WSL2-Linux-Kernel/drivers/mtd/devices/mtd_dataflash.c

983 строки
25 KiB
C

/*
* Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
*
* Largely derived from at91_dataflash.c:
* Copyright (C) 2003-2005 SAN People (Pty) Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/math64.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
/*
* DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
* each chip, which may be used for double buffered I/O; but this driver
* doesn't (yet) use these for any kind of i/o overlap or prefetching.
*
* Sometimes DataFlash is packaged in MMC-format cards, although the
* MMC stack can't (yet?) distinguish between MMC and DataFlash
* protocols during enumeration.
*/
/* reads can bypass the buffers */
#define OP_READ_CONTINUOUS 0xE8
#define OP_READ_PAGE 0xD2
/* group B requests can run even while status reports "busy" */
#define OP_READ_STATUS 0xD7 /* group B */
/* move data between host and buffer */
#define OP_READ_BUFFER1 0xD4 /* group B */
#define OP_READ_BUFFER2 0xD6 /* group B */
#define OP_WRITE_BUFFER1 0x84 /* group B */
#define OP_WRITE_BUFFER2 0x87 /* group B */
/* erasing flash */
#define OP_ERASE_PAGE 0x81
#define OP_ERASE_BLOCK 0x50
/* move data between buffer and flash */
#define OP_TRANSFER_BUF1 0x53
#define OP_TRANSFER_BUF2 0x55
#define OP_MREAD_BUFFER1 0xD4
#define OP_MREAD_BUFFER2 0xD6
#define OP_MWERASE_BUFFER1 0x83
#define OP_MWERASE_BUFFER2 0x86
#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
/* write to buffer, then write-erase to flash */
#define OP_PROGRAM_VIA_BUF1 0x82
#define OP_PROGRAM_VIA_BUF2 0x85
/* compare buffer to flash */
#define OP_COMPARE_BUF1 0x60
#define OP_COMPARE_BUF2 0x61
/* read flash to buffer, then write-erase to flash */
#define OP_REWRITE_VIA_BUF1 0x58
#define OP_REWRITE_VIA_BUF2 0x59
/* newer chips report JEDEC manufacturer and device IDs; chip
* serial number and OTP bits; and per-sector writeprotect.
*/
#define OP_READ_ID 0x9F
#define OP_READ_SECURITY 0x77
#define OP_WRITE_SECURITY_REVC 0x9A
#define OP_WRITE_SECURITY 0x9B /* revision D */
struct dataflash {
uint8_t command[4];
char name[24];
unsigned partitioned:1;
unsigned short page_offset; /* offset in flash address */
unsigned int page_size; /* of bytes per page */
struct mutex lock;
struct spi_device *spi;
struct mtd_info mtd;
};
/* ......................................................................... */
/*
* Return the status of the DataFlash device.
*/
static inline int dataflash_status(struct spi_device *spi)
{
/* NOTE: at45db321c over 25 MHz wants to write
* a dummy byte after the opcode...
*/
return spi_w8r8(spi, OP_READ_STATUS);
}
/*
* Poll the DataFlash device until it is READY.
* This usually takes 5-20 msec or so; more for sector erase.
*/
static int dataflash_waitready(struct spi_device *spi)
{
int status;
for (;;) {
status = dataflash_status(spi);
if (status < 0) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
dev_name(&spi->dev), status);
status = 0;
}
if (status & (1 << 7)) /* RDY/nBSY */
return status;
msleep(3);
}
}
/* ......................................................................... */
/*
* Erase pages of flash.
*/
static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
struct spi_device *spi = priv->spi;
struct spi_transfer x = { .tx_dma = 0, };
struct spi_message msg;
unsigned blocksize = priv->page_size << 3;
uint8_t *command;
uint32_t rem;
DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
dev_name(&spi->dev), (long long)instr->addr,
(long long)instr->len);
/* Sanity checks */
if (instr->addr + instr->len > mtd->size)
return -EINVAL;
div_u64_rem(instr->len, priv->page_size, &rem);
if (rem)
return -EINVAL;
div_u64_rem(instr->addr, priv->page_size, &rem);
if (rem)
return -EINVAL;
spi_message_init(&msg);
x.tx_buf = command = priv->command;
x.len = 4;
spi_message_add_tail(&x, &msg);
mutex_lock(&priv->lock);
while (instr->len > 0) {
unsigned int pageaddr;
int status;
int do_block;
/* Calculate flash page address; use block erase (for speed) if
* we're at a block boundary and need to erase the whole block.
*/
pageaddr = div_u64(instr->addr, priv->page_size);
do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
pageaddr = pageaddr << priv->page_offset;
command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
command[1] = (uint8_t)(pageaddr >> 16);
command[2] = (uint8_t)(pageaddr >> 8);
command[3] = 0;
DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
do_block ? "block" : "page",
command[0], command[1], command[2], command[3],
pageaddr);
status = spi_sync(spi, &msg);
(void) dataflash_waitready(spi);
if (status < 0) {
printk(KERN_ERR "%s: erase %x, err %d\n",
dev_name(&spi->dev), pageaddr, status);
/* REVISIT: can retry instr->retries times; or
* giveup and instr->fail_addr = instr->addr;
*/
continue;
}
if (do_block) {
instr->addr += blocksize;
instr->len -= blocksize;
} else {
instr->addr += priv->page_size;
instr->len -= priv->page_size;
}
}
mutex_unlock(&priv->lock);
/* Inform MTD subsystem that erase is complete */
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
/*
* Read from the DataFlash device.
* from : Start offset in flash device
* len : Amount to read
* retlen : About of data actually read
* buf : Buffer containing the data
*/
static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
struct spi_transfer x[2] = { { .tx_dma = 0, }, };
struct spi_message msg;
unsigned int addr;
uint8_t *command;
int status;
DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
*retlen = 0;
/* Sanity checks */
if (!len)
return 0;
if (from + len > mtd->size)
return -EINVAL;
/* Calculate flash page/byte address */
addr = (((unsigned)from / priv->page_size) << priv->page_offset)
+ ((unsigned)from % priv->page_size);
command = priv->command;
DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
spi_message_init(&msg);
x[0].tx_buf = command;
x[0].len = 8;
spi_message_add_tail(&x[0], &msg);
x[1].rx_buf = buf;
x[1].len = len;
spi_message_add_tail(&x[1], &msg);
mutex_lock(&priv->lock);
/* Continuous read, max clock = f(car) which may be less than
* the peak rate available. Some chips support commands with
* fewer "don't care" bytes. Both buffers stay unchanged.
*/
command[0] = OP_READ_CONTINUOUS;
command[1] = (uint8_t)(addr >> 16);
command[2] = (uint8_t)(addr >> 8);
command[3] = (uint8_t)(addr >> 0);
/* plus 4 "don't care" bytes */
status = spi_sync(priv->spi, &msg);
mutex_unlock(&priv->lock);
if (status >= 0) {
*retlen = msg.actual_length - 8;
status = 0;
} else
DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
dev_name(&priv->spi->dev),
(unsigned)from, (unsigned)(from + len),
status);
return status;
}
/*
* Write to the DataFlash device.
* to : Start offset in flash device
* len : Amount to write
* retlen : Amount of data actually written
* buf : Buffer containing the data
*/
static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
struct spi_device *spi = priv->spi;
struct spi_transfer x[2] = { { .tx_dma = 0, }, };
struct spi_message msg;
unsigned int pageaddr, addr, offset, writelen;
size_t remaining = len;
u_char *writebuf = (u_char *) buf;
int status = -EINVAL;
uint8_t *command;
DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
*retlen = 0;
/* Sanity checks */
if (!len)
return 0;
if ((to + len) > mtd->size)
return -EINVAL;
spi_message_init(&msg);
x[0].tx_buf = command = priv->command;
x[0].len = 4;
spi_message_add_tail(&x[0], &msg);
pageaddr = ((unsigned)to / priv->page_size);
offset = ((unsigned)to % priv->page_size);
if (offset + len > priv->page_size)
writelen = priv->page_size - offset;
else
writelen = len;
mutex_lock(&priv->lock);
while (remaining > 0) {
DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
pageaddr, offset, writelen);
/* REVISIT:
* (a) each page in a sector must be rewritten at least
* once every 10K sibling erase/program operations.
* (b) for pages that are already erased, we could
* use WRITE+MWRITE not PROGRAM for ~30% speedup.
* (c) WRITE to buffer could be done while waiting for
* a previous MWRITE/MWERASE to complete ...
* (d) error handling here seems to be mostly missing.
*
* Two persistent bits per page, plus a per-sector counter,
* could support (a) and (b) ... we might consider using
* the second half of sector zero, which is just one block,
* to track that state. (On AT91, that sector should also
* support boot-from-DataFlash.)
*/
addr = pageaddr << priv->page_offset;
/* (1) Maybe transfer partial page to Buffer1 */
if (writelen != priv->page_size) {
command[0] = OP_TRANSFER_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = 0;
DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_sync(spi, &msg);
if (status < 0)
DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
dev_name(&spi->dev), addr, status);
(void) dataflash_waitready(priv->spi);
}
/* (2) Program full page via Buffer1 */
addr += offset;
command[0] = OP_PROGRAM_VIA_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = (addr & 0x000000FF);
DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
x[1].tx_buf = writebuf;
x[1].len = writelen;
spi_message_add_tail(x + 1, &msg);
status = spi_sync(spi, &msg);
spi_transfer_del(x + 1);
if (status < 0)
DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
dev_name(&spi->dev), addr, writelen, status);
(void) dataflash_waitready(priv->spi);
#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
/* (3) Compare to Buffer1 */
addr = pageaddr << priv->page_offset;
command[0] = OP_COMPARE_BUF1;
command[1] = (addr & 0x00FF0000) >> 16;
command[2] = (addr & 0x0000FF00) >> 8;
command[3] = 0;
DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
command[0], command[1], command[2], command[3]);
status = spi_sync(spi, &msg);
if (status < 0)
DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
dev_name(&spi->dev), addr, status);
status = dataflash_waitready(priv->spi);
/* Check result of the compare operation */
if (status & (1 << 6)) {
printk(KERN_ERR "%s: compare page %u, err %d\n",
dev_name(&spi->dev), pageaddr, status);
remaining = 0;
status = -EIO;
break;
} else
status = 0;
#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
remaining = remaining - writelen;
pageaddr++;
offset = 0;
writebuf += writelen;
*retlen += writelen;
if (remaining > priv->page_size)
writelen = priv->page_size;
else
writelen = remaining;
}
mutex_unlock(&priv->lock);
return status;
}
/* ......................................................................... */
#ifdef CONFIG_MTD_DATAFLASH_OTP
static int dataflash_get_otp_info(struct mtd_info *mtd,
struct otp_info *info, size_t len)
{
/* Report both blocks as identical: bytes 0..64, locked.
* Unless the user block changed from all-ones, we can't
* tell whether it's still writable; so we assume it isn't.
*/
info->start = 0;
info->length = 64;
info->locked = 1;
return sizeof(*info);
}
static ssize_t otp_read(struct spi_device *spi, unsigned base,
uint8_t *buf, loff_t off, size_t len)
{
struct spi_message m;
size_t l;
uint8_t *scratch;
struct spi_transfer t;
int status;
if (off > 64)
return -EINVAL;
if ((off + len) > 64)
len = 64 - off;
if (len == 0)
return len;
spi_message_init(&m);
l = 4 + base + off + len;
scratch = kzalloc(l, GFP_KERNEL);
if (!scratch)
return -ENOMEM;
/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
* IN: ignore 4 bytes, data bytes 0..N (max 127)
*/
scratch[0] = OP_READ_SECURITY;
memset(&t, 0, sizeof t);
t.tx_buf = scratch;
t.rx_buf = scratch;
t.len = l;
spi_message_add_tail(&t, &m);
dataflash_waitready(spi);
status = spi_sync(spi, &m);
if (status >= 0) {
memcpy(buf, scratch + 4 + base + off, len);
status = len;
}
kfree(scratch);
return status;
}
static int dataflash_read_fact_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
int status;
/* 64 bytes, from 0..63 ... start at 64 on-chip */
mutex_lock(&priv->lock);
status = otp_read(priv->spi, 64, buf, from, len);
mutex_unlock(&priv->lock);
if (status < 0)
return status;
*retlen = status;
return 0;
}
static int dataflash_read_user_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct dataflash *priv = (struct dataflash *)mtd->priv;
int status;
/* 64 bytes, from 0..63 ... start at 0 on-chip */
mutex_lock(&priv->lock);
status = otp_read(priv->spi, 0, buf, from, len);
mutex_unlock(&priv->lock);
if (status < 0)
return status;
*retlen = status;
return 0;
}
static int dataflash_write_user_otp(struct mtd_info *mtd,
loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct spi_message m;
const size_t l = 4 + 64;
uint8_t *scratch;
struct spi_transfer t;
struct dataflash *priv = (struct dataflash *)mtd->priv;
int status;
if (len > 64)
return -EINVAL;
/* Strictly speaking, we *could* truncate the write ... but
* let's not do that for the only write that's ever possible.
*/
if ((from + len) > 64)
return -EINVAL;
/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
* IN: ignore all
*/
scratch = kzalloc(l, GFP_KERNEL);
if (!scratch)
return -ENOMEM;
scratch[0] = OP_WRITE_SECURITY;
memcpy(scratch + 4 + from, buf, len);
spi_message_init(&m);
memset(&t, 0, sizeof t);
t.tx_buf = scratch;
t.len = l;
spi_message_add_tail(&t, &m);
/* Write the OTP bits, if they've not yet been written.
* This modifies SRAM buffer1.
*/
mutex_lock(&priv->lock);
dataflash_waitready(priv->spi);
status = spi_sync(priv->spi, &m);
mutex_unlock(&priv->lock);
kfree(scratch);
if (status >= 0) {
status = 0;
*retlen = len;
}
return status;
}
static char *otp_setup(struct mtd_info *device, char revision)
{
device->get_fact_prot_info = dataflash_get_otp_info;
device->read_fact_prot_reg = dataflash_read_fact_otp;
device->get_user_prot_info = dataflash_get_otp_info;
device->read_user_prot_reg = dataflash_read_user_otp;
/* rev c parts (at45db321c and at45db1281 only!) use a
* different write procedure; not (yet?) implemented.
*/
if (revision > 'c')
device->write_user_prot_reg = dataflash_write_user_otp;
return ", OTP";
}
#else
static char *otp_setup(struct mtd_info *device, char revision)
{
return " (OTP)";
}
#endif
/* ......................................................................... */
/*
* Register DataFlash device with MTD subsystem.
*/
static int __devinit
add_dataflash_otp(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset, char revision)
{
struct dataflash *priv;
struct mtd_info *device;
struct flash_platform_data *pdata = spi->dev.platform_data;
char *otp_tag = "";
int err = 0;
priv = kzalloc(sizeof *priv, GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_init(&priv->lock);
priv->spi = spi;
priv->page_size = pagesize;
priv->page_offset = pageoffset;
/* name must be usable with cmdlinepart */
sprintf(priv->name, "spi%d.%d-%s",
spi->master->bus_num, spi->chip_select,
name);
device = &priv->mtd;
device->name = (pdata && pdata->name) ? pdata->name : priv->name;
device->size = nr_pages * pagesize;
device->erasesize = pagesize;
device->writesize = pagesize;
device->owner = THIS_MODULE;
device->type = MTD_DATAFLASH;
device->flags = MTD_WRITEABLE;
device->erase = dataflash_erase;
device->read = dataflash_read;
device->write = dataflash_write;
device->priv = priv;
device->dev.parent = &spi->dev;
if (revision >= 'c')
otp_tag = otp_setup(device, revision);
dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
name, (long long)((device->size + 1023) >> 10),
pagesize, otp_tag);
dev_set_drvdata(&spi->dev, priv);
if (mtd_has_partitions()) {
struct mtd_partition *parts;
int nr_parts = 0;
if (mtd_has_cmdlinepart()) {
static const char *part_probes[]
= { "cmdlinepart", NULL, };
nr_parts = parse_mtd_partitions(device,
part_probes, &parts, 0);
}
if (nr_parts <= 0 && pdata && pdata->parts) {
parts = pdata->parts;
nr_parts = pdata->nr_parts;
}
if (nr_parts > 0) {
priv->partitioned = 1;
err = add_mtd_partitions(device, parts, nr_parts);
goto out;
}
} else if (pdata && pdata->nr_parts)
dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
pdata->nr_parts, device->name);
if (add_mtd_device(device) == 1)
err = -ENODEV;
out:
if (!err)
return 0;
dev_set_drvdata(&spi->dev, NULL);
kfree(priv);
return err;
}
static inline int __devinit
add_dataflash(struct spi_device *spi, char *name,
int nr_pages, int pagesize, int pageoffset)
{
return add_dataflash_otp(spi, name, nr_pages, pagesize,
pageoffset, 0);
}
struct flash_info {
char *name;
/* JEDEC id has a high byte of zero plus three data bytes:
* the manufacturer id, then a two byte device id.
*/
uint32_t jedec_id;
/* The size listed here is what works with OP_ERASE_PAGE. */
unsigned nr_pages;
uint16_t pagesize;
uint16_t pageoffset;
uint16_t flags;
#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
};
static struct flash_info __devinitdata dataflash_data [] = {
/*
* NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
* one with IS_POW2PS and the other without. The entry with the
* non-2^N byte page size can't name exact chip revisions without
* losing backwards compatibility for cmdlinepart.
*
* These newer chips also support 128-byte security registers (with
* 64 bytes one-time-programmable) and software write-protection.
*/
{ "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
{ "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
{ "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
{ "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
{ "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
{ "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
{ "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
{ "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
{ "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
{ "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
{ "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
{ "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
};
static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
{
int tmp;
uint8_t code = OP_READ_ID;
uint8_t id[3];
uint32_t jedec;
struct flash_info *info;
int status;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*
* If the vendor ID isn't Atmel's (0x1f), assume this call failed.
* That's not an error; only rev C and newer chips handle it, and
* only Atmel sells these chips.
*/
tmp = spi_write_then_read(spi, &code, 1, id, 3);
if (tmp < 0) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
dev_name(&spi->dev), tmp);
return ERR_PTR(tmp);
}
if (id[0] != 0x1f)
return NULL;
jedec = id[0];
jedec = jedec << 8;
jedec |= id[1];
jedec = jedec << 8;
jedec |= id[2];
for (tmp = 0, info = dataflash_data;
tmp < ARRAY_SIZE(dataflash_data);
tmp++, info++) {
if (info->jedec_id == jedec) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
dev_name(&spi->dev),
(info->flags & SUP_POW2PS)
? ", binary pagesize" : ""
);
if (info->flags & SUP_POW2PS) {
status = dataflash_status(spi);
if (status < 0) {
DEBUG(MTD_DEBUG_LEVEL1,
"%s: status error %d\n",
dev_name(&spi->dev), status);
return ERR_PTR(status);
}
if (status & 0x1) {
if (info->flags & IS_POW2PS)
return info;
} else {
if (!(info->flags & IS_POW2PS))
return info;
}
} else
return info;
}
}
/*
* Treat other chips as errors ... we won't know the right page
* size (it might be binary) even when we can tell which density
* class is involved (legacy chip id scheme).
*/
dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
return ERR_PTR(-ENODEV);
}
/*
* Detect and initialize DataFlash device, using JEDEC IDs on newer chips
* or else the ID code embedded in the status bits:
*
* Device Density ID code #Pages PageSize Offset
* AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
* AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
* AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
* AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
* AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
* AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
* AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
* AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
*/
static int __devinit dataflash_probe(struct spi_device *spi)
{
int status;
struct flash_info *info;
/*
* Try to detect dataflash by JEDEC ID.
* If it succeeds we know we have either a C or D part.
* D will support power of 2 pagesize option.
* Both support the security register, though with different
* write procedures.
*/
info = jedec_probe(spi);
if (IS_ERR(info))
return PTR_ERR(info);
if (info != NULL)
return add_dataflash_otp(spi, info->name, info->nr_pages,
info->pagesize, info->pageoffset,
(info->flags & SUP_POW2PS) ? 'd' : 'c');
/*
* Older chips support only legacy commands, identifing
* capacity using bits in the status byte.
*/
status = dataflash_status(spi);
if (status <= 0 || status == 0xff) {
DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
dev_name(&spi->dev), status);
if (status == 0 || status == 0xff)
status = -ENODEV;
return status;
}
/* if there's a device there, assume it's dataflash.
* board setup should have set spi->max_speed_max to
* match f(car) for continuous reads, mode 0 or 3.
*/
switch (status & 0x3c) {
case 0x0c: /* 0 0 1 1 x x */
status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
break;
case 0x14: /* 0 1 0 1 x x */
status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
break;
case 0x1c: /* 0 1 1 1 x x */
status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
break;
case 0x24: /* 1 0 0 1 x x */
status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
break;
case 0x2c: /* 1 0 1 1 x x */
status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
break;
case 0x34: /* 1 1 0 1 x x */
status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
break;
case 0x38: /* 1 1 1 x x x */
case 0x3c:
status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
break;
/* obsolete AT45DB1282 not (yet?) supported */
default:
DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
dev_name(&spi->dev), status & 0x3c);
status = -ENODEV;
}
if (status < 0)
DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
dev_name(&spi->dev), status);
return status;
}
static int __devexit dataflash_remove(struct spi_device *spi)
{
struct dataflash *flash = dev_get_drvdata(&spi->dev);
int status;
DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
if (mtd_has_partitions() && flash->partitioned)
status = del_mtd_partitions(&flash->mtd);
else
status = del_mtd_device(&flash->mtd);
if (status == 0) {
dev_set_drvdata(&spi->dev, NULL);
kfree(flash);
}
return status;
}
static struct spi_driver dataflash_driver = {
.driver = {
.name = "mtd_dataflash",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
.probe = dataflash_probe,
.remove = __devexit_p(dataflash_remove),
/* FIXME: investigate suspend and resume... */
};
static int __init dataflash_init(void)
{
return spi_register_driver(&dataflash_driver);
}
module_init(dataflash_init);
static void __exit dataflash_exit(void)
{
spi_unregister_driver(&dataflash_driver);
}
module_exit(dataflash_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Andrew Victor, David Brownell");
MODULE_DESCRIPTION("MTD DataFlash driver");
MODULE_ALIAS("spi:mtd_dataflash");