; i < ndevs_to_allocate; i++) {
currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
if (!currentsd[i]) {
dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
__FILE__, __LINE__);
goto out;
}
ndev_allocated++;
}
if (unlikely(is_scsi_rev_5(h)))
raid_ctlr_position = 0;
else
raid_ctlr_position = nphysicals + nlogicals;
/* adjust our table of devices */
nmsa2xxx_enclosures = 0;
for (i = 0; i < nphysicals + nlogicals + 1; i++) {
u8 *lunaddrbytes;
/* Figure out where the LUN ID info is coming from */
lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
i, nphysicals, nlogicals, physdev_list, logdev_list);
/* skip masked physical devices. */
if (lunaddrbytes[3] & 0xC0 &&
i < nphysicals + (raid_ctlr_position == 0))
continue;
/* Get device type, vendor, model, device id */
if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
continue; /* skip it if we can't talk to it. */
figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
tmpdevice);
this_device = currentsd[ncurrent];
/*
* For the msa2xxx boxes, we have to insert a LUN 0 which
* doesn't show up in CCISS_REPORT_PHYSICAL data, but there
* is nonetheless an enclosure device there. We have to
* present that otherwise linux won't find anything if
* there is no lun 0.
*/
if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
lunaddrbytes, bus, target, lun, lunzerobits,
&nmsa2xxx_enclosures)) {
ncurrent++;
this_device = currentsd[ncurrent];
}
*this_device = *tmpdevice;
hpsa_set_bus_target_lun(this_device, bus, target, lun);
switch (this_device->devtype) {
case TYPE_ROM: {
/* We don't *really* support actual CD-ROM devices,
* just "One Button Disaster Recovery" tape drive
* which temporarily pretends to be a CD-ROM drive.
* So we check that the device is really an OBDR tape
* device by checking for "$DR-10" in bytes 43-48 of
* the inquiry data.
*/
char obdr_sig[7];
#define OBDR_TAPE_SIG "$DR-10"
strncpy(obdr_sig, &inq_buff[43], 6);
obdr_sig[6] = '\0';
if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
/* Not OBDR device, ignore it. */
break;
}
ncurrent++;
break;
case TYPE_DISK:
if (i < nphysicals)
break;
ncurrent++;
break;
case TYPE_TAPE:
case TYPE_MEDIUM_CHANGER:
ncurrent++;
break;
case TYPE_RAID:
/* Only present the Smartarray HBA as a RAID controller.
* If it's a RAID controller other than the HBA itself
* (an external RAID controller, MSA500 or similar)
* don't present it.
*/
if (!is_hba_lunid(lunaddrbytes))
break;
ncurrent++;
break;
default:
break;
}
if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
break;
}
adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
kfree(tmpdevice);
for (i = 0; i < ndev_allocated; i++)
kfree(currentsd[i]);
kfree(currentsd);
kfree(inq_buff);
kfree(physdev_list);
kfree(logdev_list);
}
/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
* dma mapping and fills in the scatter gather entries of the
* hpsa command, cp.
*/
static int hpsa_scatter_gather(struct ctlr_info *h,
struct CommandList *cp,
struct scsi_cmnd *cmd)
{
unsigned int len;
struct scatterlist *sg;
u64 addr64;
int use_sg, i, sg_index, chained;
struct SGDescriptor *curr_sg;
BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
use_sg = scsi_dma_map(cmd);
if (use_sg < 0)
return use_sg;
if (!use_sg)
goto sglist_finished;
curr_sg = cp->SG;
chained = 0;
sg_index = 0;
scsi_for_each_sg(cmd, sg, use_sg, i) {
if (i == h->max_cmd_sg_entries - 1 &&
use_sg > h->max_cmd_sg_entries) {
chained = 1;
curr_sg = h->cmd_sg_list[cp->cmdindex];
sg_index = 0;
}
addr64 = (u64) sg_dma_address(sg);
len = sg_dma_len(sg);
curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
curr_sg->Len = len;
curr_sg->Ext = 0; /* we are not chaining */
curr_sg++;
}
if (use_sg + chained > h->maxSG)
h->maxSG = use_sg + chained;
if (chained) {
cp->Header.SGList = h->max_cmd_sg_entries;
cp->Header.SGTotal = (u16) (use_sg + 1);
hpsa_map_sg_chain_block(h, cp);
return 0;
}
sglist_finished:
cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
return 0;
}
static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct ctlr_info *h;
struct hpsa_scsi_dev_t *dev;
unsigned char scsi3addr[8];
struct CommandList *c;
unsigned long flags;
/* Get the ptr to our adapter structure out of cmd->host. */
h = sdev_to_hba(cmd->device);
dev = cmd->device->hostdata;
if (!dev) {
cmd->result = DID_NO_CONNECT << 16;
done(cmd);
return 0;
}
memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
/* Need a lock as this is being allocated from the pool */
spin_lock_irqsave(&h->lock, flags);
c = cmd_alloc(h);
spin_unlock_irqrestore(&h->lock, flags);
if (c == NULL) { /* trouble... */
dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
return SCSI_MLQUEUE_HOST_BUSY;
}
/* Fill in the command list header */
cmd->scsi_done = done; /* save this for use by completion code */
/* save c in case we have to abort it */
cmd->host_scribble = (unsigned char *) c;
c->cmd_type = CMD_SCSI;
c->scsi_cmd = cmd;
c->Header.ReplyQueue = 0; /* unused in simple mode */
memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
/* Fill in the request block... */
c->Request.Timeout = 0;
memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
c->Request.CDBLen = cmd->cmd_len;
memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
c->Request.Type.Type = TYPE_CMD;
c->Request.Type.Attribute = ATTR_SIMPLE;
switch (cmd->sc_data_direction) {
case DMA_TO_DEVICE:
c->Request.Type.Direction = XFER_WRITE;
break;
case DMA_FROM_DEVICE:
c->Request.Type.Direction = XFER_READ;
break;
case DMA_NONE:
c->Request.Type.Direction = XFER_NONE;
break;
case DMA_BIDIRECTIONAL:
/* This can happen if a buggy application does a scsi passthru
* and sets both inlen and outlen to non-zero. ( see
* ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
*/
c->Request.Type.Direction = XFER_RSVD;
/* This is technically wrong, and hpsa controllers should
* reject it with CMD_INVALID, which is the most correct
* response, but non-fibre backends appear to let it
* slide by, and give the same results as if this field
* were set correctly. Either way is acceptable for
* our purposes here.
*/
break;
default:
dev_err(&h->pdev->dev, "unknown data direction: %d\n",
cmd->sc_data_direction);
BUG();
break;
}
if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
cmd_free(h, c);
return SCSI_MLQUEUE_HOST_BUSY;
}
enqueue_cmd_and_start_io(h, c);
/* the cmd'll come back via intr handler in complete_scsi_command() */
return 0;
}
static void hpsa_scan_start(struct Scsi_Host *sh)
{
struct ctlr_info *h = shost_to_hba(sh);
unsigned long flags;
/* wait until any scan already in progress is finished. */
while (1) {
spin_lock_irqsave(&h->scan_lock, flags);
if (h->scan_finished)
break;
spin_unlock_irqrestore(&h->scan_lock, flags);
wait_event(h->scan_wait_queue, h->scan_finished);
/* Note: We don't need to worry about a race between this
* thread and driver unload because the midlayer will
* have incremented the reference count, so unload won't
* happen if we're in here.
*/
}
h->scan_finished = 0; /* mark scan as in progress */
spin_unlock_irqrestore(&h->scan_lock, flags);
hpsa_update_scsi_devices(h, h->scsi_host->host_no);
spin_lock_irqsave(&h->scan_lock, flags);
h->scan_finished = 1; /* mark scan as finished. */
wake_up_all(&h->scan_wait_queue);
spin_unlock_irqrestore(&h->scan_lock, flags);
}
static int hpsa_scan_finished(struct Scsi_Host *sh,
unsigned long elapsed_time)
{
struct ctlr_info *h = shost_to_hba(sh);
unsigned long flags;
int finished;
spin_lock_irqsave(&h->scan_lock, flags);
finished = h->scan_finished;
spin_unlock_irqrestore(&h->scan_lock, flags);
return finished;
}
static int hpsa_change_queue_depth(struct scsi_device *sdev,
int qdepth, int reason)
{
struct ctlr_info *h = sdev_to_hba(sdev);
if (reason != SCSI_QDEPTH_DEFAULT)
return -ENOTSUPP;
if (qdepth < 1)
qdepth = 1;
else
if (qdepth > h->nr_cmds)
qdepth = h->nr_cmds;
scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
return sdev->queue_depth;
}
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
/* we are being forcibly unloaded, and may not refuse. */
scsi_remove_host(h->scsi_host);
scsi_host_put(h->scsi_host);
h->scsi_host = NULL;
}
static int hpsa_register_scsi(struct ctlr_info *h)
{
int rc;
rc = hpsa_scsi_detect(h);
if (rc != 0)
dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
" hpsa_scsi_detect(), rc is %d\n", rc);
return rc;
}
static int wait_for_device_to_become_ready(struct ctlr_info *h,
unsigned char lunaddr[])
{
int rc = 0;
int count = 0;
int waittime = 1; /* seconds */
struct CommandList *c;
c = cmd_special_alloc(h);
if (!c) {
dev_warn(&h->pdev->dev, "out of memory in "
"wait_for_device_to_become_ready.\n");
return IO_ERROR;
}
/* Send test unit ready until device ready, or give up. */
while (count < HPSA_TUR_RETRY_LIMIT) {
/* Wait for a bit. do this first, because if we send
* the TUR right away, the reset will just abort it.
*/
msleep(1000 * waittime);
count++;
/* Increase wait time with each try, up to a point. */
if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
waittime = waittime * 2;
/* Send the Test Unit Ready */
fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
hpsa_scsi_do_simple_cmd_core(h, c);
/* no unmap needed here because no data xfer. */
if (c->err_info->CommandStatus == CMD_SUCCESS)
break;
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
(c->err_info->SenseInfo[2] == NO_SENSE ||
c->err_info->SenseInfo[2] == UNIT_ATTENTION))
break;
dev_warn(&h->pdev->dev, "waiting %d secs "
"for device to become ready.\n", waittime);
rc = 1; /* device not ready. */
}
if (rc)
dev_warn(&h->pdev->dev, "giving up on device.\n");
else
dev_warn(&h->pdev->dev, "device is ready.\n");
cmd_special_free(h, c);
return rc;
}
/* Need at least one of these error handlers to keep ../scsi/hosts.c from
* complaining. Doing a host- or bus-reset can't do anything good here.
*/
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
int rc;
struct ctlr_info *h;
struct hpsa_scsi_dev_t *dev;
/* find the controller to which the command to be aborted was sent */
h = sdev_to_hba(scsicmd->device);
if (h == NULL) /* paranoia */
return FAILED;
dev = scsicmd->device->hostdata;
if (!dev) {
dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
"device lookup failed.\n");
return FAILED;
}
dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
/* send a reset to the SCSI LUN which the command was sent to */
rc = hpsa_send_reset(h, dev->scsi3addr);
if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
return SUCCESS;
dev_warn(&h->pdev->dev, "resetting device failed.\n");
return FAILED;
}
/*
* For operations that cannot sleep, a command block is allocated at init,
* and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
* which ones are free or in use. Lock must be held when calling this.
* cmd_free() is the complement.
*/
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
struct CommandList *c;
int i;
union u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
do {
i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
if (i == h->nr_cmds)
return NULL;
} while (test_and_set_bit
(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
c = h->cmd_pool + i;
memset(c, 0, sizeof(*c));
cmd_dma_handle = h->cmd_pool_dhandle
+ i * sizeof(*c);
c->err_info = h->errinfo_pool + i;
memset(c->err_info, 0, sizeof(*c->err_info));
err_dma_handle = h->errinfo_pool_dhandle
+ i * sizeof(*c->err_info);
h->nr_allocs++;
c->cmdindex = i;
INIT_HLIST_NODE(&c->list);
c->busaddr = (u32) cmd_dma_handle;
temp64.val = (u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(*c->err_info);
c->h = h;
return c;
}
/* For operations that can wait for kmalloc to possibly sleep,
* this routine can be called. Lock need not be held to call
* cmd_special_alloc. cmd_special_free() is the complement.
*/
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
{
struct CommandList *c;
union u64bit temp64;
dma_addr_t cmd_dma_handle, err_dma_handle;
c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
if (c == NULL)
return NULL;
memset(c, 0, sizeof(*c));
c->cmdindex = -1;
c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
&err_dma_handle);
if (c->err_info == NULL) {
pci_free_consistent(h->pdev,
sizeof(*c), c, cmd_dma_handle);
return NULL;
}
memset(c->err_info, 0, sizeof(*c->err_info));
INIT_HLIST_NODE(&c->list);
c->busaddr = (u32) cmd_dma_handle;
temp64.val = (u64) err_dma_handle;
c->ErrDesc.Addr.lower = temp64.val32.lower;
c->ErrDesc.Addr.upper = temp64.val32.upper;
c->ErrDesc.Len = sizeof(*c->err_info);
c->h = h;
return c;
}
static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
int i;
i = c - h->cmd_pool;
clear_bit(i & (BITS_PER_LONG - 1),
h->cmd_pool_bits + (i / BITS_PER_LONG));
h->nr_frees++;
}
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
{
union u64bit temp64;
temp64.val32.lower = c->ErrDesc.Addr.lower;
temp64.val32.upper = c->ErrDesc.Addr.upper;
pci_free_consistent(h->pdev, sizeof(*c->err_info),
c->err_info, (dma_addr_t) temp64.val);
pci_free_consistent(h->pdev, sizeof(*c),
c, (dma_addr_t) c->busaddr);
}
#ifdef CONFIG_COMPAT
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
{
IOCTL32_Command_struct __user *arg32 =
(IOCTL32_Command_struct __user *) arg;
IOCTL_Command_struct arg64;
IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |= copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |= copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
if (err)
return err;
err |= copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
int cmd, void *arg)
{
BIG_IOCTL32_Command_struct __user *arg32 =
(BIG_IOCTL32_Command_struct __user *) arg;
BIG_IOCTL_Command_struct arg64;
BIG_IOCTL_Command_struct __user *p =
compat_alloc_user_space(sizeof(arg64));
int err;
u32 cp;
err = 0;
err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
sizeof(arg64.LUN_info));
err |= copy_from_user(&arg64.Request, &arg32->Request,
sizeof(arg64.Request));
err |= copy_from_user(&arg64.error_info, &arg32->error_info,
sizeof(arg64.error_info));
err |= get_user(arg64.buf_size, &arg32->buf_size);
err |= get_user(arg64.malloc_size, &arg32->malloc_size);
err |= get_user(cp, &arg32->buf);
arg64.buf = compat_ptr(cp);
err |= copy_to_user(p, &arg64, sizeof(arg64));
if (err)
return -EFAULT;
err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
if (err)
return err;
err |= copy_in_user(&arg32->error_info, &p->error_info,
sizeof(arg32->error_info));
if (err)
return -EFAULT;
return err;
}
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
switch (cmd) {
case CCISS_GETPCIINFO:
case CCISS_GETINTINFO:
case CCISS_SETINTINFO:
case CCISS_GETNODENAME:
case CCISS_SETNODENAME:
case CCISS_GETHEARTBEAT:
case CCISS_GETBUSTYPES:
case CCISS_GETFIRMVER:
case CCISS_GETDRIVVER:
case CCISS_REVALIDVOLS:
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
case CCISS_RESCANDISK:
case CCISS_GETLUNINFO:
return hpsa_ioctl(dev, cmd, arg);
case CCISS_PASSTHRU32:
return hpsa_ioctl32_passthru(dev, cmd, arg);
case CCISS_BIG_PASSTHRU32:
return hpsa_ioctl32_big_passthru(dev, cmd, arg);
default:
return -ENOIOCTLCMD;
}
}
#endif
static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
struct hpsa_pci_info pciinfo;
if (!argp)
return -EINVAL;
pciinfo.domain = pci_domain_nr(h->pdev->bus);
pciinfo.bus = h->pdev->bus->number;
pciinfo.dev_fn = h->pdev->devfn;
pciinfo.board_id = h->board_id;
if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
return -EFAULT;
return 0;
}
static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
DriverVer_type DriverVer;
unsigned char vmaj, vmin, vsubmin;
int rc;
rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
&vmaj, &vmin, &vsubmin);
if (rc != 3) {
dev_info(&h->pdev->dev, "driver version string '%s' "
"unrecognized.", HPSA_DRIVER_VERSION);
vmaj = 0;
vmin = 0;
vsubmin = 0;
}
DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
if (!argp)
return -EINVAL;
if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
return -EFAULT;
return 0;
}
static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
IOCTL_Command_struct iocommand;
struct CommandList *c;
char *buff = NULL;
union u64bit temp64;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
return -EFAULT;
if ((iocommand.buf_size < 1) &&
(iocommand.Request.Type.Direction != XFER_NONE)) {
return -EINVAL;
}
if (iocommand.buf_size > 0) {
buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
if (buff == NULL)
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_WRITE) {
/* Copy the data into the buffer we created */
if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
kfree(buff);
return -EFAULT;
}
} else
memset(buff, 0, iocommand.buf_size);
c = cmd_special_alloc(h);
if (c == NULL) {
kfree(buff);
return -ENOMEM;
}
/* Fill in the command type */
c->cmd_type = CMD_IOCTL_PEND;
/* Fill in Command Header */
c->Header.ReplyQueue = 0; /* unused in simple mode */
if (iocommand.buf_size > 0) { /* buffer to fill */
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else { /* no buffers to fill */
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
/* use the kernel address the cmd block for tag */
c->Header.Tag.lower = c->busaddr;
/* Fill in Request block */
memcpy(&c->Request, &iocommand.Request,
sizeof(c->Request));
/* Fill in the scatter gather information */
if (iocommand.buf_size > 0) {
temp64.val = pci_map_single(h->pdev, buff,
iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
c->SG[0].Addr.lower = temp64.val32.lower;
c->SG[0].Addr.upper = temp64.val32.upper;
c->SG[0].Len = iocommand.buf_size;
c->SG[0].Ext = 0; /* we are not chaining*/
}
hpsa_scsi_do_simple_cmd_core(h, c);
hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
check_ioctl_unit_attention(h, c);
/* Copy the error information out */
memcpy(&iocommand.error_info, c->err_info,
sizeof(iocommand.error_info));
if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
kfree(buff);
cmd_special_free(h, c);
return -EFAULT;
}
if (iocommand.Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
kfree(buff);
cmd_special_free(h, c);
return -EFAULT;
}
}
kfree(buff);
cmd_special_free(h, c);
return 0;
}
static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
BIG_IOCTL_Command_struct *ioc;
struct CommandList *c;
unsigned char **buff = NULL;
int *buff_size = NULL;
union u64bit temp64;
BYTE sg_used = 0;
int status = 0;
int i;
u32 left;
u32 sz;
BYTE __user *data_ptr;
if (!argp)
return -EINVAL;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
ioc = (BIG_IOCTL_Command_struct *)
kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc) {
status = -ENOMEM;
goto cleanup1;
}
if (copy_from_user(ioc, argp, sizeof(*ioc))) {
status = -EFAULT;
goto cleanup1;
}
if ((ioc->buf_size < 1) &&
(ioc->Request.Type.Direction != XFER_NONE)) {
status = -EINVAL;
goto cleanup1;
}
/* Check kmalloc limits using all SGs */
if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
status = -EINVAL;
goto cleanup1;
}
if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
status = -EINVAL;
goto cleanup1;
}
buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
if (!buff) {
status = -ENOMEM;
goto cleanup1;
}
buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
if (!buff_size) {
status = -ENOMEM;
goto cleanup1;
}
left = ioc->buf_size;
data_ptr = ioc->buf;
while (left) {
sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
buff_size[sg_used] = sz;
buff[sg_used] = kmalloc(sz, GFP_KERNEL);
if (buff[sg_used] == NULL) {
status = -ENOMEM;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_WRITE) {
if (copy_from_user(buff[sg_used], data_ptr, sz)) {
status = -ENOMEM;
goto cleanup1;
}
} else
memset(buff[sg_used], 0, sz);
left -= sz;
data_ptr += sz;
sg_used++;
}
c = cmd_special_alloc(h);
if (c == NULL) {
status = -ENOMEM;
goto cleanup1;
}
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if (ioc->buf_size > 0) {
c->Header.SGList = sg_used;
c->Header.SGTotal = sg_used;
} else {
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
c->Header.Tag.lower = c->busaddr;
memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
if (ioc->buf_size > 0) {
int i;
for (i = 0; i < sg_used; i++) {
temp64.val = pci_map_single(h->pdev, buff[i],
buff_size[i], PCI_DMA_BIDIRECTIONAL);
c->SG[i].Addr.lower = temp64.val32.lower;
c->SG[i].Addr.upper = temp64.val32.upper;
c->SG[i].Len = buff_size[i];
/* we are not chaining */
c->SG[i].Ext = 0;
}
}
hpsa_scsi_do_simple_cmd_core(h, c);
hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
check_ioctl_unit_attention(h, c);
/* Copy the error information out */
memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
if (copy_to_user(argp, ioc, sizeof(*ioc))) {
cmd_special_free(h, c);
status = -EFAULT;
goto cleanup1;
}
if (ioc->Request.Type.Direction == XFER_READ) {
/* Copy the data out of the buffer we created */
BYTE __user *ptr = ioc->buf;
for (i = 0; i < sg_used; i++) {
if (copy_to_user(ptr, buff[i], buff_size[i])) {
cmd_special_free(h, c);
status = -EFAULT;
goto cleanup1;
}
ptr += buff_size[i];
}
}
cmd_special_free(h, c);
status = 0;
cleanup1:
if (buff) {
for (i = 0; i < sg_used; i++)
kfree(buff[i]);
kfree(buff);
}
kfree(buff_size);
kfree(ioc);
return status;
}
static void check_ioctl_unit_attention(struct ctlr_info *h,
struct CommandList *c)
{
if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
(void) check_for_unit_attention(h, c);
}
/*
* ioctl
*/
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
struct ctlr_info *h;
void __user *argp = (void __user *)arg;
h = sdev_to_hba(dev);
switch (cmd) {
case CCISS_DEREGDISK:
case CCISS_REGNEWDISK:
case CCISS_REGNEWD:
hpsa_scan_start(h->scsi_host);
return 0;
case CCISS_GETPCIINFO:
return hpsa_getpciinfo_ioctl(h, argp);
case CCISS_GETDRIVVER:
return hpsa_getdrivver_ioctl(h, argp);
case CCISS_PASSTHRU:
return hpsa_passthru_ioctl(h, argp);
case CCISS_BIG_PASSTHRU:
return hpsa_big_passthru_ioctl(h, argp);
default:
return -ENOTTY;
}
}
static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
int cmd_type)
{
int pci_dir = XFER_NONE;
c->cmd_type = CMD_IOCTL_PEND;
c->Header.ReplyQueue = 0;
if (buff != NULL && size > 0) {
c->Header.SGList = 1;
c->Header.SGTotal = 1;
} else {
c->Header.SGList = 0;
c->Header.SGTotal = 0;
}
c->Header.Tag.lower = c->busaddr;
memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
c->Request.Type.Type = cmd_type;
if (cmd_type == TYPE_CMD) {
switch (cmd) {
case HPSA_INQUIRY:
/* are we trying to read a vital product page */
if (page_code != 0) {
c->Request.CDB[1] = 0x01;
c->Request.CDB[2] = page_code;
}
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = HPSA_INQUIRY;
c->Request.CDB[4] = size & 0xFF;
break;
case HPSA_REPORT_LOG:
case HPSA_REPORT_PHYS:
/* Talking to controller so It's a physical command
mode = 00 target = 0. Nothing to write.
*/
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_READ;
c->Request.Timeout = 0;
c->Request.CDB[0] = cmd;
c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
c->Request.CDB[7] = (size >> 16) & 0xFF;
c->Request.CDB[8] = (size >> 8) & 0xFF;
c->Request.CDB[9] = size & 0xFF;
break;
case HPSA_CACHE_FLUSH:
c->Request.CDBLen = 12;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_WRITE;
c->Request.Timeout = 0;
c->Request.CDB[0] = BMIC_WRITE;
c->Request.CDB[6] = BMIC_CACHE_FLUSH;
break;
case TEST_UNIT_READY:
c->Request.CDBLen = 6;
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0;
break;
default:
dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
BUG();
return;
}
} else if (cmd_type == TYPE_MSG) {
switch (cmd) {
case HPSA_DEVICE_RESET_MSG:
c->Request.CDBLen = 16;
c->Request.Type.Type = 1; /* It is a MSG not a CMD */
c->Request.Type.Attribute = ATTR_SIMPLE;
c->Request.Type.Direction = XFER_NONE;
c->Request.Timeout = 0; /* Don't time out */
c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
c->Request.CDB[1] = 0x03; /* Reset target above */
/* If bytes 4-7 are zero, it means reset the */
/* LunID device */
c->Request.CDB[4] = 0x00;
c->Request.CDB[5] = 0x00;
c->Request.CDB[6] = 0x00;
c->Request.CDB[7] = 0x00;
break;
default:
dev_warn(&h->pdev->dev, "unknown message type %d\n",
cmd);
BUG();
}
} else {
dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
BUG();
}
switch (c->Request.Type.Direction) {
case XFER_READ:
pci_dir = PCI_DMA_FROMDEVICE;
break;
case XFER_WRITE:
pci_dir = PCI_DMA_TODEVICE;
break;
case XFER_NONE:
pci_dir = PCI_DMA_NONE;
break;
default:
pci_dir = PCI_DMA_BIDIRECTIONAL;
}
hpsa_map_one(h->pdev, c, buff, size, pci_dir);
return;
}
/*
* Map (physical) PCI mem into (virtual) kernel space
*/
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
ulong page_base = ((ulong) base) & PAGE_MASK;
ulong page_offs = ((ulong) base) - page_base;
void __iomem *page_remapped = ioremap(page_base, page_offs + size);
return page_remapped ? (page_remapped + page_offs) : NULL;
}
/* Takes cmds off the submission queue and sends them to the hardware,
* then puts them on the queue of cmds waiting for completion.
*/
static void start_io(struct ctlr_info *h)
{
struct CommandList *c;
while (!hlist_empty(&h->reqQ)) {
c = hlist_entry(h->reqQ.first, struct CommandList, list);
/* can't do anything if fifo is full */
if ((h->access.fifo_full(h))) {
dev_warn(&h->pdev->dev, "fifo full\n");
break;
}
/* Get the first entry from the Request Q */
removeQ(c);
h->Qdepth--;
/* Tell the controller execute command */
h->access.submit_command(h, c);
/* Put job onto the completed Q */
addQ(&h->cmpQ, c);
}
}
static inline unsigned long get_next_completion(struct ctlr_info *h)
{
return h->access.command_completed(h);
}
static inline bool interrupt_pending(struct ctlr_info *h)
{
return h->access.intr_pending(h);
}
static inline long interrupt_not_for_us(struct ctlr_info *h)
{
return !(h->msi_vector || h->msix_vector) &&
((h->access.intr_pending(h) == 0) ||
(h->interrupts_enabled == 0));
}
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
u32 raw_tag)
{
if (unlikely(tag_index >= h->nr_cmds)) {
dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
return 1;
}
return 0;
}
static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
{
removeQ(c);
if (likely(c->cmd_type == CMD_SCSI))
complete_scsi_command(c, 0, raw_tag);
else if (c->cmd_type == CMD_IOCTL_PEND)
complete(c->waiting);
}
static inline u32 hpsa_tag_contains_index(u32 tag)
{
#define DIRECT_LOOKUP_BIT 0x10
return tag & DIRECT_LOOKUP_BIT;
}
static inline u32 hpsa_tag_to_index(u32 tag)
{
#define DIRECT_LOOKUP_SHIFT 5
return tag >> DIRECT_LOOKUP_SHIFT;
}
static inline u32 hpsa_tag_discard_error_bits(u32 tag)
{
#define HPSA_ERROR_BITS 0x03
return tag & ~HPSA_ERROR_BITS;
}
/* process completion of an indexed ("direct lookup") command */
static inline u32 process_indexed_cmd(struct ctlr_info *h,
u32 raw_tag)
{
u32 tag_index;
struct CommandList *c;
tag_index = hpsa_tag_to_index(raw_tag);
if (bad_tag(h, tag_index, raw_tag))
return next_command(h);
c = h->cmd_pool + tag_index;
finish_cmd(c, raw_tag);
return next_command(h);
}
/* process completion of a non-indexed command */
static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
u32 raw_tag)
{
u32 tag;
struct CommandList *c = NULL;
struct hlist_node *tmp;
tag = hpsa_tag_discard_error_bits(raw_tag);
hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
finish_cmd(c, raw_tag);
return next_command(h);
}
}
bad_tag(h, h->nr_cmds + 1, raw_tag);
return next_command(h);
}
static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
{
struct ctlr_info *h = dev_id;
unsigned long flags;
u32 raw_tag;
if (interrupt_not_for_us(h))
return IRQ_NONE;
spin_lock_irqsave(&h->lock, flags);
raw_tag = get_next_completion(h);
while (raw_tag != FIFO_EMPTY) {
if (hpsa_tag_contains_index(raw_tag))
raw_tag = process_indexed_cmd(h, raw_tag);
else
raw_tag = process_nonindexed_cmd(h, raw_tag);
}
spin_unlock_irqrestore(&h->lock, flags);
return IRQ_HANDLED;
}
/* Send a message CDB to the firmware. */
static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
unsigned char type)
{
struct Command {
struct CommandListHeader CommandHeader;
struct RequestBlock Request;
struct ErrDescriptor ErrorDescriptor;
};
struct Command *cmd;
static const size_t cmd_sz = sizeof(*cmd) +
sizeof(cmd->ErrorDescriptor);
dma_addr_t paddr64;
uint32_t paddr32, tag;
void __iomem *vaddr;
int i, err;
vaddr = pci_ioremap_bar(pdev, 0);
if (vaddr == NULL)
return -ENOMEM;
/* The Inbound Post Queue only accepts 32-bit physical addresses for the
* CCISS commands, so they must be allocated from the lower 4GiB of
* memory.
*/
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
iounmap(vaddr);
return -ENOMEM;
}
cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
if (cmd == NULL) {
iounmap(vaddr);
return -ENOMEM;
}
/* This must fit, because of the 32-bit consistent DMA mask. Also,
* although there's no guarantee, we assume that the address is at
* least 4-byte aligned (most likely, it's page-aligned).
*/
paddr32 = paddr64;
cmd->CommandHeader.ReplyQueue = 0;
cmd->CommandHeader.SGList = 0;
cmd->CommandHeader.SGTotal = 0;
cmd->CommandHeader.Tag.lower = paddr32;
cmd->CommandHeader.Tag.upper = 0;
memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
cmd->Request.CDBLen = 16;
cmd->Request.Type.Type = TYPE_MSG;
cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
cmd->Request.Type.Direction = XFER_NONE;
cmd->Request.Timeout = 0; /* Don't time out */
cmd->Request.CDB[0] = opcode;
cmd->Request.CDB[1] = type;
memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
cmd->ErrorDescriptor.Addr.upper = 0;
cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
if (hpsa_tag_discard_error_bits(tag) == paddr32)
break;
msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
}
iounmap(vaddr);
/* we leak the DMA buffer here ... no choice since the controller could
* still complete the command.
*/
if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
opcode, type);
return -ETIMEDOUT;
}
pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
if (tag & HPSA_ERROR_BIT) {
dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
opcode, type);
return -EIO;
}
dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
opcode, type);
return 0;
}
#define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
#define hpsa_noop(p) hpsa_message(p, 3, 0)
static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
{
/* the #defines are stolen from drivers/pci/msi.h. */
#define msi_control_reg(base) (base + PCI_MSI_FLAGS)
#define PCI_MSIX_FLAGS_ENABLE (1 << 15)
int pos;
u16 control = 0;
pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
if (pos) {
pci_read_config_word(pdev, msi_control_reg(pos), &control);
if (control & PCI_MSI_FLAGS_ENABLE) {
dev_info(&pdev->dev, "resetting MSI\n");
pci_write_config_word(pdev, msi_control_reg(pos),
control & ~PCI_MSI_FLAGS_ENABLE);
}
}
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(pdev, msi_control_reg(pos), &control);
if (control & PCI_MSIX_FLAGS_ENABLE) {
dev_info(&pdev->dev, "resetting MSI-X\n");
pci_write_config_word(pdev, msi_control_reg(pos),
control & ~PCI_MSIX_FLAGS_ENABLE);
}
}
return 0;
}
/* This does a hard reset of the controller using PCI power management
* states.
*/
static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
{
u16 pmcsr, saved_config_space[32];
int i, pos;
dev_info(&pdev->dev, "using PCI PM to reset controller\n");
/* This is very nearly the same thing as
*
* pci_save_state(pci_dev);
* pci_set_power_state(pci_dev, PCI_D3hot);
* pci_set_power_state(pci_dev, PCI_D0);
* pci_restore_state(pci_dev);
*
* but we can't use these nice canned kernel routines on
* kexec, because they also check the MSI/MSI-X state in PCI
* configuration space and do the wrong thing when it is
* set/cleared. Also, the pci_save/restore_state functions
* violate the ordering requirements for restoring the
* configuration space from the CCISS document (see the
* comment below). So we roll our own ....
*/
for (i = 0; i < 32; i++)
pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pos == 0) {
dev_err(&pdev->dev,
"hpsa_reset_controller: PCI PM not supported\n");
return -ENODEV;
}
/* Quoting from the Open CISS Specification: "The Power
* Management Control/Status Register (CSR) controls the power
* state of the device. The normal operating state is D0,
* CSR=00h. The software off state is D3, CSR=03h. To reset
* the controller, place the interface device in D3 then to
* D0, this causes a secondary PCI reset which will reset the
* controller."
*/
/* enter the D3hot power management state */
pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= PCI_D3hot;
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
msleep(500);
/* enter the D0 power management state */
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
pmcsr |= PCI_D0;
pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
msleep(500);
/* Restore the PCI configuration space. The Open CISS
* Specification says, "Restore the PCI Configuration
* Registers, offsets 00h through 60h. It is important to
* restore the command register, 16-bits at offset 04h,
* last. Do not restore the configuration status register,
* 16-bits at offset 06h." Note that the offset is 2*i.
*/
for (i = 0; i < 32; i++) {
if (i == 2 || i == 3)
continue;
pci_write_config_word(pdev, 2*i, saved_config_space[i]);
}
wmb();
pci_write_config_word(pdev, 4, saved_config_space[2]);
return 0;
}
/*
* We cannot read the structure directly, for portability we must use
* the io functions.
* This is for debug only.
*/
#ifdef HPSA_DEBUG
static void print_cfg_table(struct device *dev, struct CfgTable *tb)
{
int i;
char temp_name[17];
dev_info(dev, "Controller Configuration information\n");
dev_info(dev, "------------------------------------\n");
for (i = 0; i < 4; i++)
temp_name[i] = readb(&(tb->Signature[i]));
temp_name[4] = '\0';
dev_info(dev, " Signature = %s\n", temp_name);
dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
dev_info(dev, " Transport methods supported = 0x%x\n",
readl(&(tb->TransportSupport)));
dev_info(dev, " Transport methods active = 0x%x\n",
readl(&(tb->TransportActive)));
dev_info(dev, " Requested transport Method = 0x%x\n",
readl(&(tb->HostWrite.TransportRequest)));
dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
readl(&(tb->HostWrite.CoalIntDelay)));
dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
readl(&(tb->HostWrite.CoalIntCount)));
dev_info(dev, " Max outstanding commands = 0x%d\n",
readl(&(tb->CmdsOutMax)));
dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
for (i = 0; i < 16; i++)
temp_name[i] = readb(&(tb->ServerName[i]));
temp_name[16] = '\0';
dev_info(dev, " Server Name = %s\n", temp_name);
dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
readl(&(tb->HeartBeat)));
}
#endif /* HPSA_DEBUG */
static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
int i, offset, mem_type, bar_type;
if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
return 0;
offset = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
offset += 4;
else {
mem_type = pci_resource_flags(pdev, i) &
PCI_BASE_ADDRESS_MEM_TYPE_MASK;
switch (mem_type) {
case PCI_BASE_ADDRESS_MEM_TYPE_32:
case PCI_BASE_ADDRESS_MEM_TYPE_1M:
offset += 4; /* 32 bit */
break;
case PCI_BASE_ADDRESS_MEM_TYPE_64:
offset += 8;
break;
default: /* reserved in PCI 2.2 */
dev_warn(&pdev->dev,
"base address is invalid\n");
return -1;
break;
}
}
if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
return i + 1;
}
return -1;
}
/* If MSI/MSI-X is supported by the kernel we will try to enable it on
* controllers that are capable. If not, we use IO-APIC mode.
*/
static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
struct pci_dev *pdev, u32 board_id)
{
#ifdef CONFIG_PCI_MSI
int err;
struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
{0, 2}, {0, 3}
};
/* Some boards advertise MSI but don't really support it */
if ((board_id == 0x40700E11) ||
(board_id == 0x40800E11) ||
(board_id == 0x40820E11) || (board_id == 0x40830E11))
goto default_int_mode;
if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
dev_info(&pdev->dev, "MSIX\n");
err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
if (!err) {
h->intr[0] = hpsa_msix_entries[0].vector;
h->intr[1] = hpsa_msix_entries[1].vector;
h->intr[2] = hpsa_msix_entries[2].vector;
h->intr[3] = hpsa_msix_entries[3].vector;
h->msix_vector = 1;
return;
}
if (err > 0) {
dev_warn(&pdev->dev, "only %d MSI-X vectors "
"available\n", err);
goto default_int_mode;
} else {
dev_warn(&pdev->dev, "MSI-X init failed %d\n",
err);
goto default_int_mode;
}
}
if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
dev_info(&pdev->dev, "MSI\n");
if (!pci_enable_msi(pdev))
h->msi_vector = 1;
else
dev_warn(&pdev->dev, "MSI init failed\n");
}
default_int_mode:
#endif /* CONFIG_PCI_MSI */
/* if we get here we're going to use the default interrupt mode */
h->intr[PERF_MODE_INT] = pdev->irq;
}
static int __devinit hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
{
ushort subsystem_vendor_id, subsystem_device_id, command;
u32 board_id, scratchpad = 0;
u64 cfg_offset;
u32 cfg_base_addr;
u64 cfg_base_addr_index;
u32 trans_offset;
int i, prod_index, err;
subsystem_vendor_id = pdev->subsystem_vendor;
subsystem_device_id = pdev->subsystem_device;
board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
subsystem_vendor_id);
for (i = 0; i < ARRAY_SIZE(products); i++)
if (board_id == products[i].board_id)
break;
prod_index = i;
if (prod_index == ARRAY_SIZE(products)) {
prod_index--;
if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
!hpsa_allow_any) {
dev_warn(&pdev->dev, "unrecognized board ID:"
" 0x%08lx, ignoring.\n",
(unsigned long) board_id);
return -ENODEV;
}
}
/* check to see if controller has been disabled
* BEFORE trying to enable it
*/
(void)pci_read_config_word(pdev, PCI_COMMAND, &command);
if (!(command & 0x02)) {
dev_warn(&pdev->dev, "controller appears to be disabled\n");
return -ENODEV;
}
err = pci_enable_device(pdev);
if (err) {
dev_warn(&pdev->dev, "unable to enable PCI device\n");
return err;
}
err = pci_request_regions(pdev, "hpsa");
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
return err;
}
/* If the kernel supports MSI/MSI-X we will try to enable that,
* else we use the IO-APIC interrupt assigned to us by system ROM.
*/
hpsa_interrupt_mode(h, pdev, board_id);
/* find the memory BAR */
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
break;
}
if (i == DEVICE_COUNT_RESOURCE) {
dev_warn(&pdev->dev, "no memory BAR found\n");
err = -ENODEV;
goto err_out_free_res;
}
h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
* already removed
*/
h->vaddr = remap_pci_mem(h->paddr, 0x250);
/* Wait for the board to become ready. */
for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
if (scratchpad == HPSA_FIRMWARE_READY)
break;
msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
}
if (scratchpad != HPSA_FIRMWARE_READY) {
dev_warn(&pdev->dev, "board not ready, timed out.\n");
err = -ENODEV;
goto err_out_free_res;
}
/* get the address index number */
cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
cfg_base_addr &= (u32) 0x0000ffff;
cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
if (cfg_base_addr_index == -1) {
dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
err = -ENODEV;
goto err_out_free_res;
}
cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
cfg_base_addr_index) + cfg_offset,
sizeof(h->cfgtable));
/* Find performant mode table. */
trans_offset = readl(&(h->cfgtable->TransMethodOffset));
h->transtable = remap_pci_mem(pci_resource_start(pdev,
cfg_base_addr_index)+cfg_offset+trans_offset,
sizeof(*h->transtable));
h->board_id = board_id;
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
/*
* Limit in-command s/g elements to 32 save dma'able memory.
* Howvever spec says if 0, use 31
*/
h->max_cmd_sg_entries = 31;
if (h->maxsgentries > 512) {
h->max_cmd_sg_entries = 32;
h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
h->maxsgentries--; /* save one for chain pointer */
} else {
h->maxsgentries = 31; /* default to traditional values */
h->chainsize = 0;
}
h->product_name = products[prod_index].product_name;
h->access = *(products[prod_index].access);
/* Allow room for some ioctls */
h->nr_cmds = h->max_commands - 4;
if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
(readb(&h->cfgtable->Signature[1]) != 'I') ||
(readb(&h->cfgtable->Signature[2]) != 'S') ||
(readb(&h->cfgtable->Signature[3]) != 'S')) {
dev_warn(&pdev->dev, "not a valid CISS config table\n");
err = -ENODEV;
goto err_out_free_res;
}
#ifdef CONFIG_X86
{
/* Need to enable prefetch in the SCSI core for 6400 in x86 */
u32 prefetch;
prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
prefetch |= 0x100;
writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
}
#endif
/* Disabling DMA prefetch for the P600
* An ASIC bug may result in a prefetch beyond
* physical memory.
*/
if (board_id == 0x3225103C) {
u32 dma_prefetch;
dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
dma_prefetch |= 0x8000;
writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}
h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
/* Update the field, and then ring the doorbell */
writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
/* under certain very rare conditions, this can take awhile.
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
* as we enter this code.)
*/
for (i = 0; i < MAX_CONFIG_WAIT; i++) {
if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
break;
/* delay and try again */
msleep(10);
}
#ifdef HPSA_DEBUG
print_cfg_table(&pdev->dev, h->cfgtable);
#endif /* HPSA_DEBUG */
if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
dev_warn(&pdev->dev, "unable to get board into simple mode\n");
err = -ENODEV;
goto err_out_free_res;
}
return 0;
err_out_free_res:
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
pci_release_regions(pdev);
return err;
}
static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
{
int rc;
#define HBA_INQUIRY_BYTE_COUNT 64
h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
if (!h->hba_inquiry_data)
return;
rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
if (rc != 0) {
kfree(h->hba_inquiry_data);
h->hba_inquiry_data = NULL;
}
}
static int __devinit hpsa_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int i, rc;
int dac;
struct ctlr_info *h;
if (number_of_controllers == 0)
printk(KERN_INFO DRIVER_NAME "\n");
if (reset_devices) {
/* Reset the controller with a PCI power-cycle */
if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
return -ENODEV;
/* Some devices (notably the HP Smart Array 5i Controller)
need a little pause here */
msleep(HPSA_POST_RESET_PAUSE_MSECS);
/* Now try to get the controller to respond to a no-op */
for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
if (hpsa_noop(pdev) == 0)
break;
else
dev_warn(&pdev->dev, "no-op failed%s\n",
(i < 11 ? "; re-trying" : ""));
}
}
/* Command structures must be aligned on a 32-byte boundary because
* the 5 lower bits of the address are used by the hardware. and by
* the driver. See comments in hpsa.h for more info.
*/
#define COMMANDLIST_ALIGNMENT 32
BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
h = kzalloc(sizeof(*h), GFP_KERNEL);
if (!h)
return -ENOMEM;
h->busy_initializing = 1;
INIT_HLIST_HEAD(&h->cmpQ);
INIT_HLIST_HEAD(&h->reqQ);
rc = hpsa_pci_init(h, pdev);
if (rc != 0)
goto clean1;
sprintf(h->devname, "hpsa%d", number_of_controllers);
h->ctlr = number_of_controllers;
number_of_controllers++;
h->pdev = pdev;
/* configure PCI DMA stuff */
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
if (rc == 0) {
dac = 1;
} else {
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (rc == 0) {
dac = 0;
} else {
dev_err(&pdev->dev, "no suitable DMA available\n");
goto clean1;
}
}
/* make sure the board interrupts are off */
h->access.set_intr_mask(h, HPSA_INTR_OFF);
rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
IRQF_DISABLED, h->devname, h);
if (rc) {
dev_err(&pdev->dev, "unable to get irq %d for %s\n",
h->intr[PERF_MODE_INT], h->devname);
goto clean2;
}
dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
h->devname, pdev->device,
h->intr[PERF_MODE_INT], dac ? "" : " not");
h->cmd_pool_bits =
kmalloc(((h->nr_cmds + BITS_PER_LONG -
1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
h->cmd_pool = pci_alloc_consistent(h->pdev,
h->nr_cmds * sizeof(*h->cmd_pool),
&(h->cmd_pool_dhandle));
h->errinfo_pool = pci_alloc_consistent(h->pdev,
h->nr_cmds * sizeof(*h->errinfo_pool),
&(h->errinfo_pool_dhandle));
if ((h->cmd_pool_bits == NULL)
|| (h->cmd_pool == NULL)
|| (h->errinfo_pool == NULL)) {
dev_err(&pdev->dev, "out of memory");
rc = -ENOMEM;
goto clean4;
}
if (hpsa_allocate_sg_chain_blocks(h))
goto clean4;
spin_lock_init(&h->lock);
spin_lock_init(&h->scan_lock);
init_waitqueue_head(&h->scan_wait_queue);
h->scan_finished = 1; /* no scan currently in progress */
pci_set_drvdata(pdev, h);
memset(h->cmd_pool_bits, 0,
((h->nr_cmds + BITS_PER_LONG -
1) / BITS_PER_LONG) * sizeof(unsigned long));
hpsa_scsi_setup(h);
/* Turn the interrupts on so we can service requests */
h->access.set_intr_mask(h, HPSA_INTR_ON);
hpsa_put_ctlr_into_performant_mode(h);
hpsa_hba_inquiry(h);
hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
h->busy_initializing = 0;
return 1;
clean4:
hpsa_free_sg_chain_blocks(h);
kfree(h->cmd_pool_bits);
if (h->cmd_pool)
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(struct CommandList),
h->cmd_pool, h->cmd_pool_dhandle);
if (h->errinfo_pool)
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(struct ErrorInfo),
h->errinfo_pool,
h->errinfo_pool_dhandle);
free_irq(h->intr[PERF_MODE_INT], h);
clean2:
clean1:
h->busy_initializing = 0;
kfree(h);
return rc;
}
static void hpsa_flush_cache(struct ctlr_info *h)
{
char *flush_buf;
struct CommandList *c;
flush_buf = kzalloc(4, GFP_KERNEL);
if (!flush_buf)
return;
c = cmd_special_alloc(h);
if (!c) {
dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
goto out_of_memory;
}
fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
RAID_CTLR_LUNID, TYPE_CMD);
hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
if (c->err_info->CommandStatus != 0)
dev_warn(&h->pdev->dev,
"error flushing cache on controller\n");
cmd_special_free(h, c);
out_of_memory:
kfree(flush_buf);
}
static void hpsa_shutdown(struct pci_dev *pdev)
{
struct ctlr_info *h;
h = pci_get_drvdata(pdev);
/* Turn board interrupts off and send the flush cache command
* sendcmd will turn off interrupt, and send the flush...
* To write all data in the battery backed cache to disks
*/
hpsa_flush_cache(h);
h->access.set_intr_mask(h, HPSA_INTR_OFF);
free_irq(h->intr[PERF_MODE_INT], h);
#ifdef CONFIG_PCI_MSI
if (h->msix_vector)
pci_disable_msix(h->pdev);
else if (h->msi_vector)
pci_disable_msi(h->pdev);
#endif /* CONFIG_PCI_MSI */
}
static void __devexit hpsa_remove_one(struct pci_dev *pdev)
{
struct ctlr_info *h;
if (pci_get_drvdata(pdev) == NULL) {
dev_err(&pdev->dev, "unable to remove device \n");
return;
}
h = pci_get_drvdata(pdev);
hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
hpsa_shutdown(pdev);
iounmap(h->vaddr);
hpsa_free_sg_chain_blocks(h);
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(struct CommandList),
h->cmd_pool, h->cmd_pool_dhandle);
pci_free_consistent(h->pdev,
h->nr_cmds * sizeof(struct ErrorInfo),
h->errinfo_pool, h->errinfo_pool_dhandle);
pci_free_consistent(h->pdev, h->reply_pool_size,
h->reply_pool, h->reply_pool_dhandle);
kfree(h->cmd_pool_bits);
kfree(h->blockFetchTable);
kfree(h->hba_inquiry_data);
/*
* Deliberately omit pci_disable_device(): it does something nasty to
* Smart Array controllers that pci_enable_device does not undo
*/
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
kfree(h);
}
static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
__attribute__((unused)) pm_message_t state)
{
return -ENOSYS;
}
static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
return -ENOSYS;
}
static struct pci_driver hpsa_pci_driver = {
.name = "hpsa",
.probe = hpsa_init_one,
.remove = __devexit_p(hpsa_remove_one),
.id_table = hpsa_pci_device_id, /* id_table */
.shutdown = hpsa_shutdown,
.suspend = hpsa_suspend,
.resume = hpsa_resume,
};
/* Fill in bucket_map[], given nsgs (the max number of
* scatter gather elements supported) and bucket[],
* which is an array of 8 integers. The bucket[] array
* contains 8 different DMA transfer sizes (in 16
* byte increments) which the controller uses to fetch
* commands. This function fills in bucket_map[], which
* maps a given number of scatter gather elements to one of
* the 8 DMA transfer sizes. The point of it is to allow the
* controller to only do as much DMA as needed to fetch the
* command, with the DMA transfer size encoded in the lower
* bits of the command address.
*/
static void calc_bucket_map(int bucket[], int num_buckets,
int nsgs, int *bucket_map)
{
int i, j, b, size;
/* even a command with 0 SGs requires 4 blocks */
#define MINIMUM_TRANSFER_BLOCKS 4
#define NUM_BUCKETS 8
/* Note, bucket_map must have nsgs+1 entries. */
for (i = 0; i <= nsgs; i++) {
/* Compute size of a command with i SG entries */
size = i + MINIMUM_TRANSFER_BLOCKS;
b = num_buckets; /* Assume the biggest bucket */
/* Find the bucket that is just big enough */
for (j = 0; j < 8; j++) {
if (bucket[j] >= size) {
b = j;
break;
}
}
/* for a command with i SG entries, use bucket b. */
bucket_map[i] = b;
}
}
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
{
u32 trans_support;
u64 trans_offset;
/* 5 = 1 s/g entry or 4k
* 6 = 2 s/g entry or 8k
* 8 = 4 s/g entry or 16k
* 10 = 6 s/g entry or 24k
*/
int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
int i = 0;
int l = 0;
unsigned long register_value;
trans_support = readl(&(h->cfgtable->TransportSupport));
if (!(trans_support & PERFORMANT_MODE))
return;
h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
h->max_sg_entries = 32;
/* Performant mode ring buffer and supporting data structures */
h->reply_pool_size = h->max_commands * sizeof(u64);
h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
&(h->reply_pool_dhandle));
/* Need a block fetch table for performant mode */
h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
sizeof(u32)), GFP_KERNEL);
if ((h->reply_pool == NULL)
|| (h->blockFetchTable == NULL))
goto clean_up;
h->reply_pool_wraparound = 1; /* spec: init to 1 */
/* Controller spec: zero out this buffer. */
memset(h->reply_pool, 0, h->reply_pool_size);
h->reply_pool_head = h->reply_pool;
trans_offset = readl(&(h->cfgtable->TransMethodOffset));
bft[7] = h->max_sg_entries + 4;
calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
for (i = 0; i < 8; i++)
writel(bft[i], &h->transtable->BlockFetch[i]);
/* size of controller ring buffer */
writel(h->max_commands, &h->transtable->RepQSize);
writel(1, &h->transtable->RepQCount);
writel(0, &h->transtable->RepQCtrAddrLow32);
writel(0, &h->transtable->RepQCtrAddrHigh32);
writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
writel(0, &h->transtable->RepQAddr0High32);
writel(CFGTBL_Trans_Performant,
&(h->cfgtable->HostWrite.TransportRequest));
writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
/* under certain very rare conditions, this can take awhile.
* (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
* as we enter this code.) */
for (l = 0; l < MAX_CONFIG_WAIT; l++) {
register_value = readl(h->vaddr + SA5_DOORBELL);
if (!(register_value & CFGTBL_ChangeReq))
break;
/* delay and try again */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(10);
}
register_value = readl(&(h->cfgtable->TransportActive));
if (!(register_value & CFGTBL_Trans_Performant)) {
dev_warn(&h->pdev->dev, "unable to get board into"
" performant mode\n");
return;
}
/* Change the access methods to the performant access methods */
h->access = SA5_performant_access;
h->transMethod = CFGTBL_Trans_Performant;
return;
clean_up:
if (h->reply_pool)
pci_free_consistent(h->pdev, h->reply_pool_size,
h->reply_pool, h->reply_pool_dhandle);
kfree(h->blockFetchTable);
}
/*
* This is it. Register the PCI driver information for the cards we control
* the OS will call our registered routines when it finds one of our cards.
*/
static int __init hpsa_init(void)
{
return pci_register_driver(&hpsa_pci_driver);
}
static void __exit hpsa_cleanup(void)
{
pci_unregister_driver(&hpsa_pci_driver);
}
module_init(hpsa_init);
module_exit(hpsa_cleanup);