WSL2-Linux-Kernel/drivers/hwmon/w83792d.c

1681 строка
55 KiB
C

/*
* w83792d.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2004, 2005 Winbond Electronics Corp.
* Shane Huang,
* Rudolf Marek <r.marek@assembler.cz>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Note:
* 1. This driver is only for 2.6 kernel, 2.4 kernel need a different driver.
* 2. This driver is only for Winbond W83792D C version device, there
* are also some motherboards with B version W83792D device. The
* calculation method to in6-in7(measured value, limits) is a little
* different between C and B version. C or B version can be identified
* by CR[0x49h].
*/
/*
* Supports following chips:
*
* Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
* w83792d 9 7 7 3 0x7a 0x5ca3 yes no
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/sysfs.h>
#include <linux/jiffies.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
/* Insmod parameters */
static unsigned short force_subclients[4];
module_param_array(force_subclients, short, NULL, 0);
MODULE_PARM_DESC(force_subclients,
"List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
static bool init;
module_param(init, bool, 0);
MODULE_PARM_DESC(init, "Set to one to force chip initialization");
/* The W83792D registers */
static const u8 W83792D_REG_IN[9] = {
0x20, /* Vcore A in DataSheet */
0x21, /* Vcore B in DataSheet */
0x22, /* VIN0 in DataSheet */
0x23, /* VIN1 in DataSheet */
0x24, /* VIN2 in DataSheet */
0x25, /* VIN3 in DataSheet */
0x26, /* 5VCC in DataSheet */
0xB0, /* 5VSB in DataSheet */
0xB1 /* VBAT in DataSheet */
};
#define W83792D_REG_LOW_BITS1 0x3E /* Low Bits I in DataSheet */
#define W83792D_REG_LOW_BITS2 0x3F /* Low Bits II in DataSheet */
static const u8 W83792D_REG_IN_MAX[9] = {
0x2B, /* Vcore A High Limit in DataSheet */
0x2D, /* Vcore B High Limit in DataSheet */
0x2F, /* VIN0 High Limit in DataSheet */
0x31, /* VIN1 High Limit in DataSheet */
0x33, /* VIN2 High Limit in DataSheet */
0x35, /* VIN3 High Limit in DataSheet */
0x37, /* 5VCC High Limit in DataSheet */
0xB4, /* 5VSB High Limit in DataSheet */
0xB6 /* VBAT High Limit in DataSheet */
};
static const u8 W83792D_REG_IN_MIN[9] = {
0x2C, /* Vcore A Low Limit in DataSheet */
0x2E, /* Vcore B Low Limit in DataSheet */
0x30, /* VIN0 Low Limit in DataSheet */
0x32, /* VIN1 Low Limit in DataSheet */
0x34, /* VIN2 Low Limit in DataSheet */
0x36, /* VIN3 Low Limit in DataSheet */
0x38, /* 5VCC Low Limit in DataSheet */
0xB5, /* 5VSB Low Limit in DataSheet */
0xB7 /* VBAT Low Limit in DataSheet */
};
static const u8 W83792D_REG_FAN[7] = {
0x28, /* FAN 1 Count in DataSheet */
0x29, /* FAN 2 Count in DataSheet */
0x2A, /* FAN 3 Count in DataSheet */
0xB8, /* FAN 4 Count in DataSheet */
0xB9, /* FAN 5 Count in DataSheet */
0xBA, /* FAN 6 Count in DataSheet */
0xBE /* FAN 7 Count in DataSheet */
};
static const u8 W83792D_REG_FAN_MIN[7] = {
0x3B, /* FAN 1 Count Low Limit in DataSheet */
0x3C, /* FAN 2 Count Low Limit in DataSheet */
0x3D, /* FAN 3 Count Low Limit in DataSheet */
0xBB, /* FAN 4 Count Low Limit in DataSheet */
0xBC, /* FAN 5 Count Low Limit in DataSheet */
0xBD, /* FAN 6 Count Low Limit in DataSheet */
0xBF /* FAN 7 Count Low Limit in DataSheet */
};
#define W83792D_REG_FAN_CFG 0x84 /* FAN Configuration in DataSheet */
static const u8 W83792D_REG_FAN_DIV[4] = {
0x47, /* contains FAN2 and FAN1 Divisor */
0x5B, /* contains FAN4 and FAN3 Divisor */
0x5C, /* contains FAN6 and FAN5 Divisor */
0x9E /* contains FAN7 Divisor. */
};
static const u8 W83792D_REG_PWM[7] = {
0x81, /* FAN 1 Duty Cycle, be used to control */
0x83, /* FAN 2 Duty Cycle, be used to control */
0x94, /* FAN 3 Duty Cycle, be used to control */
0xA3, /* FAN 4 Duty Cycle, be used to control */
0xA4, /* FAN 5 Duty Cycle, be used to control */
0xA5, /* FAN 6 Duty Cycle, be used to control */
0xA6 /* FAN 7 Duty Cycle, be used to control */
};
#define W83792D_REG_BANK 0x4E
#define W83792D_REG_TEMP2_CONFIG 0xC2
#define W83792D_REG_TEMP3_CONFIG 0xCA
static const u8 W83792D_REG_TEMP1[3] = {
0x27, /* TEMP 1 in DataSheet */
0x39, /* TEMP 1 Over in DataSheet */
0x3A, /* TEMP 1 Hyst in DataSheet */
};
static const u8 W83792D_REG_TEMP_ADD[2][6] = {
{ 0xC0, /* TEMP 2 in DataSheet */
0xC1, /* TEMP 2(0.5 deg) in DataSheet */
0xC5, /* TEMP 2 Over High part in DataSheet */
0xC6, /* TEMP 2 Over Low part in DataSheet */
0xC3, /* TEMP 2 Thyst High part in DataSheet */
0xC4 }, /* TEMP 2 Thyst Low part in DataSheet */
{ 0xC8, /* TEMP 3 in DataSheet */
0xC9, /* TEMP 3(0.5 deg) in DataSheet */
0xCD, /* TEMP 3 Over High part in DataSheet */
0xCE, /* TEMP 3 Over Low part in DataSheet */
0xCB, /* TEMP 3 Thyst High part in DataSheet */
0xCC } /* TEMP 3 Thyst Low part in DataSheet */
};
static const u8 W83792D_REG_THERMAL[3] = {
0x85, /* SmartFanI: Fan1 target value */
0x86, /* SmartFanI: Fan2 target value */
0x96 /* SmartFanI: Fan3 target value */
};
static const u8 W83792D_REG_TOLERANCE[3] = {
0x87, /* (bit3-0)SmartFan Fan1 tolerance */
0x87, /* (bit7-4)SmartFan Fan2 tolerance */
0x97 /* (bit3-0)SmartFan Fan3 tolerance */
};
static const u8 W83792D_REG_POINTS[3][4] = {
{ 0x85, /* SmartFanII: Fan1 temp point 1 */
0xE3, /* SmartFanII: Fan1 temp point 2 */
0xE4, /* SmartFanII: Fan1 temp point 3 */
0xE5 }, /* SmartFanII: Fan1 temp point 4 */
{ 0x86, /* SmartFanII: Fan2 temp point 1 */
0xE6, /* SmartFanII: Fan2 temp point 2 */
0xE7, /* SmartFanII: Fan2 temp point 3 */
0xE8 }, /* SmartFanII: Fan2 temp point 4 */
{ 0x96, /* SmartFanII: Fan3 temp point 1 */
0xE9, /* SmartFanII: Fan3 temp point 2 */
0xEA, /* SmartFanII: Fan3 temp point 3 */
0xEB } /* SmartFanII: Fan3 temp point 4 */
};
static const u8 W83792D_REG_LEVELS[3][4] = {
{ 0x88, /* (bit3-0) SmartFanII: Fan1 Non-Stop */
0x88, /* (bit7-4) SmartFanII: Fan1 Level 1 */
0xE0, /* (bit7-4) SmartFanII: Fan1 Level 2 */
0xE0 }, /* (bit3-0) SmartFanII: Fan1 Level 3 */
{ 0x89, /* (bit3-0) SmartFanII: Fan2 Non-Stop */
0x89, /* (bit7-4) SmartFanII: Fan2 Level 1 */
0xE1, /* (bit7-4) SmartFanII: Fan2 Level 2 */
0xE1 }, /* (bit3-0) SmartFanII: Fan2 Level 3 */
{ 0x98, /* (bit3-0) SmartFanII: Fan3 Non-Stop */
0x98, /* (bit7-4) SmartFanII: Fan3 Level 1 */
0xE2, /* (bit7-4) SmartFanII: Fan3 Level 2 */
0xE2 } /* (bit3-0) SmartFanII: Fan3 Level 3 */
};
#define W83792D_REG_GPIO_EN 0x1A
#define W83792D_REG_CONFIG 0x40
#define W83792D_REG_VID_FANDIV 0x47
#define W83792D_REG_CHIPID 0x49
#define W83792D_REG_WCHIPID 0x58
#define W83792D_REG_CHIPMAN 0x4F
#define W83792D_REG_PIN 0x4B
#define W83792D_REG_I2C_SUBADDR 0x4A
#define W83792D_REG_ALARM1 0xA9 /* realtime status register1 */
#define W83792D_REG_ALARM2 0xAA /* realtime status register2 */
#define W83792D_REG_ALARM3 0xAB /* realtime status register3 */
#define W83792D_REG_CHASSIS 0x42 /* Bit 5: Case Open status bit */
#define W83792D_REG_CHASSIS_CLR 0x44 /* Bit 7: Case Open CLR_CHS/Reset bit */
/* control in0/in1 's limit modifiability */
#define W83792D_REG_VID_IN_B 0x17
#define W83792D_REG_VBAT 0x5D
#define W83792D_REG_I2C_ADDR 0x48
/*
* Conversions. Rounding and limit checking is only done on the TO_REG
* variants. Note that you should be a bit careful with which arguments
* these macros are called: arguments may be evaluated more than once.
* Fixing this is just not worth it.
*/
#define IN_FROM_REG(nr, val) (((nr) <= 1) ? ((val) * 2) : \
((((nr) == 6) || ((nr) == 7)) ? ((val) * 6) : ((val) * 4)))
#define IN_TO_REG(nr, val) (((nr) <= 1) ? ((val) / 2) : \
((((nr) == 6) || ((nr) == 7)) ? ((val) / 6) : ((val) / 4)))
static inline u8
FAN_TO_REG(long rpm, int div)
{
if (rpm == 0)
return 255;
rpm = clamp_val(rpm, 1, 1000000);
return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
}
#define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
((val) == 255 ? 0 : \
1350000 / ((val) * (div))))
/* for temp1 */
#define TEMP1_TO_REG(val) (clamp_val(((val) < 0 ? (val) + 0x100 * 1000 \
: (val)) / 1000, 0, 0xff))
#define TEMP1_FROM_REG(val) (((val) & 0x80 ? (val)-0x100 : (val)) * 1000)
/* for temp2 and temp3, because they need additional resolution */
#define TEMP_ADD_FROM_REG(val1, val2) \
((((val1) & 0x80 ? (val1)-0x100 \
: (val1)) * 1000) + ((val2 & 0x80) ? 500 : 0))
#define TEMP_ADD_TO_REG_HIGH(val) \
(clamp_val(((val) < 0 ? (val) + 0x100 * 1000 : (val)) / 1000, 0, 0xff))
#define TEMP_ADD_TO_REG_LOW(val) ((val%1000) ? 0x80 : 0x00)
#define DIV_FROM_REG(val) (1 << (val))
static inline u8
DIV_TO_REG(long val)
{
int i;
val = clamp_val(val, 1, 128) >> 1;
for (i = 0; i < 7; i++) {
if (val == 0)
break;
val >>= 1;
}
return (u8)i;
}
struct w83792d_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid; /* !=0 if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* array of 2 pointers to subclients */
struct i2c_client *lm75[2];
u8 in[9]; /* Register value */
u8 in_max[9]; /* Register value */
u8 in_min[9]; /* Register value */
u16 low_bits; /* Additional resolution to voltage in6-0 */
u8 fan[7]; /* Register value */
u8 fan_min[7]; /* Register value */
u8 temp1[3]; /* current, over, thyst */
u8 temp_add[2][6]; /* Register value */
u8 fan_div[7]; /* Register encoding, shifted right */
u8 pwm[7]; /* The 7 PWM outputs */
u8 pwmenable[3];
u32 alarms; /* realtime status register encoding,combined */
u8 chassis; /* Chassis status */
u8 thermal_cruise[3]; /* Smart FanI: Fan1,2,3 target value */
u8 tolerance[3]; /* Fan1,2,3 tolerance(Smart Fan I/II) */
u8 sf2_points[3][4]; /* Smart FanII: Fan1,2,3 temperature points */
u8 sf2_levels[3][4]; /* Smart FanII: Fan1,2,3 duty cycle levels */
};
static int w83792d_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int w83792d_detect(struct i2c_client *client,
struct i2c_board_info *info);
static int w83792d_remove(struct i2c_client *client);
static struct w83792d_data *w83792d_update_device(struct device *dev);
#ifdef DEBUG
static void w83792d_print_debug(struct w83792d_data *data, struct device *dev);
#endif
static void w83792d_init_client(struct i2c_client *client);
static const struct i2c_device_id w83792d_id[] = {
{ "w83792d", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, w83792d_id);
static struct i2c_driver w83792d_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "w83792d",
},
.probe = w83792d_probe,
.remove = w83792d_remove,
.id_table = w83792d_id,
.detect = w83792d_detect,
.address_list = normal_i2c,
};
static inline long in_count_from_reg(int nr, struct w83792d_data *data)
{
/* in7 and in8 do not have low bits, but the formula still works */
return (data->in[nr] << 2) | ((data->low_bits >> (2 * nr)) & 0x03);
}
/*
* The SMBus locks itself. The Winbond W83792D chip has a bank register,
* but the driver only accesses registers in bank 0, so we don't have
* to switch banks and lock access between switches.
*/
static inline int w83792d_read_value(struct i2c_client *client, u8 reg)
{
return i2c_smbus_read_byte_data(client, reg);
}
static inline int
w83792d_write_value(struct i2c_client *client, u8 reg, u8 value)
{
return i2c_smbus_write_byte_data(client, reg, value);
}
/* following are the sysfs callback functions */
static ssize_t show_in(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%ld\n",
IN_FROM_REG(nr, in_count_from_reg(nr, data)));
}
#define show_in_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr \
= to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
struct w83792d_data *data = w83792d_update_device(dev); \
return sprintf(buf, "%ld\n", \
(long)(IN_FROM_REG(nr, data->reg[nr]) * 4)); \
}
show_in_reg(in_min);
show_in_reg(in_max);
#define store_in_reg(REG, reg) \
static ssize_t store_in_##reg(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct sensor_device_attribute *sensor_attr \
= to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
struct i2c_client *client = to_i2c_client(dev); \
struct w83792d_data *data = i2c_get_clientdata(client); \
unsigned long val; \
int err = kstrtoul(buf, 10, &val); \
if (err) \
return err; \
mutex_lock(&data->update_lock); \
data->in_##reg[nr] = clamp_val(IN_TO_REG(nr, val) / 4, 0, 255); \
w83792d_write_value(client, W83792D_REG_IN_##REG[nr], \
data->in_##reg[nr]); \
mutex_unlock(&data->update_lock); \
\
return count; \
}
store_in_reg(MIN, min);
store_in_reg(MAX, max);
#define show_fan_reg(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct sensor_device_attribute *sensor_attr \
= to_sensor_dev_attr(attr); \
int nr = sensor_attr->index - 1; \
struct w83792d_data *data = w83792d_update_device(dev); \
return sprintf(buf, "%d\n", \
FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
}
show_fan_reg(fan);
show_fan_reg(fan_min);
static ssize_t
store_fan_min(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
w83792d_write_value(client, W83792D_REG_FAN_MIN[nr],
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
show_fan_div(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr - 1]));
}
/*
* Note: we save and restore the fan minimum here, because its value is
* determined in part by the fan divisor. This follows the principle of
* least surprise; the user doesn't expect the fan minimum to change just
* because the divisor changed.
*/
static ssize_t
store_fan_div(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
unsigned long min;
/*u8 reg;*/
u8 fan_div_reg = 0;
u8 tmp_fan_div;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
/* Save fan_min */
mutex_lock(&data->update_lock);
min = FAN_FROM_REG(data->fan_min[nr],
DIV_FROM_REG(data->fan_div[nr]));
data->fan_div[nr] = DIV_TO_REG(val);
fan_div_reg = w83792d_read_value(client, W83792D_REG_FAN_DIV[nr >> 1]);
fan_div_reg &= (nr & 0x01) ? 0x8f : 0xf8;
tmp_fan_div = (nr & 0x01) ? (((data->fan_div[nr]) << 4) & 0x70)
: ((data->fan_div[nr]) & 0x07);
w83792d_write_value(client, W83792D_REG_FAN_DIV[nr >> 1],
fan_div_reg | tmp_fan_div);
/* Restore fan_min */
data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
w83792d_write_value(client, W83792D_REG_FAN_MIN[nr], data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* read/write the temperature1, includes measured value and limits */
static ssize_t show_temp1(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[nr]));
}
static ssize_t store_temp1(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp1[nr] = TEMP1_TO_REG(val);
w83792d_write_value(client, W83792D_REG_TEMP1[nr],
data->temp1[nr]);
mutex_unlock(&data->update_lock);
return count;
}
/* read/write the temperature2-3, includes measured value and limits */
static ssize_t show_temp23(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sensor_attr
= to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%ld\n",
(long)TEMP_ADD_FROM_REG(data->temp_add[nr][index],
data->temp_add[nr][index+1]));
}
static ssize_t store_temp23(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sensor_attr
= to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->temp_add[nr][index] = TEMP_ADD_TO_REG_HIGH(val);
data->temp_add[nr][index+1] = TEMP_ADD_TO_REG_LOW(val);
w83792d_write_value(client, W83792D_REG_TEMP_ADD[nr][index],
data->temp_add[nr][index]);
w83792d_write_value(client, W83792D_REG_TEMP_ADD[nr][index+1],
data->temp_add[nr][index+1]);
mutex_unlock(&data->update_lock);
return count;
}
/* get realtime status of all sensors items: voltage, temp, fan */
static ssize_t
alarms_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n", data->alarms);
}
static ssize_t show_alarm(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n", (data->alarms >> nr) & 1);
}
static ssize_t
show_pwm(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n", (data->pwm[nr] & 0x0f) << 4);
}
static ssize_t
show_pwmenable(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index - 1;
struct w83792d_data *data = w83792d_update_device(dev);
long pwm_enable_tmp = 1;
switch (data->pwmenable[nr]) {
case 0:
pwm_enable_tmp = 1; /* manual mode */
break;
case 1:
pwm_enable_tmp = 3; /*thermal cruise/Smart Fan I */
break;
case 2:
pwm_enable_tmp = 2; /* Smart Fan II */
break;
}
return sprintf(buf, "%ld\n", pwm_enable_tmp);
}
static ssize_t
store_pwm(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
val = clamp_val(val, 0, 255) >> 4;
mutex_lock(&data->update_lock);
val |= w83792d_read_value(client, W83792D_REG_PWM[nr]) & 0xf0;
data->pwm[nr] = val;
w83792d_write_value(client, W83792D_REG_PWM[nr], data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_pwmenable(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
u8 fan_cfg_tmp, cfg1_tmp, cfg2_tmp, cfg3_tmp, cfg4_tmp;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val < 1 || val > 3)
return -EINVAL;
mutex_lock(&data->update_lock);
switch (val) {
case 1:
data->pwmenable[nr] = 0; /* manual mode */
break;
case 2:
data->pwmenable[nr] = 2; /* Smart Fan II */
break;
case 3:
data->pwmenable[nr] = 1; /* thermal cruise/Smart Fan I */
break;
}
cfg1_tmp = data->pwmenable[0];
cfg2_tmp = (data->pwmenable[1]) << 2;
cfg3_tmp = (data->pwmenable[2]) << 4;
cfg4_tmp = w83792d_read_value(client, W83792D_REG_FAN_CFG) & 0xc0;
fan_cfg_tmp = ((cfg4_tmp | cfg3_tmp) | cfg2_tmp) | cfg1_tmp;
w83792d_write_value(client, W83792D_REG_FAN_CFG, fan_cfg_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
show_pwm_mode(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n", data->pwm[nr] >> 7);
}
static ssize_t
store_pwm_mode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val > 1)
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm[nr] = w83792d_read_value(client, W83792D_REG_PWM[nr]);
if (val) { /* PWM mode */
data->pwm[nr] |= 0x80;
} else { /* DC mode */
data->pwm[nr] &= 0x7f;
}
w83792d_write_value(client, W83792D_REG_PWM[nr], data->pwm[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
intrusion0_alarm_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n", data->chassis);
}
static ssize_t
intrusion0_alarm_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
unsigned long val;
u8 reg;
if (kstrtoul(buf, 10, &val) || val != 0)
return -EINVAL;
mutex_lock(&data->update_lock);
reg = w83792d_read_value(client, W83792D_REG_CHASSIS_CLR);
w83792d_write_value(client, W83792D_REG_CHASSIS_CLR, reg | 0x80);
data->valid = 0; /* Force cache refresh */
mutex_unlock(&data->update_lock);
return count;
}
/* For Smart Fan I / Thermal Cruise */
static ssize_t
show_thermal_cruise(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%ld\n", (long)data->thermal_cruise[nr-1]);
}
static ssize_t
store_thermal_cruise(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
u8 target_tmp = 0, target_mask = 0;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
target_tmp = val;
target_tmp = target_tmp & 0x7f;
mutex_lock(&data->update_lock);
target_mask = w83792d_read_value(client,
W83792D_REG_THERMAL[nr]) & 0x80;
data->thermal_cruise[nr] = clamp_val(target_tmp, 0, 255);
w83792d_write_value(client, W83792D_REG_THERMAL[nr],
(data->thermal_cruise[nr]) | target_mask);
mutex_unlock(&data->update_lock);
return count;
}
/* For Smart Fan I/Thermal Cruise and Smart Fan II */
static ssize_t
show_tolerance(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%ld\n", (long)data->tolerance[nr-1]);
}
static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
u8 tol_tmp, tol_mask;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
tol_mask = w83792d_read_value(client,
W83792D_REG_TOLERANCE[nr]) & ((nr == 1) ? 0x0f : 0xf0);
tol_tmp = clamp_val(val, 0, 15);
tol_tmp &= 0x0f;
data->tolerance[nr] = tol_tmp;
if (nr == 1)
tol_tmp <<= 4;
w83792d_write_value(client, W83792D_REG_TOLERANCE[nr],
tol_mask | tol_tmp);
mutex_unlock(&data->update_lock);
return count;
}
/* For Smart Fan II */
static ssize_t
show_sf2_point(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sensor_attr
= to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%ld\n", (long)data->sf2_points[index-1][nr-1]);
}
static ssize_t
store_sf2_point(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sensor_attr
= to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr - 1;
int index = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
u8 mask_tmp = 0;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->sf2_points[index][nr] = clamp_val(val, 0, 127);
mask_tmp = w83792d_read_value(client,
W83792D_REG_POINTS[index][nr]) & 0x80;
w83792d_write_value(client, W83792D_REG_POINTS[index][nr],
mask_tmp|data->sf2_points[index][nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
show_sf2_level(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct sensor_device_attribute_2 *sensor_attr
= to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index;
struct w83792d_data *data = w83792d_update_device(dev);
return sprintf(buf, "%d\n",
(((data->sf2_levels[index-1][nr]) * 100) / 15));
}
static ssize_t
store_sf2_level(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct sensor_device_attribute_2 *sensor_attr
= to_sensor_dev_attr_2(attr);
int nr = sensor_attr->nr;
int index = sensor_attr->index - 1;
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
u8 mask_tmp = 0, level_tmp = 0;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->sf2_levels[index][nr] = clamp_val((val * 15) / 100, 0, 15);
mask_tmp = w83792d_read_value(client, W83792D_REG_LEVELS[index][nr])
& ((nr == 3) ? 0xf0 : 0x0f);
if (nr == 3)
level_tmp = data->sf2_levels[index][nr];
else
level_tmp = data->sf2_levels[index][nr] << 4;
w83792d_write_value(client, W83792D_REG_LEVELS[index][nr],
level_tmp | mask_tmp);
mutex_unlock(&data->update_lock);
return count;
}
static int
w83792d_detect_subclients(struct i2c_client *new_client)
{
int i, id, err;
int address = new_client->addr;
u8 val;
struct i2c_adapter *adapter = new_client->adapter;
struct w83792d_data *data = i2c_get_clientdata(new_client);
id = i2c_adapter_id(adapter);
if (force_subclients[0] == id && force_subclients[1] == address) {
for (i = 2; i <= 3; i++) {
if (force_subclients[i] < 0x48 ||
force_subclients[i] > 0x4f) {
dev_err(&new_client->dev,
"invalid subclient address %d; must be 0x48-0x4f\n",
force_subclients[i]);
err = -ENODEV;
goto ERROR_SC_0;
}
}
w83792d_write_value(new_client, W83792D_REG_I2C_SUBADDR,
(force_subclients[2] & 0x07) |
((force_subclients[3] & 0x07) << 4));
}
val = w83792d_read_value(new_client, W83792D_REG_I2C_SUBADDR);
if (!(val & 0x08))
data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
if (!(val & 0x80)) {
if ((data->lm75[0] != NULL) &&
((val & 0x7) == ((val >> 4) & 0x7))) {
dev_err(&new_client->dev,
"duplicate addresses 0x%x, use force_subclient\n",
data->lm75[0]->addr);
err = -ENODEV;
goto ERROR_SC_1;
}
data->lm75[1] = i2c_new_dummy(adapter,
0x48 + ((val >> 4) & 0x7));
}
return 0;
/* Undo inits in case of errors */
ERROR_SC_1:
i2c_unregister_device(data->lm75[0]);
ERROR_SC_0:
return err;
}
static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in, NULL, 4);
static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in, NULL, 5);
static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in, NULL, 6);
static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_in, NULL, 7);
static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, show_in, NULL, 8);
static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 0);
static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 1);
static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 2);
static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 3);
static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 4);
static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 5);
static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 6);
static SENSOR_DEVICE_ATTR(in7_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 7);
static SENSOR_DEVICE_ATTR(in8_min, S_IWUSR | S_IRUGO,
show_in_min, store_in_min, 8);
static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 0);
static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 1);
static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 2);
static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 3);
static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 4);
static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 5);
static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 6);
static SENSOR_DEVICE_ATTR(in7_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 7);
static SENSOR_DEVICE_ATTR(in8_max, S_IWUSR | S_IRUGO,
show_in_max, store_in_max, 8);
static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0);
static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0);
static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0);
static SENSOR_DEVICE_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 1);
static SENSOR_DEVICE_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, show_temp23,
store_temp23, 0, 2);
static SENSOR_DEVICE_ATTR_2(temp3_max, S_IRUGO | S_IWUSR, show_temp23,
store_temp23, 1, 2);
static SENSOR_DEVICE_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
show_temp1, store_temp1, 0, 2);
static SENSOR_DEVICE_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 0, 4);
static SENSOR_DEVICE_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
show_temp23, store_temp23, 1, 4);
static DEVICE_ATTR_RO(alarms);
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 5);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 7);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 10);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 11);
static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 12);
static SENSOR_DEVICE_ATTR(fan7_alarm, S_IRUGO, show_alarm, NULL, 15);
static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19);
static SENSOR_DEVICE_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20);
static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21);
static SENSOR_DEVICE_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22);
static SENSOR_DEVICE_ATTR(fan6_alarm, S_IRUGO, show_alarm, NULL, 23);
static DEVICE_ATTR_RW(intrusion0_alarm);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0);
static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1);
static SENSOR_DEVICE_ATTR(pwm3, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 2);
static SENSOR_DEVICE_ATTR(pwm4, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 3);
static SENSOR_DEVICE_ATTR(pwm5, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 4);
static SENSOR_DEVICE_ATTR(pwm6, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 5);
static SENSOR_DEVICE_ATTR(pwm7, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 6);
static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 1);
static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 2);
static SENSOR_DEVICE_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
show_pwmenable, store_pwmenable, 3);
static SENSOR_DEVICE_ATTR(pwm1_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 0);
static SENSOR_DEVICE_ATTR(pwm2_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 1);
static SENSOR_DEVICE_ATTR(pwm3_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 2);
static SENSOR_DEVICE_ATTR(pwm4_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 3);
static SENSOR_DEVICE_ATTR(pwm5_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 4);
static SENSOR_DEVICE_ATTR(pwm6_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 5);
static SENSOR_DEVICE_ATTR(pwm7_mode, S_IWUSR | S_IRUGO,
show_pwm_mode, store_pwm_mode, 6);
static SENSOR_DEVICE_ATTR(tolerance1, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 1);
static SENSOR_DEVICE_ATTR(tolerance2, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 2);
static SENSOR_DEVICE_ATTR(tolerance3, S_IWUSR | S_IRUGO,
show_tolerance, store_tolerance, 3);
static SENSOR_DEVICE_ATTR(thermal_cruise1, S_IWUSR | S_IRUGO,
show_thermal_cruise, store_thermal_cruise, 1);
static SENSOR_DEVICE_ATTR(thermal_cruise2, S_IWUSR | S_IRUGO,
show_thermal_cruise, store_thermal_cruise, 2);
static SENSOR_DEVICE_ATTR(thermal_cruise3, S_IWUSR | S_IRUGO,
show_thermal_cruise, store_thermal_cruise, 3);
static SENSOR_DEVICE_ATTR_2(sf2_point1_fan1, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 1, 1);
static SENSOR_DEVICE_ATTR_2(sf2_point2_fan1, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 2, 1);
static SENSOR_DEVICE_ATTR_2(sf2_point3_fan1, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 3, 1);
static SENSOR_DEVICE_ATTR_2(sf2_point4_fan1, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 4, 1);
static SENSOR_DEVICE_ATTR_2(sf2_point1_fan2, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 1, 2);
static SENSOR_DEVICE_ATTR_2(sf2_point2_fan2, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 2, 2);
static SENSOR_DEVICE_ATTR_2(sf2_point3_fan2, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 3, 2);
static SENSOR_DEVICE_ATTR_2(sf2_point4_fan2, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 4, 2);
static SENSOR_DEVICE_ATTR_2(sf2_point1_fan3, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 1, 3);
static SENSOR_DEVICE_ATTR_2(sf2_point2_fan3, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 2, 3);
static SENSOR_DEVICE_ATTR_2(sf2_point3_fan3, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 3, 3);
static SENSOR_DEVICE_ATTR_2(sf2_point4_fan3, S_IRUGO | S_IWUSR,
show_sf2_point, store_sf2_point, 4, 3);
static SENSOR_DEVICE_ATTR_2(sf2_level1_fan1, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 1, 1);
static SENSOR_DEVICE_ATTR_2(sf2_level2_fan1, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 2, 1);
static SENSOR_DEVICE_ATTR_2(sf2_level3_fan1, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 3, 1);
static SENSOR_DEVICE_ATTR_2(sf2_level1_fan2, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 1, 2);
static SENSOR_DEVICE_ATTR_2(sf2_level2_fan2, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 2, 2);
static SENSOR_DEVICE_ATTR_2(sf2_level3_fan2, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 3, 2);
static SENSOR_DEVICE_ATTR_2(sf2_level1_fan3, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 1, 3);
static SENSOR_DEVICE_ATTR_2(sf2_level2_fan3, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 2, 3);
static SENSOR_DEVICE_ATTR_2(sf2_level3_fan3, S_IRUGO | S_IWUSR,
show_sf2_level, store_sf2_level, 3, 3);
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 1);
static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 2);
static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 3);
static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 4);
static SENSOR_DEVICE_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 5);
static SENSOR_DEVICE_ATTR(fan6_input, S_IRUGO, show_fan, NULL, 6);
static SENSOR_DEVICE_ATTR(fan7_input, S_IRUGO, show_fan, NULL, 7);
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 1);
static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 2);
static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 3);
static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 4);
static SENSOR_DEVICE_ATTR(fan5_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 5);
static SENSOR_DEVICE_ATTR(fan6_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 6);
static SENSOR_DEVICE_ATTR(fan7_min, S_IWUSR | S_IRUGO,
show_fan_min, store_fan_min, 7);
static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 1);
static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 2);
static SENSOR_DEVICE_ATTR(fan3_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 3);
static SENSOR_DEVICE_ATTR(fan4_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 4);
static SENSOR_DEVICE_ATTR(fan5_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 5);
static SENSOR_DEVICE_ATTR(fan6_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 6);
static SENSOR_DEVICE_ATTR(fan7_div, S_IWUSR | S_IRUGO,
show_fan_div, store_fan_div, 7);
static struct attribute *w83792d_attributes_fan[4][7] = {
{
&sensor_dev_attr_fan4_input.dev_attr.attr,
&sensor_dev_attr_fan4_min.dev_attr.attr,
&sensor_dev_attr_fan4_div.dev_attr.attr,
&sensor_dev_attr_fan4_alarm.dev_attr.attr,
&sensor_dev_attr_pwm4.dev_attr.attr,
&sensor_dev_attr_pwm4_mode.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_fan5_input.dev_attr.attr,
&sensor_dev_attr_fan5_min.dev_attr.attr,
&sensor_dev_attr_fan5_div.dev_attr.attr,
&sensor_dev_attr_fan5_alarm.dev_attr.attr,
&sensor_dev_attr_pwm5.dev_attr.attr,
&sensor_dev_attr_pwm5_mode.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_fan6_input.dev_attr.attr,
&sensor_dev_attr_fan6_min.dev_attr.attr,
&sensor_dev_attr_fan6_div.dev_attr.attr,
&sensor_dev_attr_fan6_alarm.dev_attr.attr,
&sensor_dev_attr_pwm6.dev_attr.attr,
&sensor_dev_attr_pwm6_mode.dev_attr.attr,
NULL
}, {
&sensor_dev_attr_fan7_input.dev_attr.attr,
&sensor_dev_attr_fan7_min.dev_attr.attr,
&sensor_dev_attr_fan7_div.dev_attr.attr,
&sensor_dev_attr_fan7_alarm.dev_attr.attr,
&sensor_dev_attr_pwm7.dev_attr.attr,
&sensor_dev_attr_pwm7_mode.dev_attr.attr,
NULL
}
};
static const struct attribute_group w83792d_group_fan[4] = {
{ .attrs = w83792d_attributes_fan[0] },
{ .attrs = w83792d_attributes_fan[1] },
{ .attrs = w83792d_attributes_fan[2] },
{ .attrs = w83792d_attributes_fan[3] },
};
static struct attribute *w83792d_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in6_input.dev_attr.attr,
&sensor_dev_attr_in6_max.dev_attr.attr,
&sensor_dev_attr_in6_min.dev_attr.attr,
&sensor_dev_attr_in7_input.dev_attr.attr,
&sensor_dev_attr_in7_max.dev_attr.attr,
&sensor_dev_attr_in7_min.dev_attr.attr,
&sensor_dev_attr_in8_input.dev_attr.attr,
&sensor_dev_attr_in8_max.dev_attr.attr,
&sensor_dev_attr_in8_min.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&sensor_dev_attr_in6_alarm.dev_attr.attr,
&sensor_dev_attr_in7_alarm.dev_attr.attr,
&sensor_dev_attr_in8_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp3_input.dev_attr.attr,
&sensor_dev_attr_temp3_max.dev_attr.attr,
&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_alarm.dev_attr.attr,
&sensor_dev_attr_temp3_alarm.dev_attr.attr,
&sensor_dev_attr_pwm1.dev_attr.attr,
&sensor_dev_attr_pwm1_mode.dev_attr.attr,
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm2.dev_attr.attr,
&sensor_dev_attr_pwm2_mode.dev_attr.attr,
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm3.dev_attr.attr,
&sensor_dev_attr_pwm3_mode.dev_attr.attr,
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_intrusion0_alarm.attr,
&sensor_dev_attr_tolerance1.dev_attr.attr,
&sensor_dev_attr_thermal_cruise1.dev_attr.attr,
&sensor_dev_attr_tolerance2.dev_attr.attr,
&sensor_dev_attr_thermal_cruise2.dev_attr.attr,
&sensor_dev_attr_tolerance3.dev_attr.attr,
&sensor_dev_attr_thermal_cruise3.dev_attr.attr,
&sensor_dev_attr_sf2_point1_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_point2_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_point3_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_point4_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_point1_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_point2_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_point3_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_point4_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_point1_fan3.dev_attr.attr,
&sensor_dev_attr_sf2_point2_fan3.dev_attr.attr,
&sensor_dev_attr_sf2_point3_fan3.dev_attr.attr,
&sensor_dev_attr_sf2_point4_fan3.dev_attr.attr,
&sensor_dev_attr_sf2_level1_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_level2_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_level3_fan1.dev_attr.attr,
&sensor_dev_attr_sf2_level1_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_level2_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_level3_fan2.dev_attr.attr,
&sensor_dev_attr_sf2_level1_fan3.dev_attr.attr,
&sensor_dev_attr_sf2_level2_fan3.dev_attr.attr,
&sensor_dev_attr_sf2_level3_fan3.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
&sensor_dev_attr_fan3_min.dev_attr.attr,
&sensor_dev_attr_fan3_div.dev_attr.attr,
&sensor_dev_attr_fan3_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group w83792d_group = {
.attrs = w83792d_attributes,
};
/* Return 0 if detection is successful, -ENODEV otherwise */
static int
w83792d_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int val1, val2;
unsigned short address = client->addr;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
if (w83792d_read_value(client, W83792D_REG_CONFIG) & 0x80)
return -ENODEV;
val1 = w83792d_read_value(client, W83792D_REG_BANK);
val2 = w83792d_read_value(client, W83792D_REG_CHIPMAN);
/* Check for Winbond ID if in bank 0 */
if (!(val1 & 0x07)) { /* is Bank0 */
if ((!(val1 & 0x80) && val2 != 0xa3) ||
((val1 & 0x80) && val2 != 0x5c))
return -ENODEV;
}
/*
* If Winbond chip, address of chip and W83792D_REG_I2C_ADDR
* should match
*/
if (w83792d_read_value(client, W83792D_REG_I2C_ADDR) != address)
return -ENODEV;
/* Put it now into bank 0 and Vendor ID High Byte */
w83792d_write_value(client,
W83792D_REG_BANK,
(w83792d_read_value(client,
W83792D_REG_BANK) & 0x78) | 0x80);
/* Determine the chip type. */
val1 = w83792d_read_value(client, W83792D_REG_WCHIPID);
val2 = w83792d_read_value(client, W83792D_REG_CHIPMAN);
if (val1 != 0x7a || val2 != 0x5c)
return -ENODEV;
strlcpy(info->type, "w83792d", I2C_NAME_SIZE);
return 0;
}
static int
w83792d_probe(struct i2c_client *client, const struct i2c_device_id *id)
{
struct w83792d_data *data;
struct device *dev = &client->dev;
int i, val1, err;
data = devm_kzalloc(dev, sizeof(struct w83792d_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
err = w83792d_detect_subclients(client);
if (err)
return err;
/* Initialize the chip */
w83792d_init_client(client);
/* A few vars need to be filled upon startup */
for (i = 0; i < 7; i++) {
data->fan_min[i] = w83792d_read_value(client,
W83792D_REG_FAN_MIN[i]);
}
/* Register sysfs hooks */
err = sysfs_create_group(&dev->kobj, &w83792d_group);
if (err)
goto exit_i2c_unregister;
/*
* Read GPIO enable register to check if pins for fan 4,5 are used as
* GPIO
*/
val1 = w83792d_read_value(client, W83792D_REG_GPIO_EN);
if (!(val1 & 0x40)) {
err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[0]);
if (err)
goto exit_remove_files;
}
if (!(val1 & 0x20)) {
err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[1]);
if (err)
goto exit_remove_files;
}
val1 = w83792d_read_value(client, W83792D_REG_PIN);
if (val1 & 0x40) {
err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[2]);
if (err)
goto exit_remove_files;
}
if (val1 & 0x04) {
err = sysfs_create_group(&dev->kobj, &w83792d_group_fan[3]);
if (err)
goto exit_remove_files;
}
data->hwmon_dev = hwmon_device_register(dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove_files;
}
return 0;
exit_remove_files:
sysfs_remove_group(&dev->kobj, &w83792d_group);
for (i = 0; i < ARRAY_SIZE(w83792d_group_fan); i++)
sysfs_remove_group(&dev->kobj, &w83792d_group_fan[i]);
exit_i2c_unregister:
i2c_unregister_device(data->lm75[0]);
i2c_unregister_device(data->lm75[1]);
return err;
}
static int
w83792d_remove(struct i2c_client *client)
{
struct w83792d_data *data = i2c_get_clientdata(client);
int i;
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &w83792d_group);
for (i = 0; i < ARRAY_SIZE(w83792d_group_fan); i++)
sysfs_remove_group(&client->dev.kobj,
&w83792d_group_fan[i]);
i2c_unregister_device(data->lm75[0]);
i2c_unregister_device(data->lm75[1]);
return 0;
}
static void
w83792d_init_client(struct i2c_client *client)
{
u8 temp2_cfg, temp3_cfg, vid_in_b;
if (init)
w83792d_write_value(client, W83792D_REG_CONFIG, 0x80);
/*
* Clear the bit6 of W83792D_REG_VID_IN_B(set it into 0):
* W83792D_REG_VID_IN_B bit6 = 0: the high/low limit of
* vin0/vin1 can be modified by user;
* W83792D_REG_VID_IN_B bit6 = 1: the high/low limit of
* vin0/vin1 auto-updated, can NOT be modified by user.
*/
vid_in_b = w83792d_read_value(client, W83792D_REG_VID_IN_B);
w83792d_write_value(client, W83792D_REG_VID_IN_B,
vid_in_b & 0xbf);
temp2_cfg = w83792d_read_value(client, W83792D_REG_TEMP2_CONFIG);
temp3_cfg = w83792d_read_value(client, W83792D_REG_TEMP3_CONFIG);
w83792d_write_value(client, W83792D_REG_TEMP2_CONFIG,
temp2_cfg & 0xe6);
w83792d_write_value(client, W83792D_REG_TEMP3_CONFIG,
temp3_cfg & 0xe6);
/* Start monitoring */
w83792d_write_value(client, W83792D_REG_CONFIG,
(w83792d_read_value(client,
W83792D_REG_CONFIG) & 0xf7)
| 0x01);
}
static struct w83792d_data *w83792d_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct w83792d_data *data = i2c_get_clientdata(client);
int i, j;
u8 reg_array_tmp[4], reg_tmp;
mutex_lock(&data->update_lock);
if (time_after
(jiffies - data->last_updated, (unsigned long) (HZ * 3))
|| time_before(jiffies, data->last_updated) || !data->valid) {
dev_dbg(dev, "Starting device update\n");
/* Update the voltages measured value and limits */
for (i = 0; i < 9; i++) {
data->in[i] = w83792d_read_value(client,
W83792D_REG_IN[i]);
data->in_max[i] = w83792d_read_value(client,
W83792D_REG_IN_MAX[i]);
data->in_min[i] = w83792d_read_value(client,
W83792D_REG_IN_MIN[i]);
}
data->low_bits = w83792d_read_value(client,
W83792D_REG_LOW_BITS1) +
(w83792d_read_value(client,
W83792D_REG_LOW_BITS2) << 8);
for (i = 0; i < 7; i++) {
/* Update the Fan measured value and limits */
data->fan[i] = w83792d_read_value(client,
W83792D_REG_FAN[i]);
data->fan_min[i] = w83792d_read_value(client,
W83792D_REG_FAN_MIN[i]);
/* Update the PWM/DC Value and PWM/DC flag */
data->pwm[i] = w83792d_read_value(client,
W83792D_REG_PWM[i]);
}
reg_tmp = w83792d_read_value(client, W83792D_REG_FAN_CFG);
data->pwmenable[0] = reg_tmp & 0x03;
data->pwmenable[1] = (reg_tmp>>2) & 0x03;
data->pwmenable[2] = (reg_tmp>>4) & 0x03;
for (i = 0; i < 3; i++) {
data->temp1[i] = w83792d_read_value(client,
W83792D_REG_TEMP1[i]);
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 6; j++) {
data->temp_add[i][j] = w83792d_read_value(
client, W83792D_REG_TEMP_ADD[i][j]);
}
}
/* Update the Fan Divisor */
for (i = 0; i < 4; i++) {
reg_array_tmp[i] = w83792d_read_value(client,
W83792D_REG_FAN_DIV[i]);
}
data->fan_div[0] = reg_array_tmp[0] & 0x07;
data->fan_div[1] = (reg_array_tmp[0] >> 4) & 0x07;
data->fan_div[2] = reg_array_tmp[1] & 0x07;
data->fan_div[3] = (reg_array_tmp[1] >> 4) & 0x07;
data->fan_div[4] = reg_array_tmp[2] & 0x07;
data->fan_div[5] = (reg_array_tmp[2] >> 4) & 0x07;
data->fan_div[6] = reg_array_tmp[3] & 0x07;
/* Update the realtime status */
data->alarms = w83792d_read_value(client, W83792D_REG_ALARM1) +
(w83792d_read_value(client, W83792D_REG_ALARM2) << 8) +
(w83792d_read_value(client, W83792D_REG_ALARM3) << 16);
/* Update CaseOpen status and it's CLR_CHS. */
data->chassis = (w83792d_read_value(client,
W83792D_REG_CHASSIS) >> 5) & 0x01;
/* Update Thermal Cruise/Smart Fan I target value */
for (i = 0; i < 3; i++) {
data->thermal_cruise[i] =
w83792d_read_value(client,
W83792D_REG_THERMAL[i]) & 0x7f;
}
/* Update Smart Fan I/II tolerance */
reg_tmp = w83792d_read_value(client, W83792D_REG_TOLERANCE[0]);
data->tolerance[0] = reg_tmp & 0x0f;
data->tolerance[1] = (reg_tmp >> 4) & 0x0f;
data->tolerance[2] = w83792d_read_value(client,
W83792D_REG_TOLERANCE[2]) & 0x0f;
/* Update Smart Fan II temperature points */
for (i = 0; i < 3; i++) {
for (j = 0; j < 4; j++) {
data->sf2_points[i][j]
= w83792d_read_value(client,
W83792D_REG_POINTS[i][j]) & 0x7f;
}
}
/* Update Smart Fan II duty cycle levels */
for (i = 0; i < 3; i++) {
reg_tmp = w83792d_read_value(client,
W83792D_REG_LEVELS[i][0]);
data->sf2_levels[i][0] = reg_tmp & 0x0f;
data->sf2_levels[i][1] = (reg_tmp >> 4) & 0x0f;
reg_tmp = w83792d_read_value(client,
W83792D_REG_LEVELS[i][2]);
data->sf2_levels[i][2] = (reg_tmp >> 4) & 0x0f;
data->sf2_levels[i][3] = reg_tmp & 0x0f;
}
data->last_updated = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
#ifdef DEBUG
w83792d_print_debug(data, dev);
#endif
return data;
}
#ifdef DEBUG
static void w83792d_print_debug(struct w83792d_data *data, struct device *dev)
{
int i = 0, j = 0;
dev_dbg(dev, "==========The following is the debug message...========\n");
dev_dbg(dev, "9 set of Voltages: =====>\n");
for (i = 0; i < 9; i++) {
dev_dbg(dev, "vin[%d] is: 0x%x\n", i, data->in[i]);
dev_dbg(dev, "vin[%d] max is: 0x%x\n", i, data->in_max[i]);
dev_dbg(dev, "vin[%d] min is: 0x%x\n", i, data->in_min[i]);
}
dev_dbg(dev, "Low Bit1 is: 0x%x\n", data->low_bits & 0xff);
dev_dbg(dev, "Low Bit2 is: 0x%x\n", data->low_bits >> 8);
dev_dbg(dev, "7 set of Fan Counts and Duty Cycles: =====>\n");
for (i = 0; i < 7; i++) {
dev_dbg(dev, "fan[%d] is: 0x%x\n", i, data->fan[i]);
dev_dbg(dev, "fan[%d] min is: 0x%x\n", i, data->fan_min[i]);
dev_dbg(dev, "pwm[%d] is: 0x%x\n", i, data->pwm[i]);
}
dev_dbg(dev, "3 set of Temperatures: =====>\n");
for (i = 0; i < 3; i++)
dev_dbg(dev, "temp1[%d] is: 0x%x\n", i, data->temp1[i]);
for (i = 0; i < 2; i++) {
for (j = 0; j < 6; j++) {
dev_dbg(dev, "temp_add[%d][%d] is: 0x%x\n", i, j,
data->temp_add[i][j]);
}
}
for (i = 0; i < 7; i++)
dev_dbg(dev, "fan_div[%d] is: 0x%x\n", i, data->fan_div[i]);
dev_dbg(dev, "==========End of the debug message...================\n");
dev_dbg(dev, "\n");
}
#endif
module_i2c_driver(w83792d_driver);
MODULE_AUTHOR("Shane Huang (Winbond)");
MODULE_DESCRIPTION("W83792AD/D driver for linux-2.6");
MODULE_LICENSE("GPL");