WSL2-Linux-Kernel/tools/testing/selftests/bpf/test_verifier.c

1118 строки
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Testsuite for eBPF verifier
*
* Copyright (c) 2014 PLUMgrid, http://plumgrid.com
* Copyright (c) 2017 Facebook
* Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
*/
#include <endian.h>
#include <asm/types.h>
#include <linux/types.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <stddef.h>
#include <stdbool.h>
#include <sched.h>
#include <limits.h>
#include <assert.h>
#include <sys/capability.h>
#include <linux/unistd.h>
#include <linux/filter.h>
#include <linux/bpf_perf_event.h>
#include <linux/bpf.h>
#include <linux/if_ether.h>
#include <linux/btf.h>
#include <bpf/bpf.h>
#include <bpf/libbpf.h>
#ifdef HAVE_GENHDR
# include "autoconf.h"
#else
# if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
# define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
# endif
#endif
#include "bpf_rlimit.h"
#include "bpf_rand.h"
#include "bpf_util.h"
#include "test_btf.h"
#include "../../../include/linux/filter.h"
#define MAX_INSNS BPF_MAXINSNS
#define MAX_TEST_INSNS 1000000
#define MAX_FIXUPS 8
#define MAX_NR_MAPS 18
#define MAX_TEST_RUNS 8
#define POINTER_VALUE 0xcafe4all
#define TEST_DATA_LEN 64
#define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
#define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
#define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
static bool unpriv_disabled = false;
static int skips;
struct bpf_test {
const char *descr;
struct bpf_insn insns[MAX_INSNS];
struct bpf_insn *fill_insns;
int fixup_map_hash_8b[MAX_FIXUPS];
int fixup_map_hash_48b[MAX_FIXUPS];
int fixup_map_hash_16b[MAX_FIXUPS];
int fixup_map_array_48b[MAX_FIXUPS];
int fixup_map_sockmap[MAX_FIXUPS];
int fixup_map_sockhash[MAX_FIXUPS];
int fixup_map_xskmap[MAX_FIXUPS];
int fixup_map_stacktrace[MAX_FIXUPS];
int fixup_prog1[MAX_FIXUPS];
int fixup_prog2[MAX_FIXUPS];
int fixup_map_in_map[MAX_FIXUPS];
int fixup_cgroup_storage[MAX_FIXUPS];
int fixup_percpu_cgroup_storage[MAX_FIXUPS];
int fixup_map_spin_lock[MAX_FIXUPS];
int fixup_map_array_ro[MAX_FIXUPS];
int fixup_map_array_wo[MAX_FIXUPS];
int fixup_map_array_small[MAX_FIXUPS];
int fixup_sk_storage_map[MAX_FIXUPS];
const char *errstr;
const char *errstr_unpriv;
uint32_t insn_processed;
int prog_len;
enum {
UNDEF,
ACCEPT,
REJECT
} result, result_unpriv;
enum bpf_prog_type prog_type;
uint8_t flags;
void (*fill_helper)(struct bpf_test *self);
uint8_t runs;
#define bpf_testdata_struct_t \
struct { \
uint32_t retval, retval_unpriv; \
union { \
__u8 data[TEST_DATA_LEN]; \
__u64 data64[TEST_DATA_LEN / 8]; \
}; \
}
union {
bpf_testdata_struct_t;
bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
};
enum bpf_attach_type expected_attach_type;
};
/* Note we want this to be 64 bit aligned so that the end of our array is
* actually the end of the structure.
*/
#define MAX_ENTRIES 11
struct test_val {
unsigned int index;
int foo[MAX_ENTRIES];
};
struct other_val {
long long foo;
long long bar;
};
static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
{
/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
#define PUSH_CNT 51
/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
struct bpf_insn *insn = self->fill_insns;
int i = 0, j, k = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
loop:
for (j = 0; j < PUSH_CNT; j++) {
insn[i++] = BPF_LD_ABS(BPF_B, 0);
/* jump to error label */
insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
i++;
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_push),
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
i++;
}
for (j = 0; j < PUSH_CNT; j++) {
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
i++;
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_skb_vlan_pop),
insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
i++;
}
if (++k < 5)
goto loop;
for (; i < len - 3; i++)
insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
insn[len - 3] = BPF_JMP_A(1);
/* error label */
insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
insn[len - 1] = BPF_EXIT_INSN();
self->prog_len = len;
}
static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
* but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
* to extend the error value of the inlined ld_abs sequence which then
* contains 7 insns. so, set the dividend to 7 so the testcase could
* work on all arches.
*/
unsigned int len = (1 << 15) / 7;
int i = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
insn[i++] = BPF_LD_ABS(BPF_B, 0);
insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
i++;
while (i < len - 1)
insn[i++] = BPF_LD_ABS(BPF_B, 1);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
}
static void bpf_fill_rand_ld_dw(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
uint64_t res = 0;
int i = 0;
insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
while (i < self->retval) {
uint64_t val = bpf_semi_rand_get();
struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
res ^= val;
insn[i++] = tmp[0];
insn[i++] = tmp[1];
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
}
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
res ^= (res >> 32);
self->retval = (uint32_t)res;
}
#define MAX_JMP_SEQ 8192
/* test the sequence of 8k jumps */
static void bpf_fill_scale1(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
int i = 0, k = 0;
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
/* test to check that the long sequence of jumps is acceptable */
while (k++ < MAX_JMP_SEQ) {
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_prandom_u32);
insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
-8 * (k % 64 + 1));
}
/* is_state_visited() doesn't allocate state for pruning for every jump.
* Hence multiply jmps by 4 to accommodate that heuristic
*/
while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
self->retval = 42;
}
/* test the sequence of 8k jumps in inner most function (function depth 8)*/
static void bpf_fill_scale2(struct bpf_test *self)
{
struct bpf_insn *insn = self->fill_insns;
int i = 0, k = 0;
#define FUNC_NEST 7
for (k = 0; k < FUNC_NEST; k++) {
insn[i++] = BPF_CALL_REL(1);
insn[i++] = BPF_EXIT_INSN();
}
insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
/* test to check that the long sequence of jumps is acceptable */
k = 0;
while (k++ < MAX_JMP_SEQ) {
insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_get_prandom_u32);
insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
-8 * (k % (64 - 4 * FUNC_NEST) + 1));
}
while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
insn[i] = BPF_EXIT_INSN();
self->prog_len = i + 1;
self->retval = 42;
}
static void bpf_fill_scale(struct bpf_test *self)
{
switch (self->retval) {
case 1:
return bpf_fill_scale1(self);
case 2:
return bpf_fill_scale2(self);
default:
self->prog_len = 0;
break;
}
}
/* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
#define BPF_SK_LOOKUP(func) \
/* struct bpf_sock_tuple tuple = {} */ \
BPF_MOV64_IMM(BPF_REG_2, 0), \
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
BPF_MOV64_IMM(BPF_REG_4, 0), \
BPF_MOV64_IMM(BPF_REG_5, 0), \
BPF_EMIT_CALL(BPF_FUNC_ ## func)
/* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
* value into 0 and does necessary preparation for direct packet access
* through r2. The allowed access range is 8 bytes.
*/
#define BPF_DIRECT_PKT_R2 \
BPF_MOV64_IMM(BPF_REG_0, 0), \
BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
offsetof(struct __sk_buff, data)), \
BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
offsetof(struct __sk_buff, data_end)), \
BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
BPF_EXIT_INSN()
/* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
* positive u32, and zero-extend it into 64-bit.
*/
#define BPF_RAND_UEXT_R7 \
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
BPF_FUNC_get_prandom_u32), \
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
/* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
* negative u32, and sign-extend it into 64-bit.
*/
#define BPF_RAND_SEXT_R7 \
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
BPF_FUNC_get_prandom_u32), \
BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
static struct bpf_test tests[] = {
#define FILL_ARRAY
#include <verifier/tests.h>
#undef FILL_ARRAY
};
static int probe_filter_length(const struct bpf_insn *fp)
{
int len;
for (len = MAX_INSNS - 1; len > 0; --len)
if (fp[len].code != 0 || fp[len].imm != 0)
break;
return len + 1;
}
static bool skip_unsupported_map(enum bpf_map_type map_type)
{
if (!bpf_probe_map_type(map_type, 0)) {
printf("SKIP (unsupported map type %d)\n", map_type);
skips++;
return true;
}
return false;
}
static int __create_map(uint32_t type, uint32_t size_key,
uint32_t size_value, uint32_t max_elem,
uint32_t extra_flags)
{
int fd;
fd = bpf_create_map(type, size_key, size_value, max_elem,
(type == BPF_MAP_TYPE_HASH ?
BPF_F_NO_PREALLOC : 0) | extra_flags);
if (fd < 0) {
if (skip_unsupported_map(type))
return -1;
printf("Failed to create hash map '%s'!\n", strerror(errno));
}
return fd;
}
static int create_map(uint32_t type, uint32_t size_key,
uint32_t size_value, uint32_t max_elem)
{
return __create_map(type, size_key, size_value, max_elem, 0);
}
static void update_map(int fd, int index)
{
struct test_val value = {
.index = (6 + 1) * sizeof(int),
.foo[6] = 0xabcdef12,
};
assert(!bpf_map_update_elem(fd, &index, &value, 0));
}
static int create_prog_dummy1(enum bpf_prog_type prog_type)
{
struct bpf_insn prog[] = {
BPF_MOV64_IMM(BPF_REG_0, 42),
BPF_EXIT_INSN(),
};
return bpf_load_program(prog_type, prog,
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}
static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx)
{
struct bpf_insn prog[] = {
BPF_MOV64_IMM(BPF_REG_3, idx),
BPF_LD_MAP_FD(BPF_REG_2, mfd),
BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
BPF_FUNC_tail_call),
BPF_MOV64_IMM(BPF_REG_0, 41),
BPF_EXIT_INSN(),
};
return bpf_load_program(prog_type, prog,
ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
}
static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
int p1key)
{
int p2key = 1;
int mfd, p1fd, p2fd;
mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
sizeof(int), max_elem, 0);
if (mfd < 0) {
if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
return -1;
printf("Failed to create prog array '%s'!\n", strerror(errno));
return -1;
}
p1fd = create_prog_dummy1(prog_type);
p2fd = create_prog_dummy2(prog_type, mfd, p2key);
if (p1fd < 0 || p2fd < 0)
goto out;
if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
goto out;
if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
goto out;
close(p2fd);
close(p1fd);
return mfd;
out:
close(p2fd);
close(p1fd);
close(mfd);
return -1;
}
static int create_map_in_map(void)
{
int inner_map_fd, outer_map_fd;
inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(int), 1, 0);
if (inner_map_fd < 0) {
if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
return -1;
printf("Failed to create array '%s'!\n", strerror(errno));
return inner_map_fd;
}
outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
sizeof(int), inner_map_fd, 1, 0);
if (outer_map_fd < 0) {
if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
return -1;
printf("Failed to create array of maps '%s'!\n",
strerror(errno));
}
close(inner_map_fd);
return outer_map_fd;
}
static int create_cgroup_storage(bool percpu)
{
enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
BPF_MAP_TYPE_CGROUP_STORAGE;
int fd;
fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
TEST_DATA_LEN, 0, 0);
if (fd < 0) {
if (skip_unsupported_map(type))
return -1;
printf("Failed to create cgroup storage '%s'!\n",
strerror(errno));
}
return fd;
}
/* struct bpf_spin_lock {
* int val;
* };
* struct val {
* int cnt;
* struct bpf_spin_lock l;
* };
*/
static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
static __u32 btf_raw_types[] = {
/* int */
BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
/* struct bpf_spin_lock */ /* [2] */
BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
BTF_MEMBER_ENC(15, 1, 0), /* int val; */
/* struct val */ /* [3] */
BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
};
static int load_btf(void)
{
struct btf_header hdr = {
.magic = BTF_MAGIC,
.version = BTF_VERSION,
.hdr_len = sizeof(struct btf_header),
.type_len = sizeof(btf_raw_types),
.str_off = sizeof(btf_raw_types),
.str_len = sizeof(btf_str_sec),
};
void *ptr, *raw_btf;
int btf_fd;
ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
sizeof(btf_str_sec));
memcpy(ptr, &hdr, sizeof(hdr));
ptr += sizeof(hdr);
memcpy(ptr, btf_raw_types, hdr.type_len);
ptr += hdr.type_len;
memcpy(ptr, btf_str_sec, hdr.str_len);
ptr += hdr.str_len;
btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
free(raw_btf);
if (btf_fd < 0)
return -1;
return btf_fd;
}
static int create_map_spin_lock(void)
{
struct bpf_create_map_attr attr = {
.name = "test_map",
.map_type = BPF_MAP_TYPE_ARRAY,
.key_size = 4,
.value_size = 8,
.max_entries = 1,
.btf_key_type_id = 1,
.btf_value_type_id = 3,
};
int fd, btf_fd;
btf_fd = load_btf();
if (btf_fd < 0)
return -1;
attr.btf_fd = btf_fd;
fd = bpf_create_map_xattr(&attr);
if (fd < 0)
printf("Failed to create map with spin_lock\n");
return fd;
}
static int create_sk_storage_map(void)
{
struct bpf_create_map_attr attr = {
.name = "test_map",
.map_type = BPF_MAP_TYPE_SK_STORAGE,
.key_size = 4,
.value_size = 8,
.max_entries = 0,
.map_flags = BPF_F_NO_PREALLOC,
.btf_key_type_id = 1,
.btf_value_type_id = 3,
};
int fd, btf_fd;
btf_fd = load_btf();
if (btf_fd < 0)
return -1;
attr.btf_fd = btf_fd;
fd = bpf_create_map_xattr(&attr);
close(attr.btf_fd);
if (fd < 0)
printf("Failed to create sk_storage_map\n");
return fd;
}
static char bpf_vlog[UINT_MAX >> 8];
static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
struct bpf_insn *prog, int *map_fds)
{
int *fixup_map_hash_8b = test->fixup_map_hash_8b;
int *fixup_map_hash_48b = test->fixup_map_hash_48b;
int *fixup_map_hash_16b = test->fixup_map_hash_16b;
int *fixup_map_array_48b = test->fixup_map_array_48b;
int *fixup_map_sockmap = test->fixup_map_sockmap;
int *fixup_map_sockhash = test->fixup_map_sockhash;
int *fixup_map_xskmap = test->fixup_map_xskmap;
int *fixup_map_stacktrace = test->fixup_map_stacktrace;
int *fixup_prog1 = test->fixup_prog1;
int *fixup_prog2 = test->fixup_prog2;
int *fixup_map_in_map = test->fixup_map_in_map;
int *fixup_cgroup_storage = test->fixup_cgroup_storage;
int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
int *fixup_map_spin_lock = test->fixup_map_spin_lock;
int *fixup_map_array_ro = test->fixup_map_array_ro;
int *fixup_map_array_wo = test->fixup_map_array_wo;
int *fixup_map_array_small = test->fixup_map_array_small;
int *fixup_sk_storage_map = test->fixup_sk_storage_map;
if (test->fill_helper) {
test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
test->fill_helper(test);
}
/* Allocating HTs with 1 elem is fine here, since we only test
* for verifier and not do a runtime lookup, so the only thing
* that really matters is value size in this case.
*/
if (*fixup_map_hash_8b) {
map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(long long), 1);
do {
prog[*fixup_map_hash_8b].imm = map_fds[0];
fixup_map_hash_8b++;
} while (*fixup_map_hash_8b);
}
if (*fixup_map_hash_48b) {
map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(struct test_val), 1);
do {
prog[*fixup_map_hash_48b].imm = map_fds[1];
fixup_map_hash_48b++;
} while (*fixup_map_hash_48b);
}
if (*fixup_map_hash_16b) {
map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
sizeof(struct other_val), 1);
do {
prog[*fixup_map_hash_16b].imm = map_fds[2];
fixup_map_hash_16b++;
} while (*fixup_map_hash_16b);
}
if (*fixup_map_array_48b) {
map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1);
update_map(map_fds[3], 0);
do {
prog[*fixup_map_array_48b].imm = map_fds[3];
fixup_map_array_48b++;
} while (*fixup_map_array_48b);
}
if (*fixup_prog1) {
map_fds[4] = create_prog_array(prog_type, 4, 0);
do {
prog[*fixup_prog1].imm = map_fds[4];
fixup_prog1++;
} while (*fixup_prog1);
}
if (*fixup_prog2) {
map_fds[5] = create_prog_array(prog_type, 8, 7);
do {
prog[*fixup_prog2].imm = map_fds[5];
fixup_prog2++;
} while (*fixup_prog2);
}
if (*fixup_map_in_map) {
map_fds[6] = create_map_in_map();
do {
prog[*fixup_map_in_map].imm = map_fds[6];
fixup_map_in_map++;
} while (*fixup_map_in_map);
}
if (*fixup_cgroup_storage) {
map_fds[7] = create_cgroup_storage(false);
do {
prog[*fixup_cgroup_storage].imm = map_fds[7];
fixup_cgroup_storage++;
} while (*fixup_cgroup_storage);
}
if (*fixup_percpu_cgroup_storage) {
map_fds[8] = create_cgroup_storage(true);
do {
prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
fixup_percpu_cgroup_storage++;
} while (*fixup_percpu_cgroup_storage);
}
if (*fixup_map_sockmap) {
map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
sizeof(int), 1);
do {
prog[*fixup_map_sockmap].imm = map_fds[9];
fixup_map_sockmap++;
} while (*fixup_map_sockmap);
}
if (*fixup_map_sockhash) {
map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
sizeof(int), 1);
do {
prog[*fixup_map_sockhash].imm = map_fds[10];
fixup_map_sockhash++;
} while (*fixup_map_sockhash);
}
if (*fixup_map_xskmap) {
map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
sizeof(int), 1);
do {
prog[*fixup_map_xskmap].imm = map_fds[11];
fixup_map_xskmap++;
} while (*fixup_map_xskmap);
}
if (*fixup_map_stacktrace) {
map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
sizeof(u64), 1);
do {
prog[*fixup_map_stacktrace].imm = map_fds[12];
fixup_map_stacktrace++;
} while (*fixup_map_stacktrace);
}
if (*fixup_map_spin_lock) {
map_fds[13] = create_map_spin_lock();
do {
prog[*fixup_map_spin_lock].imm = map_fds[13];
fixup_map_spin_lock++;
} while (*fixup_map_spin_lock);
}
if (*fixup_map_array_ro) {
map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1,
BPF_F_RDONLY_PROG);
update_map(map_fds[14], 0);
do {
prog[*fixup_map_array_ro].imm = map_fds[14];
fixup_map_array_ro++;
} while (*fixup_map_array_ro);
}
if (*fixup_map_array_wo) {
map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
sizeof(struct test_val), 1,
BPF_F_WRONLY_PROG);
update_map(map_fds[15], 0);
do {
prog[*fixup_map_array_wo].imm = map_fds[15];
fixup_map_array_wo++;
} while (*fixup_map_array_wo);
}
if (*fixup_map_array_small) {
map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1, 1, 0);
update_map(map_fds[16], 0);
do {
prog[*fixup_map_array_small].imm = map_fds[16];
fixup_map_array_small++;
} while (*fixup_map_array_small);
}
if (*fixup_sk_storage_map) {
map_fds[17] = create_sk_storage_map();
do {
prog[*fixup_sk_storage_map].imm = map_fds[17];
fixup_sk_storage_map++;
} while (*fixup_sk_storage_map);
}
}
static int set_admin(bool admin)
{
cap_t caps;
const cap_value_t cap_val = CAP_SYS_ADMIN;
int ret = -1;
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return -1;
}
if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
admin ? CAP_SET : CAP_CLEAR)) {
perror("cap_set_flag");
goto out;
}
if (cap_set_proc(caps)) {
perror("cap_set_proc");
goto out;
}
ret = 0;
out:
if (cap_free(caps))
perror("cap_free");
return ret;
}
static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
void *data, size_t size_data)
{
__u8 tmp[TEST_DATA_LEN << 2];
__u32 size_tmp = sizeof(tmp);
uint32_t retval;
int err;
if (unpriv)
set_admin(true);
err = bpf_prog_test_run(fd_prog, 1, data, size_data,
tmp, &size_tmp, &retval, NULL);
if (unpriv)
set_admin(false);
if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
printf("Unexpected bpf_prog_test_run error ");
return err;
}
if (!err && retval != expected_val &&
expected_val != POINTER_VALUE) {
printf("FAIL retval %d != %d ", retval, expected_val);
return 1;
}
return 0;
}
static void do_test_single(struct bpf_test *test, bool unpriv,
int *passes, int *errors)
{
int fd_prog, expected_ret, alignment_prevented_execution;
int prog_len, prog_type = test->prog_type;
struct bpf_insn *prog = test->insns;
struct bpf_load_program_attr attr;
int run_errs, run_successes;
int map_fds[MAX_NR_MAPS];
const char *expected_err;
int fixup_skips;
__u32 pflags;
int i, err;
for (i = 0; i < MAX_NR_MAPS; i++)
map_fds[i] = -1;
if (!prog_type)
prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
fixup_skips = skips;
do_test_fixup(test, prog_type, prog, map_fds);
if (test->fill_insns) {
prog = test->fill_insns;
prog_len = test->prog_len;
} else {
prog_len = probe_filter_length(prog);
}
/* If there were some map skips during fixup due to missing bpf
* features, skip this test.
*/
if (fixup_skips != skips)
return;
pflags = BPF_F_TEST_RND_HI32;
if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
pflags |= BPF_F_STRICT_ALIGNMENT;
if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
pflags |= BPF_F_ANY_ALIGNMENT;
memset(&attr, 0, sizeof(attr));
attr.prog_type = prog_type;
attr.expected_attach_type = test->expected_attach_type;
attr.insns = prog;
attr.insns_cnt = prog_len;
attr.license = "GPL";
attr.log_level = 4;
attr.prog_flags = pflags;
fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) {
printf("SKIP (unsupported program type %d)\n", prog_type);
skips++;
goto close_fds;
}
expected_ret = unpriv && test->result_unpriv != UNDEF ?
test->result_unpriv : test->result;
expected_err = unpriv && test->errstr_unpriv ?
test->errstr_unpriv : test->errstr;
alignment_prevented_execution = 0;
if (expected_ret == ACCEPT) {
if (fd_prog < 0) {
printf("FAIL\nFailed to load prog '%s'!\n",
strerror(errno));
goto fail_log;
}
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
if (fd_prog >= 0 &&
(test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
alignment_prevented_execution = 1;
#endif
} else {
if (fd_prog >= 0) {
printf("FAIL\nUnexpected success to load!\n");
goto fail_log;
}
if (!expected_err || !strstr(bpf_vlog, expected_err)) {
printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
expected_err, bpf_vlog);
goto fail_log;
}
}
if (test->insn_processed) {
uint32_t insn_processed;
char *proc;
proc = strstr(bpf_vlog, "processed ");
insn_processed = atoi(proc + 10);
if (test->insn_processed != insn_processed) {
printf("FAIL\nUnexpected insn_processed %u vs %u\n",
insn_processed, test->insn_processed);
goto fail_log;
}
}
run_errs = 0;
run_successes = 0;
if (!alignment_prevented_execution && fd_prog >= 0) {
uint32_t expected_val;
int i;
if (!test->runs)
test->runs = 1;
for (i = 0; i < test->runs; i++) {
if (unpriv && test->retvals[i].retval_unpriv)
expected_val = test->retvals[i].retval_unpriv;
else
expected_val = test->retvals[i].retval;
err = do_prog_test_run(fd_prog, unpriv, expected_val,
test->retvals[i].data,
sizeof(test->retvals[i].data));
if (err) {
printf("(run %d/%d) ", i + 1, test->runs);
run_errs++;
} else {
run_successes++;
}
}
}
if (!run_errs) {
(*passes)++;
if (run_successes > 1)
printf("%d cases ", run_successes);
printf("OK");
if (alignment_prevented_execution)
printf(" (NOTE: not executed due to unknown alignment)");
printf("\n");
} else {
printf("\n");
goto fail_log;
}
close_fds:
if (test->fill_insns)
free(test->fill_insns);
close(fd_prog);
for (i = 0; i < MAX_NR_MAPS; i++)
close(map_fds[i]);
sched_yield();
return;
fail_log:
(*errors)++;
printf("%s", bpf_vlog);
goto close_fds;
}
static bool is_admin(void)
{
cap_t caps;
cap_flag_value_t sysadmin = CAP_CLEAR;
const cap_value_t cap_val = CAP_SYS_ADMIN;
#ifdef CAP_IS_SUPPORTED
if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
perror("cap_get_flag");
return false;
}
#endif
caps = cap_get_proc();
if (!caps) {
perror("cap_get_proc");
return false;
}
if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
perror("cap_get_flag");
if (cap_free(caps))
perror("cap_free");
return (sysadmin == CAP_SET);
}
static void get_unpriv_disabled()
{
char buf[2];
FILE *fd;
fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
if (!fd) {
perror("fopen /proc/sys/"UNPRIV_SYSCTL);
unpriv_disabled = true;
return;
}
if (fgets(buf, 2, fd) == buf && atoi(buf))
unpriv_disabled = true;
fclose(fd);
}
static bool test_as_unpriv(struct bpf_test *test)
{
return !test->prog_type ||
test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
}
static int do_test(bool unpriv, unsigned int from, unsigned int to)
{
int i, passes = 0, errors = 0;
for (i = from; i < to; i++) {
struct bpf_test *test = &tests[i];
/* Program types that are not supported by non-root we
* skip right away.
*/
if (test_as_unpriv(test) && unpriv_disabled) {
printf("#%d/u %s SKIP\n", i, test->descr);
skips++;
} else if (test_as_unpriv(test)) {
if (!unpriv)
set_admin(false);
printf("#%d/u %s ", i, test->descr);
do_test_single(test, true, &passes, &errors);
if (!unpriv)
set_admin(true);
}
if (unpriv) {
printf("#%d/p %s SKIP\n", i, test->descr);
skips++;
} else {
printf("#%d/p %s ", i, test->descr);
do_test_single(test, false, &passes, &errors);
}
}
printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
skips, errors);
return errors ? EXIT_FAILURE : EXIT_SUCCESS;
}
int main(int argc, char **argv)
{
unsigned int from = 0, to = ARRAY_SIZE(tests);
bool unpriv = !is_admin();
if (argc == 3) {
unsigned int l = atoi(argv[argc - 2]);
unsigned int u = atoi(argv[argc - 1]);
if (l < to && u < to) {
from = l;
to = u + 1;
}
} else if (argc == 2) {
unsigned int t = atoi(argv[argc - 1]);
if (t < to) {
from = t;
to = t + 1;
}
}
get_unpriv_disabled();
if (unpriv && unpriv_disabled) {
printf("Cannot run as unprivileged user with sysctl %s.\n",
UNPRIV_SYSCTL);
return EXIT_FAILURE;
}
bpf_semi_rand_init();
return do_test(unpriv, from, to);
}