WSL2-Linux-Kernel/drivers/iio/adc/exynos_adc.c

1025 строки
25 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* exynos_adc.c - Support for ADC in EXYNOS SoCs
*
* 8 ~ 10 channel, 10/12-bit ADC
*
* Copyright (C) 2013 Naveen Krishna Chatradhi <ch.naveen@samsung.com>
*/
#include <linux/compiler.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/regulator/consumer.h>
#include <linux/of_platform.h>
#include <linux/err.h>
#include <linux/input.h>
#include <linux/iio/iio.h>
#include <linux/iio/machine.h>
#include <linux/iio/driver.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/platform_data/touchscreen-s3c2410.h>
/* S3C/EXYNOS4412/5250 ADC_V1 registers definitions */
#define ADC_V1_CON(x) ((x) + 0x00)
#define ADC_V1_TSC(x) ((x) + 0x04)
#define ADC_V1_DLY(x) ((x) + 0x08)
#define ADC_V1_DATX(x) ((x) + 0x0C)
#define ADC_V1_DATY(x) ((x) + 0x10)
#define ADC_V1_UPDN(x) ((x) + 0x14)
#define ADC_V1_INTCLR(x) ((x) + 0x18)
#define ADC_V1_MUX(x) ((x) + 0x1c)
#define ADC_V1_CLRINTPNDNUP(x) ((x) + 0x20)
/* S3C2410 ADC registers definitions */
#define ADC_S3C2410_MUX(x) ((x) + 0x18)
/* Future ADC_V2 registers definitions */
#define ADC_V2_CON1(x) ((x) + 0x00)
#define ADC_V2_CON2(x) ((x) + 0x04)
#define ADC_V2_STAT(x) ((x) + 0x08)
#define ADC_V2_INT_EN(x) ((x) + 0x10)
#define ADC_V2_INT_ST(x) ((x) + 0x14)
#define ADC_V2_VER(x) ((x) + 0x20)
/* Bit definitions for ADC_V1 */
#define ADC_V1_CON_RES (1u << 16)
#define ADC_V1_CON_PRSCEN (1u << 14)
#define ADC_V1_CON_PRSCLV(x) (((x) & 0xFF) << 6)
#define ADC_V1_CON_STANDBY (1u << 2)
/* Bit definitions for S3C2410 ADC */
#define ADC_S3C2410_CON_SELMUX(x) (((x) & 7) << 3)
#define ADC_S3C2410_DATX_MASK 0x3FF
#define ADC_S3C2416_CON_RES_SEL (1u << 3)
/* touch screen always uses channel 0 */
#define ADC_S3C2410_MUX_TS 0
/* ADCTSC Register Bits */
#define ADC_S3C2443_TSC_UD_SEN (1u << 8)
#define ADC_S3C2410_TSC_YM_SEN (1u << 7)
#define ADC_S3C2410_TSC_YP_SEN (1u << 6)
#define ADC_S3C2410_TSC_XM_SEN (1u << 5)
#define ADC_S3C2410_TSC_XP_SEN (1u << 4)
#define ADC_S3C2410_TSC_PULL_UP_DISABLE (1u << 3)
#define ADC_S3C2410_TSC_AUTO_PST (1u << 2)
#define ADC_S3C2410_TSC_XY_PST(x) (((x) & 0x3) << 0)
#define ADC_TSC_WAIT4INT (ADC_S3C2410_TSC_YM_SEN | \
ADC_S3C2410_TSC_YP_SEN | \
ADC_S3C2410_TSC_XP_SEN | \
ADC_S3C2410_TSC_XY_PST(3))
#define ADC_TSC_AUTOPST (ADC_S3C2410_TSC_YM_SEN | \
ADC_S3C2410_TSC_YP_SEN | \
ADC_S3C2410_TSC_XP_SEN | \
ADC_S3C2410_TSC_AUTO_PST | \
ADC_S3C2410_TSC_XY_PST(0))
/* Bit definitions for ADC_V2 */
#define ADC_V2_CON1_SOFT_RESET (1u << 2)
#define ADC_V2_CON2_OSEL (1u << 10)
#define ADC_V2_CON2_ESEL (1u << 9)
#define ADC_V2_CON2_HIGHF (1u << 8)
#define ADC_V2_CON2_C_TIME(x) (((x) & 7) << 4)
#define ADC_V2_CON2_ACH_SEL(x) (((x) & 0xF) << 0)
#define ADC_V2_CON2_ACH_MASK 0xF
#define MAX_ADC_V2_CHANNELS 10
#define MAX_ADC_V1_CHANNELS 8
#define MAX_EXYNOS3250_ADC_CHANNELS 2
#define MAX_EXYNOS4212_ADC_CHANNELS 4
#define MAX_S5PV210_ADC_CHANNELS 10
/* Bit definitions common for ADC_V1 and ADC_V2 */
#define ADC_CON_EN_START (1u << 0)
#define ADC_CON_EN_START_MASK (0x3 << 0)
#define ADC_DATX_PRESSED (1u << 15)
#define ADC_DATX_MASK 0xFFF
#define ADC_DATY_MASK 0xFFF
#define EXYNOS_ADC_TIMEOUT (msecs_to_jiffies(100))
#define EXYNOS_ADCV1_PHY_OFFSET 0x0718
#define EXYNOS_ADCV2_PHY_OFFSET 0x0720
struct exynos_adc {
struct exynos_adc_data *data;
struct device *dev;
struct input_dev *input;
void __iomem *regs;
struct regmap *pmu_map;
struct clk *clk;
struct clk *sclk;
unsigned int irq;
unsigned int tsirq;
unsigned int delay;
struct regulator *vdd;
struct completion completion;
u32 value;
unsigned int version;
bool ts_enabled;
bool read_ts;
u32 ts_x;
u32 ts_y;
/*
* Lock to protect from potential concurrent access to the
* completion callback during a manual conversion. For this driver
* a wait-callback is used to wait for the conversion result,
* so in the meantime no other read request (or conversion start)
* must be performed, otherwise it would interfere with the
* current conversion result.
*/
struct mutex lock;
};
struct exynos_adc_data {
int num_channels;
bool needs_sclk;
bool needs_adc_phy;
int phy_offset;
u32 mask;
void (*init_hw)(struct exynos_adc *info);
void (*exit_hw)(struct exynos_adc *info);
void (*clear_irq)(struct exynos_adc *info);
void (*start_conv)(struct exynos_adc *info, unsigned long addr);
};
static void exynos_adc_unprepare_clk(struct exynos_adc *info)
{
if (info->data->needs_sclk)
clk_unprepare(info->sclk);
clk_unprepare(info->clk);
}
static int exynos_adc_prepare_clk(struct exynos_adc *info)
{
int ret;
ret = clk_prepare(info->clk);
if (ret) {
dev_err(info->dev, "failed preparing adc clock: %d\n", ret);
return ret;
}
if (info->data->needs_sclk) {
ret = clk_prepare(info->sclk);
if (ret) {
clk_unprepare(info->clk);
dev_err(info->dev,
"failed preparing sclk_adc clock: %d\n", ret);
return ret;
}
}
return 0;
}
static void exynos_adc_disable_clk(struct exynos_adc *info)
{
if (info->data->needs_sclk)
clk_disable(info->sclk);
clk_disable(info->clk);
}
static int exynos_adc_enable_clk(struct exynos_adc *info)
{
int ret;
ret = clk_enable(info->clk);
if (ret) {
dev_err(info->dev, "failed enabling adc clock: %d\n", ret);
return ret;
}
if (info->data->needs_sclk) {
ret = clk_enable(info->sclk);
if (ret) {
clk_disable(info->clk);
dev_err(info->dev,
"failed enabling sclk_adc clock: %d\n", ret);
return ret;
}
}
return 0;
}
static void exynos_adc_v1_init_hw(struct exynos_adc *info)
{
u32 con1;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 1);
/* set default prescaler values and Enable prescaler */
con1 = ADC_V1_CON_PRSCLV(49) | ADC_V1_CON_PRSCEN;
/* Enable 12-bit ADC resolution */
con1 |= ADC_V1_CON_RES;
writel(con1, ADC_V1_CON(info->regs));
/* set touchscreen delay */
writel(info->delay, ADC_V1_DLY(info->regs));
}
static void exynos_adc_v1_exit_hw(struct exynos_adc *info)
{
u32 con;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 0);
con = readl(ADC_V1_CON(info->regs));
con |= ADC_V1_CON_STANDBY;
writel(con, ADC_V1_CON(info->regs));
}
static void exynos_adc_v1_clear_irq(struct exynos_adc *info)
{
writel(1, ADC_V1_INTCLR(info->regs));
}
static void exynos_adc_v1_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
writel(addr, ADC_V1_MUX(info->regs));
con1 = readl(ADC_V1_CON(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
/* Exynos4212 and 4412 is like ADCv1 but with four channels only */
static const struct exynos_adc_data exynos4212_adc_data = {
.num_channels = MAX_EXYNOS4212_ADC_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.clear_irq = exynos_adc_v1_clear_irq,
.start_conv = exynos_adc_v1_start_conv,
};
static const struct exynos_adc_data exynos_adc_v1_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.clear_irq = exynos_adc_v1_clear_irq,
.start_conv = exynos_adc_v1_start_conv,
};
static const struct exynos_adc_data exynos_adc_s5pv210_data = {
.num_channels = MAX_S5PV210_ADC_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.clear_irq = exynos_adc_v1_clear_irq,
.start_conv = exynos_adc_v1_start_conv,
};
static void exynos_adc_s3c2416_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
/* Enable 12 bit ADC resolution */
con1 = readl(ADC_V1_CON(info->regs));
con1 |= ADC_S3C2416_CON_RES_SEL;
writel(con1, ADC_V1_CON(info->regs));
/* Select channel for S3C2416 */
writel(addr, ADC_S3C2410_MUX(info->regs));
con1 = readl(ADC_V1_CON(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static struct exynos_adc_data const exynos_adc_s3c2416_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.start_conv = exynos_adc_s3c2416_start_conv,
};
static void exynos_adc_s3c2443_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
/* Select channel for S3C2433 */
writel(addr, ADC_S3C2410_MUX(info->regs));
con1 = readl(ADC_V1_CON(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static struct exynos_adc_data const exynos_adc_s3c2443_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.start_conv = exynos_adc_s3c2443_start_conv,
};
static void exynos_adc_s3c64xx_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1;
con1 = readl(ADC_V1_CON(info->regs));
con1 &= ~ADC_S3C2410_CON_SELMUX(0x7);
con1 |= ADC_S3C2410_CON_SELMUX(addr);
writel(con1 | ADC_CON_EN_START, ADC_V1_CON(info->regs));
}
static struct exynos_adc_data const exynos_adc_s3c24xx_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_S3C2410_DATX_MASK, /* 10 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.start_conv = exynos_adc_s3c64xx_start_conv,
};
static struct exynos_adc_data const exynos_adc_s3c64xx_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_v1_init_hw,
.exit_hw = exynos_adc_v1_exit_hw,
.clear_irq = exynos_adc_v1_clear_irq,
.start_conv = exynos_adc_s3c64xx_start_conv,
};
static void exynos_adc_v2_init_hw(struct exynos_adc *info)
{
u32 con1, con2;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 1);
con1 = ADC_V2_CON1_SOFT_RESET;
writel(con1, ADC_V2_CON1(info->regs));
con2 = ADC_V2_CON2_OSEL | ADC_V2_CON2_ESEL |
ADC_V2_CON2_HIGHF | ADC_V2_CON2_C_TIME(0);
writel(con2, ADC_V2_CON2(info->regs));
/* Enable interrupts */
writel(1, ADC_V2_INT_EN(info->regs));
}
static void exynos_adc_v2_exit_hw(struct exynos_adc *info)
{
u32 con;
if (info->data->needs_adc_phy)
regmap_write(info->pmu_map, info->data->phy_offset, 0);
con = readl(ADC_V2_CON1(info->regs));
con &= ~ADC_CON_EN_START;
writel(con, ADC_V2_CON1(info->regs));
}
static void exynos_adc_v2_clear_irq(struct exynos_adc *info)
{
writel(1, ADC_V2_INT_ST(info->regs));
}
static void exynos_adc_v2_start_conv(struct exynos_adc *info,
unsigned long addr)
{
u32 con1, con2;
con2 = readl(ADC_V2_CON2(info->regs));
con2 &= ~ADC_V2_CON2_ACH_MASK;
con2 |= ADC_V2_CON2_ACH_SEL(addr);
writel(con2, ADC_V2_CON2(info->regs));
con1 = readl(ADC_V2_CON1(info->regs));
writel(con1 | ADC_CON_EN_START, ADC_V2_CON1(info->regs));
}
static const struct exynos_adc_data exynos_adc_v2_data = {
.num_channels = MAX_ADC_V2_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV2_PHY_OFFSET,
.init_hw = exynos_adc_v2_init_hw,
.exit_hw = exynos_adc_v2_exit_hw,
.clear_irq = exynos_adc_v2_clear_irq,
.start_conv = exynos_adc_v2_start_conv,
};
static const struct exynos_adc_data exynos3250_adc_data = {
.num_channels = MAX_EXYNOS3250_ADC_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.needs_sclk = true,
.needs_adc_phy = true,
.phy_offset = EXYNOS_ADCV1_PHY_OFFSET,
.init_hw = exynos_adc_v2_init_hw,
.exit_hw = exynos_adc_v2_exit_hw,
.clear_irq = exynos_adc_v2_clear_irq,
.start_conv = exynos_adc_v2_start_conv,
};
static void exynos_adc_exynos7_init_hw(struct exynos_adc *info)
{
u32 con1, con2;
con1 = ADC_V2_CON1_SOFT_RESET;
writel(con1, ADC_V2_CON1(info->regs));
con2 = readl(ADC_V2_CON2(info->regs));
con2 &= ~ADC_V2_CON2_C_TIME(7);
con2 |= ADC_V2_CON2_C_TIME(0);
writel(con2, ADC_V2_CON2(info->regs));
/* Enable interrupts */
writel(1, ADC_V2_INT_EN(info->regs));
}
static const struct exynos_adc_data exynos7_adc_data = {
.num_channels = MAX_ADC_V1_CHANNELS,
.mask = ADC_DATX_MASK, /* 12 bit ADC resolution */
.init_hw = exynos_adc_exynos7_init_hw,
.exit_hw = exynos_adc_v2_exit_hw,
.clear_irq = exynos_adc_v2_clear_irq,
.start_conv = exynos_adc_v2_start_conv,
};
static const struct of_device_id exynos_adc_match[] = {
{
.compatible = "samsung,s3c2410-adc",
.data = &exynos_adc_s3c24xx_data,
}, {
.compatible = "samsung,s3c2416-adc",
.data = &exynos_adc_s3c2416_data,
}, {
.compatible = "samsung,s3c2440-adc",
.data = &exynos_adc_s3c24xx_data,
}, {
.compatible = "samsung,s3c2443-adc",
.data = &exynos_adc_s3c2443_data,
}, {
.compatible = "samsung,s3c6410-adc",
.data = &exynos_adc_s3c64xx_data,
}, {
.compatible = "samsung,s5pv210-adc",
.data = &exynos_adc_s5pv210_data,
}, {
.compatible = "samsung,exynos4212-adc",
.data = &exynos4212_adc_data,
}, {
.compatible = "samsung,exynos-adc-v1",
.data = &exynos_adc_v1_data,
}, {
.compatible = "samsung,exynos-adc-v2",
.data = &exynos_adc_v2_data,
}, {
.compatible = "samsung,exynos3250-adc",
.data = &exynos3250_adc_data,
}, {
.compatible = "samsung,exynos7-adc",
.data = &exynos7_adc_data,
},
{},
};
MODULE_DEVICE_TABLE(of, exynos_adc_match);
static struct exynos_adc_data *exynos_adc_get_data(struct platform_device *pdev)
{
const struct of_device_id *match;
match = of_match_node(exynos_adc_match, pdev->dev.of_node);
return (struct exynos_adc_data *)match->data;
}
static int exynos_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct exynos_adc *info = iio_priv(indio_dev);
unsigned long timeout;
int ret;
if (mask == IIO_CHAN_INFO_SCALE) {
ret = regulator_get_voltage(info->vdd);
if (ret < 0)
return ret;
/* Regulator voltage is in uV, but need mV */
*val = ret / 1000;
*val2 = info->data->mask;
return IIO_VAL_FRACTIONAL;
} else if (mask != IIO_CHAN_INFO_RAW) {
return -EINVAL;
}
mutex_lock(&info->lock);
reinit_completion(&info->completion);
/* Select the channel to be used and Trigger conversion */
if (info->data->start_conv)
info->data->start_conv(info, chan->address);
timeout = wait_for_completion_timeout(&info->completion,
EXYNOS_ADC_TIMEOUT);
if (timeout == 0) {
dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
if (info->data->init_hw)
info->data->init_hw(info);
ret = -ETIMEDOUT;
} else {
*val = info->value;
*val2 = 0;
ret = IIO_VAL_INT;
}
mutex_unlock(&info->lock);
return ret;
}
static int exynos_read_s3c64xx_ts(struct iio_dev *indio_dev, int *x, int *y)
{
struct exynos_adc *info = iio_priv(indio_dev);
unsigned long timeout;
int ret;
mutex_lock(&info->lock);
info->read_ts = true;
reinit_completion(&info->completion);
writel(ADC_S3C2410_TSC_PULL_UP_DISABLE | ADC_TSC_AUTOPST,
ADC_V1_TSC(info->regs));
/* Select the ts channel to be used and Trigger conversion */
info->data->start_conv(info, ADC_S3C2410_MUX_TS);
timeout = wait_for_completion_timeout(&info->completion,
EXYNOS_ADC_TIMEOUT);
if (timeout == 0) {
dev_warn(&indio_dev->dev, "Conversion timed out! Resetting\n");
if (info->data->init_hw)
info->data->init_hw(info);
ret = -ETIMEDOUT;
} else {
*x = info->ts_x;
*y = info->ts_y;
ret = 0;
}
info->read_ts = false;
mutex_unlock(&info->lock);
return ret;
}
static irqreturn_t exynos_adc_isr(int irq, void *dev_id)
{
struct exynos_adc *info = dev_id;
u32 mask = info->data->mask;
/* Read value */
if (info->read_ts) {
info->ts_x = readl(ADC_V1_DATX(info->regs));
info->ts_y = readl(ADC_V1_DATY(info->regs));
writel(ADC_TSC_WAIT4INT | ADC_S3C2443_TSC_UD_SEN, ADC_V1_TSC(info->regs));
} else {
info->value = readl(ADC_V1_DATX(info->regs)) & mask;
}
/* clear irq */
if (info->data->clear_irq)
info->data->clear_irq(info);
complete(&info->completion);
return IRQ_HANDLED;
}
/*
* Here we (ab)use a threaded interrupt handler to stay running
* for as long as the touchscreen remains pressed, we report
* a new event with the latest data and then sleep until the
* next timer tick. This mirrors the behavior of the old
* driver, with much less code.
*/
static irqreturn_t exynos_ts_isr(int irq, void *dev_id)
{
struct exynos_adc *info = dev_id;
struct iio_dev *dev = dev_get_drvdata(info->dev);
u32 x, y;
bool pressed;
int ret;
while (READ_ONCE(info->ts_enabled)) {
ret = exynos_read_s3c64xx_ts(dev, &x, &y);
if (ret == -ETIMEDOUT)
break;
pressed = x & y & ADC_DATX_PRESSED;
if (!pressed) {
input_report_key(info->input, BTN_TOUCH, 0);
input_sync(info->input);
break;
}
input_report_abs(info->input, ABS_X, x & ADC_DATX_MASK);
input_report_abs(info->input, ABS_Y, y & ADC_DATY_MASK);
input_report_key(info->input, BTN_TOUCH, 1);
input_sync(info->input);
usleep_range(1000, 1100);
}
writel(0, ADC_V1_CLRINTPNDNUP(info->regs));
return IRQ_HANDLED;
}
static int exynos_adc_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct exynos_adc *info = iio_priv(indio_dev);
if (readval == NULL)
return -EINVAL;
*readval = readl(info->regs + reg);
return 0;
}
static const struct iio_info exynos_adc_iio_info = {
.read_raw = &exynos_read_raw,
.debugfs_reg_access = &exynos_adc_reg_access,
};
#define ADC_CHANNEL(_index, _id) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = _index, \
.address = _index, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SCALE), \
.datasheet_name = _id, \
}
static const struct iio_chan_spec exynos_adc_iio_channels[] = {
ADC_CHANNEL(0, "adc0"),
ADC_CHANNEL(1, "adc1"),
ADC_CHANNEL(2, "adc2"),
ADC_CHANNEL(3, "adc3"),
ADC_CHANNEL(4, "adc4"),
ADC_CHANNEL(5, "adc5"),
ADC_CHANNEL(6, "adc6"),
ADC_CHANNEL(7, "adc7"),
ADC_CHANNEL(8, "adc8"),
ADC_CHANNEL(9, "adc9"),
};
static int exynos_adc_remove_devices(struct device *dev, void *c)
{
struct platform_device *pdev = to_platform_device(dev);
platform_device_unregister(pdev);
return 0;
}
static int exynos_adc_ts_open(struct input_dev *dev)
{
struct exynos_adc *info = input_get_drvdata(dev);
WRITE_ONCE(info->ts_enabled, true);
enable_irq(info->tsirq);
return 0;
}
static void exynos_adc_ts_close(struct input_dev *dev)
{
struct exynos_adc *info = input_get_drvdata(dev);
WRITE_ONCE(info->ts_enabled, false);
disable_irq(info->tsirq);
}
static int exynos_adc_ts_init(struct exynos_adc *info)
{
int ret;
if (info->tsirq <= 0)
return -ENODEV;
info->input = input_allocate_device();
if (!info->input)
return -ENOMEM;
info->input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
info->input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(info->input, ABS_X, 0, 0x3FF, 0, 0);
input_set_abs_params(info->input, ABS_Y, 0, 0x3FF, 0, 0);
info->input->name = "S3C24xx TouchScreen";
info->input->id.bustype = BUS_HOST;
info->input->open = exynos_adc_ts_open;
info->input->close = exynos_adc_ts_close;
input_set_drvdata(info->input, info);
ret = input_register_device(info->input);
if (ret) {
input_free_device(info->input);
return ret;
}
ret = request_threaded_irq(info->tsirq, NULL, exynos_ts_isr,
IRQF_ONESHOT | IRQF_NO_AUTOEN,
"touchscreen", info);
if (ret)
input_unregister_device(info->input);
return ret;
}
static int exynos_adc_probe(struct platform_device *pdev)
{
struct exynos_adc *info = NULL;
struct device_node *np = pdev->dev.of_node;
struct s3c2410_ts_mach_info *pdata = dev_get_platdata(&pdev->dev);
struct iio_dev *indio_dev = NULL;
bool has_ts = false;
int ret;
int irq;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(struct exynos_adc));
if (!indio_dev) {
dev_err(&pdev->dev, "failed allocating iio device\n");
return -ENOMEM;
}
info = iio_priv(indio_dev);
info->data = exynos_adc_get_data(pdev);
if (!info->data) {
dev_err(&pdev->dev, "failed getting exynos_adc_data\n");
return -EINVAL;
}
info->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->regs))
return PTR_ERR(info->regs);
if (info->data->needs_adc_phy) {
info->pmu_map = syscon_regmap_lookup_by_phandle(
pdev->dev.of_node,
"samsung,syscon-phandle");
if (IS_ERR(info->pmu_map)) {
dev_err(&pdev->dev, "syscon regmap lookup failed.\n");
return PTR_ERR(info->pmu_map);
}
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
info->irq = irq;
irq = platform_get_irq(pdev, 1);
if (irq == -EPROBE_DEFER)
return irq;
info->tsirq = irq;
info->dev = &pdev->dev;
init_completion(&info->completion);
info->clk = devm_clk_get(&pdev->dev, "adc");
if (IS_ERR(info->clk)) {
dev_err(&pdev->dev, "failed getting clock, err = %ld\n",
PTR_ERR(info->clk));
return PTR_ERR(info->clk);
}
if (info->data->needs_sclk) {
info->sclk = devm_clk_get(&pdev->dev, "sclk");
if (IS_ERR(info->sclk)) {
dev_err(&pdev->dev,
"failed getting sclk clock, err = %ld\n",
PTR_ERR(info->sclk));
return PTR_ERR(info->sclk);
}
}
info->vdd = devm_regulator_get(&pdev->dev, "vdd");
if (IS_ERR(info->vdd))
return dev_err_probe(&pdev->dev, PTR_ERR(info->vdd),
"failed getting regulator");
ret = regulator_enable(info->vdd);
if (ret)
return ret;
ret = exynos_adc_prepare_clk(info);
if (ret)
goto err_disable_reg;
ret = exynos_adc_enable_clk(info);
if (ret)
goto err_unprepare_clk;
platform_set_drvdata(pdev, indio_dev);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->info = &exynos_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = exynos_adc_iio_channels;
indio_dev->num_channels = info->data->num_channels;
mutex_init(&info->lock);
ret = request_irq(info->irq, exynos_adc_isr,
0, dev_name(&pdev->dev), info);
if (ret < 0) {
dev_err(&pdev->dev, "failed requesting irq, irq = %d\n",
info->irq);
goto err_disable_clk;
}
ret = iio_device_register(indio_dev);
if (ret)
goto err_irq;
if (info->data->init_hw)
info->data->init_hw(info);
/* leave out any TS related code if unreachable */
if (IS_REACHABLE(CONFIG_INPUT)) {
has_ts = of_property_read_bool(pdev->dev.of_node,
"has-touchscreen") || pdata;
}
if (pdata)
info->delay = pdata->delay;
else
info->delay = 10000;
if (has_ts)
ret = exynos_adc_ts_init(info);
if (ret)
goto err_iio;
ret = of_platform_populate(np, exynos_adc_match, NULL, &indio_dev->dev);
if (ret < 0) {
dev_err(&pdev->dev, "failed adding child nodes\n");
goto err_of_populate;
}
return 0;
err_of_populate:
device_for_each_child(&indio_dev->dev, NULL,
exynos_adc_remove_devices);
if (has_ts) {
input_unregister_device(info->input);
free_irq(info->tsirq, info);
}
err_iio:
iio_device_unregister(indio_dev);
err_irq:
free_irq(info->irq, info);
err_disable_clk:
if (info->data->exit_hw)
info->data->exit_hw(info);
exynos_adc_disable_clk(info);
err_unprepare_clk:
exynos_adc_unprepare_clk(info);
err_disable_reg:
regulator_disable(info->vdd);
return ret;
}
static int exynos_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct exynos_adc *info = iio_priv(indio_dev);
if (IS_REACHABLE(CONFIG_INPUT) && info->input) {
free_irq(info->tsirq, info);
input_unregister_device(info->input);
}
device_for_each_child(&indio_dev->dev, NULL,
exynos_adc_remove_devices);
iio_device_unregister(indio_dev);
free_irq(info->irq, info);
if (info->data->exit_hw)
info->data->exit_hw(info);
exynos_adc_disable_clk(info);
exynos_adc_unprepare_clk(info);
regulator_disable(info->vdd);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int exynos_adc_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct exynos_adc *info = iio_priv(indio_dev);
if (info->data->exit_hw)
info->data->exit_hw(info);
exynos_adc_disable_clk(info);
regulator_disable(info->vdd);
return 0;
}
static int exynos_adc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct exynos_adc *info = iio_priv(indio_dev);
int ret;
ret = regulator_enable(info->vdd);
if (ret)
return ret;
ret = exynos_adc_enable_clk(info);
if (ret)
return ret;
if (info->data->init_hw)
info->data->init_hw(info);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(exynos_adc_pm_ops,
exynos_adc_suspend,
exynos_adc_resume);
static struct platform_driver exynos_adc_driver = {
.probe = exynos_adc_probe,
.remove = exynos_adc_remove,
.driver = {
.name = "exynos-adc",
.of_match_table = exynos_adc_match,
.pm = &exynos_adc_pm_ops,
},
};
module_platform_driver(exynos_adc_driver);
MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
MODULE_DESCRIPTION("Samsung EXYNOS5 ADC driver");
MODULE_LICENSE("GPL v2");