WSL2-Linux-Kernel/drivers/dma/imx-sdma.c

2230 строки
58 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// drivers/dma/imx-sdma.c
//
// This file contains a driver for the Freescale Smart DMA engine
//
// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
//
// Based on code from Freescale:
//
// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
#include <linux/init.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/dmaengine.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/workqueue.h>
#include <asm/irq.h>
#include <linux/platform_data/dma-imx-sdma.h>
#include <linux/platform_data/dma-imx.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
#include "dmaengine.h"
#include "virt-dma.h"
/* SDMA registers */
#define SDMA_H_C0PTR 0x000
#define SDMA_H_INTR 0x004
#define SDMA_H_STATSTOP 0x008
#define SDMA_H_START 0x00c
#define SDMA_H_EVTOVR 0x010
#define SDMA_H_DSPOVR 0x014
#define SDMA_H_HOSTOVR 0x018
#define SDMA_H_EVTPEND 0x01c
#define SDMA_H_DSPENBL 0x020
#define SDMA_H_RESET 0x024
#define SDMA_H_EVTERR 0x028
#define SDMA_H_INTRMSK 0x02c
#define SDMA_H_PSW 0x030
#define SDMA_H_EVTERRDBG 0x034
#define SDMA_H_CONFIG 0x038
#define SDMA_ONCE_ENB 0x040
#define SDMA_ONCE_DATA 0x044
#define SDMA_ONCE_INSTR 0x048
#define SDMA_ONCE_STAT 0x04c
#define SDMA_ONCE_CMD 0x050
#define SDMA_EVT_MIRROR 0x054
#define SDMA_ILLINSTADDR 0x058
#define SDMA_CHN0ADDR 0x05c
#define SDMA_ONCE_RTB 0x060
#define SDMA_XTRIG_CONF1 0x070
#define SDMA_XTRIG_CONF2 0x074
#define SDMA_CHNENBL0_IMX35 0x200
#define SDMA_CHNENBL0_IMX31 0x080
#define SDMA_CHNPRI_0 0x100
/*
* Buffer descriptor status values.
*/
#define BD_DONE 0x01
#define BD_WRAP 0x02
#define BD_CONT 0x04
#define BD_INTR 0x08
#define BD_RROR 0x10
#define BD_LAST 0x20
#define BD_EXTD 0x80
/*
* Data Node descriptor status values.
*/
#define DND_END_OF_FRAME 0x80
#define DND_END_OF_XFER 0x40
#define DND_DONE 0x20
#define DND_UNUSED 0x01
/*
* IPCV2 descriptor status values.
*/
#define BD_IPCV2_END_OF_FRAME 0x40
#define IPCV2_MAX_NODES 50
/*
* Error bit set in the CCB status field by the SDMA,
* in setbd routine, in case of a transfer error
*/
#define DATA_ERROR 0x10000000
/*
* Buffer descriptor commands.
*/
#define C0_ADDR 0x01
#define C0_LOAD 0x02
#define C0_DUMP 0x03
#define C0_SETCTX 0x07
#define C0_GETCTX 0x03
#define C0_SETDM 0x01
#define C0_SETPM 0x04
#define C0_GETDM 0x02
#define C0_GETPM 0x08
/*
* Change endianness indicator in the BD command field
*/
#define CHANGE_ENDIANNESS 0x80
/*
* p_2_p watermark_level description
* Bits Name Description
* 0-7 Lower WML Lower watermark level
* 8 PS 1: Pad Swallowing
* 0: No Pad Swallowing
* 9 PA 1: Pad Adding
* 0: No Pad Adding
* 10 SPDIF If this bit is set both source
* and destination are on SPBA
* 11 Source Bit(SP) 1: Source on SPBA
* 0: Source on AIPS
* 12 Destination Bit(DP) 1: Destination on SPBA
* 0: Destination on AIPS
* 13-15 --------- MUST BE 0
* 16-23 Higher WML HWML
* 24-27 N Total number of samples after
* which Pad adding/Swallowing
* must be done. It must be odd.
* 28 Lower WML Event(LWE) SDMA events reg to check for
* LWML event mask
* 0: LWE in EVENTS register
* 1: LWE in EVENTS2 register
* 29 Higher WML Event(HWE) SDMA events reg to check for
* HWML event mask
* 0: HWE in EVENTS register
* 1: HWE in EVENTS2 register
* 30 --------- MUST BE 0
* 31 CONT 1: Amount of samples to be
* transferred is unknown and
* script will keep on
* transferring samples as long as
* both events are detected and
* script must be manually stopped
* by the application
* 0: The amount of samples to be
* transferred is equal to the
* count field of mode word
*/
#define SDMA_WATERMARK_LEVEL_LWML 0xFF
#define SDMA_WATERMARK_LEVEL_PS BIT(8)
#define SDMA_WATERMARK_LEVEL_PA BIT(9)
#define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
#define SDMA_WATERMARK_LEVEL_SP BIT(11)
#define SDMA_WATERMARK_LEVEL_DP BIT(12)
#define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
#define SDMA_WATERMARK_LEVEL_LWE BIT(28)
#define SDMA_WATERMARK_LEVEL_HWE BIT(29)
#define SDMA_WATERMARK_LEVEL_CONT BIT(31)
#define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
#define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
BIT(DMA_MEM_TO_DEV) | \
BIT(DMA_DEV_TO_DEV))
/*
* Mode/Count of data node descriptors - IPCv2
*/
struct sdma_mode_count {
#define SDMA_BD_MAX_CNT 0xffff
u32 count : 16; /* size of the buffer pointed by this BD */
u32 status : 8; /* E,R,I,C,W,D status bits stored here */
u32 command : 8; /* command mostly used for channel 0 */
};
/*
* Buffer descriptor
*/
struct sdma_buffer_descriptor {
struct sdma_mode_count mode;
u32 buffer_addr; /* address of the buffer described */
u32 ext_buffer_addr; /* extended buffer address */
} __attribute__ ((packed));
/**
* struct sdma_channel_control - Channel control Block
*
* @current_bd_ptr: current buffer descriptor processed
* @base_bd_ptr: first element of buffer descriptor array
* @unused: padding. The SDMA engine expects an array of 128 byte
* control blocks
*/
struct sdma_channel_control {
u32 current_bd_ptr;
u32 base_bd_ptr;
u32 unused[2];
} __attribute__ ((packed));
/**
* struct sdma_state_registers - SDMA context for a channel
*
* @pc: program counter
* @unused1: unused
* @t: test bit: status of arithmetic & test instruction
* @rpc: return program counter
* @unused0: unused
* @sf: source fault while loading data
* @spc: loop start program counter
* @unused2: unused
* @df: destination fault while storing data
* @epc: loop end program counter
* @lm: loop mode
*/
struct sdma_state_registers {
u32 pc :14;
u32 unused1: 1;
u32 t : 1;
u32 rpc :14;
u32 unused0: 1;
u32 sf : 1;
u32 spc :14;
u32 unused2: 1;
u32 df : 1;
u32 epc :14;
u32 lm : 2;
} __attribute__ ((packed));
/**
* struct sdma_context_data - sdma context specific to a channel
*
* @channel_state: channel state bits
* @gReg: general registers
* @mda: burst dma destination address register
* @msa: burst dma source address register
* @ms: burst dma status register
* @md: burst dma data register
* @pda: peripheral dma destination address register
* @psa: peripheral dma source address register
* @ps: peripheral dma status register
* @pd: peripheral dma data register
* @ca: CRC polynomial register
* @cs: CRC accumulator register
* @dda: dedicated core destination address register
* @dsa: dedicated core source address register
* @ds: dedicated core status register
* @dd: dedicated core data register
* @scratch0: 1st word of dedicated ram for context switch
* @scratch1: 2nd word of dedicated ram for context switch
* @scratch2: 3rd word of dedicated ram for context switch
* @scratch3: 4th word of dedicated ram for context switch
* @scratch4: 5th word of dedicated ram for context switch
* @scratch5: 6th word of dedicated ram for context switch
* @scratch6: 7th word of dedicated ram for context switch
* @scratch7: 8th word of dedicated ram for context switch
*/
struct sdma_context_data {
struct sdma_state_registers channel_state;
u32 gReg[8];
u32 mda;
u32 msa;
u32 ms;
u32 md;
u32 pda;
u32 psa;
u32 ps;
u32 pd;
u32 ca;
u32 cs;
u32 dda;
u32 dsa;
u32 ds;
u32 dd;
u32 scratch0;
u32 scratch1;
u32 scratch2;
u32 scratch3;
u32 scratch4;
u32 scratch5;
u32 scratch6;
u32 scratch7;
} __attribute__ ((packed));
struct sdma_engine;
/**
* struct sdma_desc - descriptor structor for one transfer
* @vd: descriptor for virt dma
* @num_bd: number of descriptors currently handling
* @bd_phys: physical address of bd
* @buf_tail: ID of the buffer that was processed
* @buf_ptail: ID of the previous buffer that was processed
* @period_len: period length, used in cyclic.
* @chn_real_count: the real count updated from bd->mode.count
* @chn_count: the transfer count set
* @sdmac: sdma_channel pointer
* @bd: pointer of allocate bd
*/
struct sdma_desc {
struct virt_dma_desc vd;
unsigned int num_bd;
dma_addr_t bd_phys;
unsigned int buf_tail;
unsigned int buf_ptail;
unsigned int period_len;
unsigned int chn_real_count;
unsigned int chn_count;
struct sdma_channel *sdmac;
struct sdma_buffer_descriptor *bd;
};
/**
* struct sdma_channel - housekeeping for a SDMA channel
*
* @vc: virt_dma base structure
* @desc: sdma description including vd and other special member
* @sdma: pointer to the SDMA engine for this channel
* @channel: the channel number, matches dmaengine chan_id + 1
* @direction: transfer type. Needed for setting SDMA script
* @slave_config: Slave configuration
* @peripheral_type: Peripheral type. Needed for setting SDMA script
* @event_id0: aka dma request line
* @event_id1: for channels that use 2 events
* @word_size: peripheral access size
* @pc_from_device: script address for those device_2_memory
* @pc_to_device: script address for those memory_2_device
* @device_to_device: script address for those device_2_device
* @pc_to_pc: script address for those memory_2_memory
* @flags: loop mode or not
* @per_address: peripheral source or destination address in common case
* destination address in p_2_p case
* @per_address2: peripheral source address in p_2_p case
* @event_mask: event mask used in p_2_p script
* @watermark_level: value for gReg[7], some script will extend it from
* basic watermark such as p_2_p
* @shp_addr: value for gReg[6]
* @per_addr: value for gReg[2]
* @status: status of dma channel
* @context_loaded: ensure context is only loaded once
* @data: specific sdma interface structure
* @bd_pool: dma_pool for bd
* @terminate_worker: used to call back into terminate work function
*/
struct sdma_channel {
struct virt_dma_chan vc;
struct sdma_desc *desc;
struct sdma_engine *sdma;
unsigned int channel;
enum dma_transfer_direction direction;
struct dma_slave_config slave_config;
enum sdma_peripheral_type peripheral_type;
unsigned int event_id0;
unsigned int event_id1;
enum dma_slave_buswidth word_size;
unsigned int pc_from_device, pc_to_device;
unsigned int device_to_device;
unsigned int pc_to_pc;
unsigned long flags;
dma_addr_t per_address, per_address2;
unsigned long event_mask[2];
unsigned long watermark_level;
u32 shp_addr, per_addr;
enum dma_status status;
bool context_loaded;
struct imx_dma_data data;
struct work_struct terminate_worker;
};
#define IMX_DMA_SG_LOOP BIT(0)
#define MAX_DMA_CHANNELS 32
#define MXC_SDMA_DEFAULT_PRIORITY 1
#define MXC_SDMA_MIN_PRIORITY 1
#define MXC_SDMA_MAX_PRIORITY 7
#define SDMA_FIRMWARE_MAGIC 0x414d4453
/**
* struct sdma_firmware_header - Layout of the firmware image
*
* @magic: "SDMA"
* @version_major: increased whenever layout of struct
* sdma_script_start_addrs changes.
* @version_minor: firmware minor version (for binary compatible changes)
* @script_addrs_start: offset of struct sdma_script_start_addrs in this image
* @num_script_addrs: Number of script addresses in this image
* @ram_code_start: offset of SDMA ram image in this firmware image
* @ram_code_size: size of SDMA ram image
* @script_addrs: Stores the start address of the SDMA scripts
* (in SDMA memory space)
*/
struct sdma_firmware_header {
u32 magic;
u32 version_major;
u32 version_minor;
u32 script_addrs_start;
u32 num_script_addrs;
u32 ram_code_start;
u32 ram_code_size;
};
struct sdma_driver_data {
int chnenbl0;
int num_events;
struct sdma_script_start_addrs *script_addrs;
bool check_ratio;
};
struct sdma_engine {
struct device *dev;
struct sdma_channel channel[MAX_DMA_CHANNELS];
struct sdma_channel_control *channel_control;
void __iomem *regs;
struct sdma_context_data *context;
dma_addr_t context_phys;
struct dma_device dma_device;
struct clk *clk_ipg;
struct clk *clk_ahb;
spinlock_t channel_0_lock;
u32 script_number;
struct sdma_script_start_addrs *script_addrs;
const struct sdma_driver_data *drvdata;
u32 spba_start_addr;
u32 spba_end_addr;
unsigned int irq;
dma_addr_t bd0_phys;
struct sdma_buffer_descriptor *bd0;
/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
bool clk_ratio;
};
static int sdma_config_write(struct dma_chan *chan,
struct dma_slave_config *dmaengine_cfg,
enum dma_transfer_direction direction);
static struct sdma_driver_data sdma_imx31 = {
.chnenbl0 = SDMA_CHNENBL0_IMX31,
.num_events = 32,
};
static struct sdma_script_start_addrs sdma_script_imx25 = {
.ap_2_ap_addr = 729,
.uart_2_mcu_addr = 904,
.per_2_app_addr = 1255,
.mcu_2_app_addr = 834,
.uartsh_2_mcu_addr = 1120,
.per_2_shp_addr = 1329,
.mcu_2_shp_addr = 1048,
.ata_2_mcu_addr = 1560,
.mcu_2_ata_addr = 1479,
.app_2_per_addr = 1189,
.app_2_mcu_addr = 770,
.shp_2_per_addr = 1407,
.shp_2_mcu_addr = 979,
};
static struct sdma_driver_data sdma_imx25 = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx25,
};
static struct sdma_driver_data sdma_imx35 = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
};
static struct sdma_script_start_addrs sdma_script_imx51 = {
.ap_2_ap_addr = 642,
.uart_2_mcu_addr = 817,
.mcu_2_app_addr = 747,
.mcu_2_shp_addr = 961,
.ata_2_mcu_addr = 1473,
.mcu_2_ata_addr = 1392,
.app_2_per_addr = 1033,
.app_2_mcu_addr = 683,
.shp_2_per_addr = 1251,
.shp_2_mcu_addr = 892,
};
static struct sdma_driver_data sdma_imx51 = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx51,
};
static struct sdma_script_start_addrs sdma_script_imx53 = {
.ap_2_ap_addr = 642,
.app_2_mcu_addr = 683,
.mcu_2_app_addr = 747,
.uart_2_mcu_addr = 817,
.shp_2_mcu_addr = 891,
.mcu_2_shp_addr = 960,
.uartsh_2_mcu_addr = 1032,
.spdif_2_mcu_addr = 1100,
.mcu_2_spdif_addr = 1134,
.firi_2_mcu_addr = 1193,
.mcu_2_firi_addr = 1290,
};
static struct sdma_driver_data sdma_imx53 = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx53,
};
static struct sdma_script_start_addrs sdma_script_imx6q = {
.ap_2_ap_addr = 642,
.uart_2_mcu_addr = 817,
.mcu_2_app_addr = 747,
.per_2_per_addr = 6331,
.uartsh_2_mcu_addr = 1032,
.mcu_2_shp_addr = 960,
.app_2_mcu_addr = 683,
.shp_2_mcu_addr = 891,
.spdif_2_mcu_addr = 1100,
.mcu_2_spdif_addr = 1134,
};
static struct sdma_driver_data sdma_imx6q = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx6q,
};
static struct sdma_script_start_addrs sdma_script_imx7d = {
.ap_2_ap_addr = 644,
.uart_2_mcu_addr = 819,
.mcu_2_app_addr = 749,
.uartsh_2_mcu_addr = 1034,
.mcu_2_shp_addr = 962,
.app_2_mcu_addr = 685,
.shp_2_mcu_addr = 893,
.spdif_2_mcu_addr = 1102,
.mcu_2_spdif_addr = 1136,
};
static struct sdma_driver_data sdma_imx7d = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx7d,
};
static struct sdma_driver_data sdma_imx8mq = {
.chnenbl0 = SDMA_CHNENBL0_IMX35,
.num_events = 48,
.script_addrs = &sdma_script_imx7d,
.check_ratio = 1,
};
static const struct platform_device_id sdma_devtypes[] = {
{
.name = "imx25-sdma",
.driver_data = (unsigned long)&sdma_imx25,
}, {
.name = "imx31-sdma",
.driver_data = (unsigned long)&sdma_imx31,
}, {
.name = "imx35-sdma",
.driver_data = (unsigned long)&sdma_imx35,
}, {
.name = "imx51-sdma",
.driver_data = (unsigned long)&sdma_imx51,
}, {
.name = "imx53-sdma",
.driver_data = (unsigned long)&sdma_imx53,
}, {
.name = "imx6q-sdma",
.driver_data = (unsigned long)&sdma_imx6q,
}, {
.name = "imx7d-sdma",
.driver_data = (unsigned long)&sdma_imx7d,
}, {
.name = "imx8mq-sdma",
.driver_data = (unsigned long)&sdma_imx8mq,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(platform, sdma_devtypes);
static const struct of_device_id sdma_dt_ids[] = {
{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sdma_dt_ids);
#define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
#define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
#define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
#define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
{
u32 chnenbl0 = sdma->drvdata->chnenbl0;
return chnenbl0 + event * 4;
}
static int sdma_config_ownership(struct sdma_channel *sdmac,
bool event_override, bool mcu_override, bool dsp_override)
{
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
unsigned long evt, mcu, dsp;
if (event_override && mcu_override && dsp_override)
return -EINVAL;
evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
if (dsp_override)
__clear_bit(channel, &dsp);
else
__set_bit(channel, &dsp);
if (event_override)
__clear_bit(channel, &evt);
else
__set_bit(channel, &evt);
if (mcu_override)
__clear_bit(channel, &mcu);
else
__set_bit(channel, &mcu);
writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
return 0;
}
static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
{
writel(BIT(channel), sdma->regs + SDMA_H_START);
}
/*
* sdma_run_channel0 - run a channel and wait till it's done
*/
static int sdma_run_channel0(struct sdma_engine *sdma)
{
int ret;
u32 reg;
sdma_enable_channel(sdma, 0);
ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
reg, !(reg & 1), 1, 500);
if (ret)
dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
/* Set bits of CONFIG register with dynamic context switching */
reg = readl(sdma->regs + SDMA_H_CONFIG);
if ((reg & SDMA_H_CONFIG_CSM) == 0) {
reg |= SDMA_H_CONFIG_CSM;
writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
}
return ret;
}
static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
u32 address)
{
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
void *buf_virt;
dma_addr_t buf_phys;
int ret;
unsigned long flags;
buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
if (!buf_virt) {
return -ENOMEM;
}
spin_lock_irqsave(&sdma->channel_0_lock, flags);
bd0->mode.command = C0_SETPM;
bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
bd0->mode.count = size / 2;
bd0->buffer_addr = buf_phys;
bd0->ext_buffer_addr = address;
memcpy(buf_virt, buf, size);
ret = sdma_run_channel0(sdma);
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
return ret;
}
static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
{
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
unsigned long val;
u32 chnenbl = chnenbl_ofs(sdma, event);
val = readl_relaxed(sdma->regs + chnenbl);
__set_bit(channel, &val);
writel_relaxed(val, sdma->regs + chnenbl);
}
static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
{
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
u32 chnenbl = chnenbl_ofs(sdma, event);
unsigned long val;
val = readl_relaxed(sdma->regs + chnenbl);
__clear_bit(channel, &val);
writel_relaxed(val, sdma->regs + chnenbl);
}
static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
{
return container_of(t, struct sdma_desc, vd.tx);
}
static void sdma_start_desc(struct sdma_channel *sdmac)
{
struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
struct sdma_desc *desc;
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
if (!vd) {
sdmac->desc = NULL;
return;
}
sdmac->desc = desc = to_sdma_desc(&vd->tx);
list_del(&vd->node);
sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
sdma_enable_channel(sdma, sdmac->channel);
}
static void sdma_update_channel_loop(struct sdma_channel *sdmac)
{
struct sdma_buffer_descriptor *bd;
int error = 0;
enum dma_status old_status = sdmac->status;
/*
* loop mode. Iterate over descriptors, re-setup them and
* call callback function.
*/
while (sdmac->desc) {
struct sdma_desc *desc = sdmac->desc;
bd = &desc->bd[desc->buf_tail];
if (bd->mode.status & BD_DONE)
break;
if (bd->mode.status & BD_RROR) {
bd->mode.status &= ~BD_RROR;
sdmac->status = DMA_ERROR;
error = -EIO;
}
/*
* We use bd->mode.count to calculate the residue, since contains
* the number of bytes present in the current buffer descriptor.
*/
desc->chn_real_count = bd->mode.count;
bd->mode.status |= BD_DONE;
bd->mode.count = desc->period_len;
desc->buf_ptail = desc->buf_tail;
desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
/*
* The callback is called from the interrupt context in order
* to reduce latency and to avoid the risk of altering the
* SDMA transaction status by the time the client tasklet is
* executed.
*/
spin_unlock(&sdmac->vc.lock);
dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
spin_lock(&sdmac->vc.lock);
if (error)
sdmac->status = old_status;
}
}
static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
{
struct sdma_channel *sdmac = (struct sdma_channel *) data;
struct sdma_buffer_descriptor *bd;
int i, error = 0;
sdmac->desc->chn_real_count = 0;
/*
* non loop mode. Iterate over all descriptors, collect
* errors and call callback function
*/
for (i = 0; i < sdmac->desc->num_bd; i++) {
bd = &sdmac->desc->bd[i];
if (bd->mode.status & (BD_DONE | BD_RROR))
error = -EIO;
sdmac->desc->chn_real_count += bd->mode.count;
}
if (error)
sdmac->status = DMA_ERROR;
else
sdmac->status = DMA_COMPLETE;
}
static irqreturn_t sdma_int_handler(int irq, void *dev_id)
{
struct sdma_engine *sdma = dev_id;
unsigned long stat;
stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
/* channel 0 is special and not handled here, see run_channel0() */
stat &= ~1;
while (stat) {
int channel = fls(stat) - 1;
struct sdma_channel *sdmac = &sdma->channel[channel];
struct sdma_desc *desc;
spin_lock(&sdmac->vc.lock);
desc = sdmac->desc;
if (desc) {
if (sdmac->flags & IMX_DMA_SG_LOOP) {
sdma_update_channel_loop(sdmac);
} else {
mxc_sdma_handle_channel_normal(sdmac);
vchan_cookie_complete(&desc->vd);
sdma_start_desc(sdmac);
}
}
spin_unlock(&sdmac->vc.lock);
__clear_bit(channel, &stat);
}
return IRQ_HANDLED;
}
/*
* sets the pc of SDMA script according to the peripheral type
*/
static void sdma_get_pc(struct sdma_channel *sdmac,
enum sdma_peripheral_type peripheral_type)
{
struct sdma_engine *sdma = sdmac->sdma;
int per_2_emi = 0, emi_2_per = 0;
/*
* These are needed once we start to support transfers between
* two peripherals or memory-to-memory transfers
*/
int per_2_per = 0, emi_2_emi = 0;
sdmac->pc_from_device = 0;
sdmac->pc_to_device = 0;
sdmac->device_to_device = 0;
sdmac->pc_to_pc = 0;
switch (peripheral_type) {
case IMX_DMATYPE_MEMORY:
emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
break;
case IMX_DMATYPE_DSP:
emi_2_per = sdma->script_addrs->bp_2_ap_addr;
per_2_emi = sdma->script_addrs->ap_2_bp_addr;
break;
case IMX_DMATYPE_FIRI:
per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
break;
case IMX_DMATYPE_UART:
per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
break;
case IMX_DMATYPE_UART_SP:
per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
break;
case IMX_DMATYPE_ATA:
per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
break;
case IMX_DMATYPE_CSPI:
case IMX_DMATYPE_EXT:
case IMX_DMATYPE_SSI:
case IMX_DMATYPE_SAI:
per_2_emi = sdma->script_addrs->app_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_app_addr;
break;
case IMX_DMATYPE_SSI_DUAL:
per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
break;
case IMX_DMATYPE_SSI_SP:
case IMX_DMATYPE_MMC:
case IMX_DMATYPE_SDHC:
case IMX_DMATYPE_CSPI_SP:
case IMX_DMATYPE_ESAI:
case IMX_DMATYPE_MSHC_SP:
per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
break;
case IMX_DMATYPE_ASRC:
per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
per_2_per = sdma->script_addrs->per_2_per_addr;
break;
case IMX_DMATYPE_ASRC_SP:
per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
per_2_per = sdma->script_addrs->per_2_per_addr;
break;
case IMX_DMATYPE_MSHC:
per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
break;
case IMX_DMATYPE_CCM:
per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
break;
case IMX_DMATYPE_SPDIF:
per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
break;
case IMX_DMATYPE_IPU_MEMORY:
emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
break;
default:
break;
}
sdmac->pc_from_device = per_2_emi;
sdmac->pc_to_device = emi_2_per;
sdmac->device_to_device = per_2_per;
sdmac->pc_to_pc = emi_2_emi;
}
static int sdma_load_context(struct sdma_channel *sdmac)
{
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
int load_address;
struct sdma_context_data *context = sdma->context;
struct sdma_buffer_descriptor *bd0 = sdma->bd0;
int ret;
unsigned long flags;
if (sdmac->context_loaded)
return 0;
if (sdmac->direction == DMA_DEV_TO_MEM)
load_address = sdmac->pc_from_device;
else if (sdmac->direction == DMA_DEV_TO_DEV)
load_address = sdmac->device_to_device;
else if (sdmac->direction == DMA_MEM_TO_MEM)
load_address = sdmac->pc_to_pc;
else
load_address = sdmac->pc_to_device;
if (load_address < 0)
return load_address;
dev_dbg(sdma->dev, "load_address = %d\n", load_address);
dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
spin_lock_irqsave(&sdma->channel_0_lock, flags);
memset(context, 0, sizeof(*context));
context->channel_state.pc = load_address;
/* Send by context the event mask,base address for peripheral
* and watermark level
*/
context->gReg[0] = sdmac->event_mask[1];
context->gReg[1] = sdmac->event_mask[0];
context->gReg[2] = sdmac->per_addr;
context->gReg[6] = sdmac->shp_addr;
context->gReg[7] = sdmac->watermark_level;
bd0->mode.command = C0_SETDM;
bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
bd0->mode.count = sizeof(*context) / 4;
bd0->buffer_addr = sdma->context_phys;
bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
ret = sdma_run_channel0(sdma);
spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
sdmac->context_loaded = true;
return ret;
}
static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
{
return container_of(chan, struct sdma_channel, vc.chan);
}
static int sdma_disable_channel(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
sdmac->status = DMA_ERROR;
return 0;
}
static void sdma_channel_terminate_work(struct work_struct *work)
{
struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
terminate_worker);
unsigned long flags;
LIST_HEAD(head);
/*
* According to NXP R&D team a delay of one BD SDMA cost time
* (maximum is 1ms) should be added after disable of the channel
* bit, to ensure SDMA core has really been stopped after SDMA
* clients call .device_terminate_all.
*/
usleep_range(1000, 2000);
spin_lock_irqsave(&sdmac->vc.lock, flags);
vchan_get_all_descriptors(&sdmac->vc, &head);
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
vchan_dma_desc_free_list(&sdmac->vc, &head);
sdmac->context_loaded = false;
}
static int sdma_terminate_all(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&sdmac->vc.lock, flags);
sdma_disable_channel(chan);
if (sdmac->desc) {
vchan_terminate_vdesc(&sdmac->desc->vd);
sdmac->desc = NULL;
schedule_work(&sdmac->terminate_worker);
}
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
return 0;
}
static void sdma_channel_synchronize(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
vchan_synchronize(&sdmac->vc);
flush_work(&sdmac->terminate_worker);
}
static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
{
struct sdma_engine *sdma = sdmac->sdma;
int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
if (sdmac->event_id0 > 31)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
if (sdmac->event_id1 > 31)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
/*
* If LWML(src_maxburst) > HWML(dst_maxburst), we need
* swap LWML and HWML of INFO(A.3.2.5.1), also need swap
* r0(event_mask[1]) and r1(event_mask[0]).
*/
if (lwml > hwml) {
sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
SDMA_WATERMARK_LEVEL_HWML);
sdmac->watermark_level |= hwml;
sdmac->watermark_level |= lwml << 16;
swap(sdmac->event_mask[0], sdmac->event_mask[1]);
}
if (sdmac->per_address2 >= sdma->spba_start_addr &&
sdmac->per_address2 <= sdma->spba_end_addr)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
if (sdmac->per_address >= sdma->spba_start_addr &&
sdmac->per_address <= sdma->spba_end_addr)
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
}
static int sdma_config_channel(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
int ret;
sdma_disable_channel(chan);
sdmac->event_mask[0] = 0;
sdmac->event_mask[1] = 0;
sdmac->shp_addr = 0;
sdmac->per_addr = 0;
switch (sdmac->peripheral_type) {
case IMX_DMATYPE_DSP:
sdma_config_ownership(sdmac, false, true, true);
break;
case IMX_DMATYPE_MEMORY:
sdma_config_ownership(sdmac, false, true, false);
break;
default:
sdma_config_ownership(sdmac, true, true, false);
break;
}
sdma_get_pc(sdmac, sdmac->peripheral_type);
if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
/* Handle multiple event channels differently */
if (sdmac->event_id1) {
if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
sdmac->peripheral_type == IMX_DMATYPE_ASRC)
sdma_set_watermarklevel_for_p2p(sdmac);
} else
__set_bit(sdmac->event_id0, sdmac->event_mask);
/* Address */
sdmac->shp_addr = sdmac->per_address;
sdmac->per_addr = sdmac->per_address2;
} else {
sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
}
ret = sdma_load_context(sdmac);
return ret;
}
static int sdma_set_channel_priority(struct sdma_channel *sdmac,
unsigned int priority)
{
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
if (priority < MXC_SDMA_MIN_PRIORITY
|| priority > MXC_SDMA_MAX_PRIORITY) {
return -EINVAL;
}
writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
return 0;
}
static int sdma_request_channel0(struct sdma_engine *sdma)
{
int ret = -EBUSY;
sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
GFP_NOWAIT);
if (!sdma->bd0) {
ret = -ENOMEM;
goto out;
}
sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
return 0;
out:
return ret;
}
static int sdma_alloc_bd(struct sdma_desc *desc)
{
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
int ret = 0;
desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
&desc->bd_phys, GFP_NOWAIT);
if (!desc->bd) {
ret = -ENOMEM;
goto out;
}
out:
return ret;
}
static void sdma_free_bd(struct sdma_desc *desc)
{
u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
desc->bd_phys);
}
static void sdma_desc_free(struct virt_dma_desc *vd)
{
struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
sdma_free_bd(desc);
kfree(desc);
}
static int sdma_alloc_chan_resources(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct imx_dma_data *data = chan->private;
struct imx_dma_data mem_data;
int prio, ret;
/*
* MEMCPY may never setup chan->private by filter function such as
* dmatest, thus create 'struct imx_dma_data mem_data' for this case.
* Please note in any other slave case, you have to setup chan->private
* with 'struct imx_dma_data' in your own filter function if you want to
* request dma channel by dma_request_channel() rather than
* dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
* to warn you to correct your filter function.
*/
if (!data) {
dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
mem_data.priority = 2;
mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
mem_data.dma_request = 0;
mem_data.dma_request2 = 0;
data = &mem_data;
sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
}
switch (data->priority) {
case DMA_PRIO_HIGH:
prio = 3;
break;
case DMA_PRIO_MEDIUM:
prio = 2;
break;
case DMA_PRIO_LOW:
default:
prio = 1;
break;
}
sdmac->peripheral_type = data->peripheral_type;
sdmac->event_id0 = data->dma_request;
sdmac->event_id1 = data->dma_request2;
ret = clk_enable(sdmac->sdma->clk_ipg);
if (ret)
return ret;
ret = clk_enable(sdmac->sdma->clk_ahb);
if (ret)
goto disable_clk_ipg;
ret = sdma_set_channel_priority(sdmac, prio);
if (ret)
goto disable_clk_ahb;
return 0;
disable_clk_ahb:
clk_disable(sdmac->sdma->clk_ahb);
disable_clk_ipg:
clk_disable(sdmac->sdma->clk_ipg);
return ret;
}
static void sdma_free_chan_resources(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
sdma_terminate_all(chan);
sdma_channel_synchronize(chan);
sdma_event_disable(sdmac, sdmac->event_id0);
if (sdmac->event_id1)
sdma_event_disable(sdmac, sdmac->event_id1);
sdmac->event_id0 = 0;
sdmac->event_id1 = 0;
sdmac->context_loaded = false;
sdma_set_channel_priority(sdmac, 0);
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
}
static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
enum dma_transfer_direction direction, u32 bds)
{
struct sdma_desc *desc;
desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
if (!desc)
goto err_out;
sdmac->status = DMA_IN_PROGRESS;
sdmac->direction = direction;
sdmac->flags = 0;
desc->chn_count = 0;
desc->chn_real_count = 0;
desc->buf_tail = 0;
desc->buf_ptail = 0;
desc->sdmac = sdmac;
desc->num_bd = bds;
if (sdma_alloc_bd(desc))
goto err_desc_out;
/* No slave_config called in MEMCPY case, so do here */
if (direction == DMA_MEM_TO_MEM)
sdma_config_ownership(sdmac, false, true, false);
if (sdma_load_context(sdmac))
goto err_desc_out;
return desc;
err_desc_out:
kfree(desc);
err_out:
return NULL;
}
static struct dma_async_tx_descriptor *sdma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dma_dst,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int channel = sdmac->channel;
size_t count;
int i = 0, param;
struct sdma_buffer_descriptor *bd;
struct sdma_desc *desc;
if (!chan || !len)
return NULL;
dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
&dma_src, &dma_dst, len, channel);
desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
len / SDMA_BD_MAX_CNT + 1);
if (!desc)
return NULL;
do {
count = min_t(size_t, len, SDMA_BD_MAX_CNT);
bd = &desc->bd[i];
bd->buffer_addr = dma_src;
bd->ext_buffer_addr = dma_dst;
bd->mode.count = count;
desc->chn_count += count;
bd->mode.command = 0;
dma_src += count;
dma_dst += count;
len -= count;
i++;
param = BD_DONE | BD_EXTD | BD_CONT;
/* last bd */
if (!len) {
param |= BD_INTR;
param |= BD_LAST;
param &= ~BD_CONT;
}
dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
i, count, bd->buffer_addr,
param & BD_WRAP ? "wrap" : "",
param & BD_INTR ? " intr" : "");
bd->mode.status = param;
} while (len);
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
}
static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int i, count;
int channel = sdmac->channel;
struct scatterlist *sg;
struct sdma_desc *desc;
sdma_config_write(chan, &sdmac->slave_config, direction);
desc = sdma_transfer_init(sdmac, direction, sg_len);
if (!desc)
goto err_out;
dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
sg_len, channel);
for_each_sg(sgl, sg, sg_len, i) {
struct sdma_buffer_descriptor *bd = &desc->bd[i];
int param;
bd->buffer_addr = sg->dma_address;
count = sg_dma_len(sg);
if (count > SDMA_BD_MAX_CNT) {
dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
channel, count, SDMA_BD_MAX_CNT);
goto err_bd_out;
}
bd->mode.count = count;
desc->chn_count += count;
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
goto err_bd_out;
switch (sdmac->word_size) {
case DMA_SLAVE_BUSWIDTH_4_BYTES:
bd->mode.command = 0;
if (count & 3 || sg->dma_address & 3)
goto err_bd_out;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
bd->mode.command = 2;
if (count & 1 || sg->dma_address & 1)
goto err_bd_out;
break;
case DMA_SLAVE_BUSWIDTH_1_BYTE:
bd->mode.command = 1;
break;
default:
goto err_bd_out;
}
param = BD_DONE | BD_EXTD | BD_CONT;
if (i + 1 == sg_len) {
param |= BD_INTR;
param |= BD_LAST;
param &= ~BD_CONT;
}
dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
i, count, (u64)sg->dma_address,
param & BD_WRAP ? "wrap" : "",
param & BD_INTR ? " intr" : "");
bd->mode.status = param;
}
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
sdma_free_bd(desc);
kfree(desc);
err_out:
sdmac->status = DMA_ERROR;
return NULL;
}
static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_engine *sdma = sdmac->sdma;
int num_periods = buf_len / period_len;
int channel = sdmac->channel;
int i = 0, buf = 0;
struct sdma_desc *desc;
dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
sdma_config_write(chan, &sdmac->slave_config, direction);
desc = sdma_transfer_init(sdmac, direction, num_periods);
if (!desc)
goto err_out;
desc->period_len = period_len;
sdmac->flags |= IMX_DMA_SG_LOOP;
if (period_len > SDMA_BD_MAX_CNT) {
dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
channel, period_len, SDMA_BD_MAX_CNT);
goto err_bd_out;
}
while (buf < buf_len) {
struct sdma_buffer_descriptor *bd = &desc->bd[i];
int param;
bd->buffer_addr = dma_addr;
bd->mode.count = period_len;
if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
goto err_bd_out;
if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
bd->mode.command = 0;
else
bd->mode.command = sdmac->word_size;
param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
if (i + 1 == num_periods)
param |= BD_WRAP;
dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
i, period_len, (u64)dma_addr,
param & BD_WRAP ? "wrap" : "",
param & BD_INTR ? " intr" : "");
bd->mode.status = param;
dma_addr += period_len;
buf += period_len;
i++;
}
return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
err_bd_out:
sdma_free_bd(desc);
kfree(desc);
err_out:
sdmac->status = DMA_ERROR;
return NULL;
}
static int sdma_config_write(struct dma_chan *chan,
struct dma_slave_config *dmaengine_cfg,
enum dma_transfer_direction direction)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
if (direction == DMA_DEV_TO_MEM) {
sdmac->per_address = dmaengine_cfg->src_addr;
sdmac->watermark_level = dmaengine_cfg->src_maxburst *
dmaengine_cfg->src_addr_width;
sdmac->word_size = dmaengine_cfg->src_addr_width;
} else if (direction == DMA_DEV_TO_DEV) {
sdmac->per_address2 = dmaengine_cfg->src_addr;
sdmac->per_address = dmaengine_cfg->dst_addr;
sdmac->watermark_level = dmaengine_cfg->src_maxburst &
SDMA_WATERMARK_LEVEL_LWML;
sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
SDMA_WATERMARK_LEVEL_HWML;
sdmac->word_size = dmaengine_cfg->dst_addr_width;
} else {
sdmac->per_address = dmaengine_cfg->dst_addr;
sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
dmaengine_cfg->dst_addr_width;
sdmac->word_size = dmaengine_cfg->dst_addr_width;
}
sdmac->direction = direction;
return sdma_config_channel(chan);
}
static int sdma_config(struct dma_chan *chan,
struct dma_slave_config *dmaengine_cfg)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
/* Set ENBLn earlier to make sure dma request triggered after that */
if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
return -EINVAL;
sdma_event_enable(sdmac, sdmac->event_id0);
if (sdmac->event_id1) {
if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
return -EINVAL;
sdma_event_enable(sdmac, sdmac->event_id1);
}
return 0;
}
static enum dma_status sdma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct sdma_desc *desc = NULL;
u32 residue;
struct virt_dma_desc *vd;
enum dma_status ret;
unsigned long flags;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&sdmac->vc.lock, flags);
vd = vchan_find_desc(&sdmac->vc, cookie);
if (vd)
desc = to_sdma_desc(&vd->tx);
else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
desc = sdmac->desc;
if (desc) {
if (sdmac->flags & IMX_DMA_SG_LOOP)
residue = (desc->num_bd - desc->buf_ptail) *
desc->period_len - desc->chn_real_count;
else
residue = desc->chn_count - desc->chn_real_count;
} else {
residue = 0;
}
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
residue);
return sdmac->status;
}
static void sdma_issue_pending(struct dma_chan *chan)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&sdmac->vc.lock, flags);
if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
sdma_start_desc(sdmac);
spin_unlock_irqrestore(&sdmac->vc.lock, flags);
}
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
static void sdma_add_scripts(struct sdma_engine *sdma,
const struct sdma_script_start_addrs *addr)
{
s32 *addr_arr = (u32 *)addr;
s32 *saddr_arr = (u32 *)sdma->script_addrs;
int i;
/* use the default firmware in ROM if missing external firmware */
if (!sdma->script_number)
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
/ sizeof(s32)) {
dev_err(sdma->dev,
"SDMA script number %d not match with firmware.\n",
sdma->script_number);
return;
}
for (i = 0; i < sdma->script_number; i++)
if (addr_arr[i] > 0)
saddr_arr[i] = addr_arr[i];
}
static void sdma_load_firmware(const struct firmware *fw, void *context)
{
struct sdma_engine *sdma = context;
const struct sdma_firmware_header *header;
const struct sdma_script_start_addrs *addr;
unsigned short *ram_code;
if (!fw) {
dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
/* In this case we just use the ROM firmware. */
return;
}
if (fw->size < sizeof(*header))
goto err_firmware;
header = (struct sdma_firmware_header *)fw->data;
if (header->magic != SDMA_FIRMWARE_MAGIC)
goto err_firmware;
if (header->ram_code_start + header->ram_code_size > fw->size)
goto err_firmware;
switch (header->version_major) {
case 1:
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
break;
case 2:
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
break;
case 3:
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
break;
case 4:
sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
break;
default:
dev_err(sdma->dev, "unknown firmware version\n");
goto err_firmware;
}
addr = (void *)header + header->script_addrs_start;
ram_code = (void *)header + header->ram_code_start;
clk_enable(sdma->clk_ipg);
clk_enable(sdma->clk_ahb);
/* download the RAM image for SDMA */
sdma_load_script(sdma, ram_code,
header->ram_code_size,
addr->ram_code_start_addr);
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
sdma_add_scripts(sdma, addr);
dev_info(sdma->dev, "loaded firmware %d.%d\n",
header->version_major,
header->version_minor);
err_firmware:
release_firmware(fw);
}
#define EVENT_REMAP_CELLS 3
static int sdma_event_remap(struct sdma_engine *sdma)
{
struct device_node *np = sdma->dev->of_node;
struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
struct property *event_remap;
struct regmap *gpr;
char propname[] = "fsl,sdma-event-remap";
u32 reg, val, shift, num_map, i;
int ret = 0;
if (IS_ERR(np) || IS_ERR(gpr_np))
goto out;
event_remap = of_find_property(np, propname, NULL);
num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
if (!num_map) {
dev_dbg(sdma->dev, "no event needs to be remapped\n");
goto out;
} else if (num_map % EVENT_REMAP_CELLS) {
dev_err(sdma->dev, "the property %s must modulo %d\n",
propname, EVENT_REMAP_CELLS);
ret = -EINVAL;
goto out;
}
gpr = syscon_node_to_regmap(gpr_np);
if (IS_ERR(gpr)) {
dev_err(sdma->dev, "failed to get gpr regmap\n");
ret = PTR_ERR(gpr);
goto out;
}
for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
ret = of_property_read_u32_index(np, propname, i, &reg);
if (ret) {
dev_err(sdma->dev, "failed to read property %s index %d\n",
propname, i);
goto out;
}
ret = of_property_read_u32_index(np, propname, i + 1, &shift);
if (ret) {
dev_err(sdma->dev, "failed to read property %s index %d\n",
propname, i + 1);
goto out;
}
ret = of_property_read_u32_index(np, propname, i + 2, &val);
if (ret) {
dev_err(sdma->dev, "failed to read property %s index %d\n",
propname, i + 2);
goto out;
}
regmap_update_bits(gpr, reg, BIT(shift), val << shift);
}
out:
if (!IS_ERR(gpr_np))
of_node_put(gpr_np);
return ret;
}
static int sdma_get_firmware(struct sdma_engine *sdma,
const char *fw_name)
{
int ret;
ret = request_firmware_nowait(THIS_MODULE,
FW_ACTION_HOTPLUG, fw_name, sdma->dev,
GFP_KERNEL, sdma, sdma_load_firmware);
return ret;
}
static int sdma_init(struct sdma_engine *sdma)
{
int i, ret;
dma_addr_t ccb_phys;
ret = clk_enable(sdma->clk_ipg);
if (ret)
return ret;
ret = clk_enable(sdma->clk_ahb);
if (ret)
goto disable_clk_ipg;
if (sdma->drvdata->check_ratio &&
(clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
sdma->clk_ratio = 1;
/* Be sure SDMA has not started yet */
writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
sdma->channel_control = dma_alloc_coherent(sdma->dev,
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
sizeof(struct sdma_context_data),
&ccb_phys, GFP_KERNEL);
if (!sdma->channel_control) {
ret = -ENOMEM;
goto err_dma_alloc;
}
sdma->context = (void *)sdma->channel_control +
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
sdma->context_phys = ccb_phys +
MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
/* disable all channels */
for (i = 0; i < sdma->drvdata->num_events; i++)
writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
/* All channels have priority 0 */
for (i = 0; i < MAX_DMA_CHANNELS; i++)
writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
ret = sdma_request_channel0(sdma);
if (ret)
goto err_dma_alloc;
sdma_config_ownership(&sdma->channel[0], false, true, false);
/* Set Command Channel (Channel Zero) */
writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
/* Set bits of CONFIG register but with static context switching */
if (sdma->clk_ratio)
writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
else
writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
/* Initializes channel's priorities */
sdma_set_channel_priority(&sdma->channel[0], 7);
clk_disable(sdma->clk_ipg);
clk_disable(sdma->clk_ahb);
return 0;
err_dma_alloc:
clk_disable(sdma->clk_ahb);
disable_clk_ipg:
clk_disable(sdma->clk_ipg);
dev_err(sdma->dev, "initialisation failed with %d\n", ret);
return ret;
}
static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
{
struct sdma_channel *sdmac = to_sdma_chan(chan);
struct imx_dma_data *data = fn_param;
if (!imx_dma_is_general_purpose(chan))
return false;
sdmac->data = *data;
chan->private = &sdmac->data;
return true;
}
static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct sdma_engine *sdma = ofdma->of_dma_data;
dma_cap_mask_t mask = sdma->dma_device.cap_mask;
struct imx_dma_data data;
if (dma_spec->args_count != 3)
return NULL;
data.dma_request = dma_spec->args[0];
data.peripheral_type = dma_spec->args[1];
data.priority = dma_spec->args[2];
/*
* init dma_request2 to zero, which is not used by the dts.
* For P2P, dma_request2 is init from dma_request_channel(),
* chan->private will point to the imx_dma_data, and in
* device_alloc_chan_resources(), imx_dma_data.dma_request2 will
* be set to sdmac->event_id1.
*/
data.dma_request2 = 0;
return __dma_request_channel(&mask, sdma_filter_fn, &data,
ofdma->of_node);
}
static int sdma_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(sdma_dt_ids, &pdev->dev);
struct device_node *np = pdev->dev.of_node;
struct device_node *spba_bus;
const char *fw_name;
int ret;
int irq;
struct resource *iores;
struct resource spba_res;
struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
int i;
struct sdma_engine *sdma;
s32 *saddr_arr;
const struct sdma_driver_data *drvdata = NULL;
if (of_id)
drvdata = of_id->data;
else if (pdev->id_entry)
drvdata = (void *)pdev->id_entry->driver_data;
if (!drvdata) {
dev_err(&pdev->dev, "unable to find driver data\n");
return -EINVAL;
}
ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret)
return ret;
sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
if (!sdma)
return -ENOMEM;
spin_lock_init(&sdma->channel_0_lock);
sdma->dev = &pdev->dev;
sdma->drvdata = drvdata;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
if (IS_ERR(sdma->regs))
return PTR_ERR(sdma->regs);
sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(sdma->clk_ipg))
return PTR_ERR(sdma->clk_ipg);
sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(sdma->clk_ahb))
return PTR_ERR(sdma->clk_ahb);
ret = clk_prepare(sdma->clk_ipg);
if (ret)
return ret;
ret = clk_prepare(sdma->clk_ahb);
if (ret)
goto err_clk;
ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
sdma);
if (ret)
goto err_irq;
sdma->irq = irq;
sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
if (!sdma->script_addrs) {
ret = -ENOMEM;
goto err_irq;
}
/* initially no scripts available */
saddr_arr = (s32 *)sdma->script_addrs;
for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
saddr_arr[i] = -EINVAL;
dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
INIT_LIST_HEAD(&sdma->dma_device.channels);
/* Initialize channel parameters */
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
struct sdma_channel *sdmac = &sdma->channel[i];
sdmac->sdma = sdma;
sdmac->channel = i;
sdmac->vc.desc_free = sdma_desc_free;
INIT_WORK(&sdmac->terminate_worker,
sdma_channel_terminate_work);
/*
* Add the channel to the DMAC list. Do not add channel 0 though
* because we need it internally in the SDMA driver. This also means
* that channel 0 in dmaengine counting matches sdma channel 1.
*/
if (i)
vchan_init(&sdmac->vc, &sdma->dma_device);
}
ret = sdma_init(sdma);
if (ret)
goto err_init;
ret = sdma_event_remap(sdma);
if (ret)
goto err_init;
if (sdma->drvdata->script_addrs)
sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
if (pdata && pdata->script_addrs)
sdma_add_scripts(sdma, pdata->script_addrs);
sdma->dma_device.dev = &pdev->dev;
sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
sdma->dma_device.device_tx_status = sdma_tx_status;
sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
sdma->dma_device.device_config = sdma_config;
sdma->dma_device.device_terminate_all = sdma_terminate_all;
sdma->dma_device.device_synchronize = sdma_channel_synchronize;
sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
sdma->dma_device.device_issue_pending = sdma_issue_pending;
sdma->dma_device.copy_align = 2;
dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
platform_set_drvdata(pdev, sdma);
ret = dma_async_device_register(&sdma->dma_device);
if (ret) {
dev_err(&pdev->dev, "unable to register\n");
goto err_init;
}
if (np) {
ret = of_dma_controller_register(np, sdma_xlate, sdma);
if (ret) {
dev_err(&pdev->dev, "failed to register controller\n");
goto err_register;
}
spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
ret = of_address_to_resource(spba_bus, 0, &spba_res);
if (!ret) {
sdma->spba_start_addr = spba_res.start;
sdma->spba_end_addr = spba_res.end;
}
of_node_put(spba_bus);
}
/*
* Kick off firmware loading as the very last step:
* attempt to load firmware only if we're not on the error path, because
* the firmware callback requires a fully functional and allocated sdma
* instance.
*/
if (pdata) {
ret = sdma_get_firmware(sdma, pdata->fw_name);
if (ret)
dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
} else {
/*
* Because that device tree does not encode ROM script address,
* the RAM script in firmware is mandatory for device tree
* probe, otherwise it fails.
*/
ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
&fw_name);
if (ret) {
dev_warn(&pdev->dev, "failed to get firmware name\n");
} else {
ret = sdma_get_firmware(sdma, fw_name);
if (ret)
dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
}
}
return 0;
err_register:
dma_async_device_unregister(&sdma->dma_device);
err_init:
kfree(sdma->script_addrs);
err_irq:
clk_unprepare(sdma->clk_ahb);
err_clk:
clk_unprepare(sdma->clk_ipg);
return ret;
}
static int sdma_remove(struct platform_device *pdev)
{
struct sdma_engine *sdma = platform_get_drvdata(pdev);
int i;
devm_free_irq(&pdev->dev, sdma->irq, sdma);
dma_async_device_unregister(&sdma->dma_device);
kfree(sdma->script_addrs);
clk_unprepare(sdma->clk_ahb);
clk_unprepare(sdma->clk_ipg);
/* Kill the tasklet */
for (i = 0; i < MAX_DMA_CHANNELS; i++) {
struct sdma_channel *sdmac = &sdma->channel[i];
tasklet_kill(&sdmac->vc.task);
sdma_free_chan_resources(&sdmac->vc.chan);
}
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver sdma_driver = {
.driver = {
.name = "imx-sdma",
.of_match_table = sdma_dt_ids,
},
.id_table = sdma_devtypes,
.remove = sdma_remove,
.probe = sdma_probe,
};
module_platform_driver(sdma_driver);
MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("i.MX SDMA driver");
#if IS_ENABLED(CONFIG_SOC_IMX6Q)
MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
#endif
#if IS_ENABLED(CONFIG_SOC_IMX7D)
MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
#endif
MODULE_LICENSE("GPL");