WSL2-Linux-Kernel/drivers/hwmon/lineage-pem.c

523 строки
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for Lineage Compact Power Line series of power entry modules.
*
* Copyright (C) 2010, 2011 Ericsson AB.
*
* Documentation:
* http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/jiffies.h>
/*
* This driver supports various Lineage Compact Power Line DC/DC and AC/DC
* converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
*
* The devices are nominally PMBus compliant. However, most standard PMBus
* commands are not supported. Specifically, all hardware monitoring and
* status reporting commands are non-standard. For this reason, a standard
* PMBus driver can not be used.
*
* All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
* To ensure device access, this driver should only be used as client driver
* to the pca9541 I2C master selector driver.
*/
/* Command codes */
#define PEM_OPERATION 0x01
#define PEM_CLEAR_INFO_FLAGS 0x03
#define PEM_VOUT_COMMAND 0x21
#define PEM_VOUT_OV_FAULT_LIMIT 0x40
#define PEM_READ_DATA_STRING 0xd0
#define PEM_READ_INPUT_STRING 0xdc
#define PEM_READ_FIRMWARE_REV 0xdd
#define PEM_READ_RUN_TIMER 0xde
#define PEM_FAN_HI_SPEED 0xdf
#define PEM_FAN_NORMAL_SPEED 0xe0
#define PEM_READ_FAN_SPEED 0xe1
/* offsets in data string */
#define PEM_DATA_STATUS_2 0
#define PEM_DATA_STATUS_1 1
#define PEM_DATA_ALARM_2 2
#define PEM_DATA_ALARM_1 3
#define PEM_DATA_VOUT_LSB 4
#define PEM_DATA_VOUT_MSB 5
#define PEM_DATA_CURRENT 6
#define PEM_DATA_TEMP 7
/* Virtual entries, to report constants */
#define PEM_DATA_TEMP_MAX 10
#define PEM_DATA_TEMP_CRIT 11
/* offsets in input string */
#define PEM_INPUT_VOLTAGE 0
#define PEM_INPUT_POWER_LSB 1
#define PEM_INPUT_POWER_MSB 2
/* offsets in fan data */
#define PEM_FAN_ADJUSTMENT 0
#define PEM_FAN_FAN1 1
#define PEM_FAN_FAN2 2
#define PEM_FAN_FAN3 3
/* Status register bits */
#define STS1_OUTPUT_ON (1 << 0)
#define STS1_LEDS_FLASHING (1 << 1)
#define STS1_EXT_FAULT (1 << 2)
#define STS1_SERVICE_LED_ON (1 << 3)
#define STS1_SHUTDOWN_OCCURRED (1 << 4)
#define STS1_INT_FAULT (1 << 5)
#define STS1_ISOLATION_TEST_OK (1 << 6)
#define STS2_ENABLE_PIN_HI (1 << 0)
#define STS2_DATA_OUT_RANGE (1 << 1)
#define STS2_RESTARTED_OK (1 << 1)
#define STS2_ISOLATION_TEST_FAIL (1 << 3)
#define STS2_HIGH_POWER_CAP (1 << 4)
#define STS2_INVALID_INSTR (1 << 5)
#define STS2_WILL_RESTART (1 << 6)
#define STS2_PEC_ERR (1 << 7)
/* Alarm register bits */
#define ALRM1_VIN_OUT_LIMIT (1 << 0)
#define ALRM1_VOUT_OUT_LIMIT (1 << 1)
#define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
#define ALRM1_VIN_OVERCURRENT (1 << 3)
#define ALRM1_TEMP_WARNING (1 << 4)
#define ALRM1_TEMP_SHUTDOWN (1 << 5)
#define ALRM1_PRIMARY_FAULT (1 << 6)
#define ALRM1_POWER_LIMIT (1 << 7)
#define ALRM2_5V_OUT_LIMIT (1 << 1)
#define ALRM2_TEMP_FAULT (1 << 2)
#define ALRM2_OV_LOW (1 << 3)
#define ALRM2_DCDC_TEMP_HIGH (1 << 4)
#define ALRM2_PRI_TEMP_HIGH (1 << 5)
#define ALRM2_NO_PRIMARY (1 << 6)
#define ALRM2_FAN_FAULT (1 << 7)
#define FIRMWARE_REV_LEN 4
#define DATA_STRING_LEN 9
#define INPUT_STRING_LEN 5 /* 4 for most devices */
#define FAN_SPEED_LEN 5
struct pem_data {
struct i2c_client *client;
const struct attribute_group *groups[4];
struct mutex update_lock;
bool valid;
bool fans_supported;
int input_length;
unsigned long last_updated; /* in jiffies */
u8 firmware_rev[FIRMWARE_REV_LEN];
u8 data_string[DATA_STRING_LEN];
u8 input_string[INPUT_STRING_LEN];
u8 fan_speed[FAN_SPEED_LEN];
};
static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
int data_len)
{
u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
int result;
result = i2c_smbus_read_block_data(client, command, block_buffer);
if (unlikely(result < 0))
goto abort;
if (unlikely(result == 0xff || result != data_len)) {
result = -EIO;
goto abort;
}
memcpy(data, block_buffer, data_len);
result = 0;
abort:
return result;
}
static struct pem_data *pem_update_device(struct device *dev)
{
struct pem_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
struct pem_data *ret = data;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
int result;
/* Read data string */
result = pem_read_block(client, PEM_READ_DATA_STRING,
data->data_string,
sizeof(data->data_string));
if (unlikely(result < 0)) {
ret = ERR_PTR(result);
goto abort;
}
/* Read input string */
if (data->input_length) {
result = pem_read_block(client, PEM_READ_INPUT_STRING,
data->input_string,
data->input_length);
if (unlikely(result < 0)) {
ret = ERR_PTR(result);
goto abort;
}
}
/* Read fan speeds */
if (data->fans_supported) {
result = pem_read_block(client, PEM_READ_FAN_SPEED,
data->fan_speed,
sizeof(data->fan_speed));
if (unlikely(result < 0)) {
ret = ERR_PTR(result);
goto abort;
}
}
i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
data->last_updated = jiffies;
data->valid = 1;
}
abort:
mutex_unlock(&data->update_lock);
return ret;
}
static long pem_get_data(u8 *data, int len, int index)
{
long val;
switch (index) {
case PEM_DATA_VOUT_LSB:
val = (data[index] + (data[index+1] << 8)) * 5 / 2;
break;
case PEM_DATA_CURRENT:
val = data[index] * 200;
break;
case PEM_DATA_TEMP:
val = data[index] * 1000;
break;
case PEM_DATA_TEMP_MAX:
val = 97 * 1000; /* 97 degrees C per datasheet */
break;
case PEM_DATA_TEMP_CRIT:
val = 107 * 1000; /* 107 degrees C per datasheet */
break;
default:
WARN_ON_ONCE(1);
val = 0;
}
return val;
}
static long pem_get_input(u8 *data, int len, int index)
{
long val;
switch (index) {
case PEM_INPUT_VOLTAGE:
if (len == INPUT_STRING_LEN)
val = (data[index] + (data[index+1] << 8) - 75) * 1000;
else
val = (data[index] - 75) * 1000;
break;
case PEM_INPUT_POWER_LSB:
if (len == INPUT_STRING_LEN)
index++;
val = (data[index] + (data[index+1] << 8)) * 1000000L;
break;
default:
WARN_ON_ONCE(1);
val = 0;
}
return val;
}
static long pem_get_fan(u8 *data, int len, int index)
{
long val;
switch (index) {
case PEM_FAN_FAN1:
case PEM_FAN_FAN2:
case PEM_FAN_FAN3:
val = data[index] * 100;
break;
default:
WARN_ON_ONCE(1);
val = 0;
}
return val;
}
/*
* Show boolean, either a fault or an alarm.
* .nr points to the register, .index is the bit mask to check
*/
static ssize_t pem_bool_show(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
struct pem_data *data = pem_update_device(dev);
u8 status;
if (IS_ERR(data))
return PTR_ERR(data);
status = data->data_string[attr->nr] & attr->index;
return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
}
static ssize_t pem_data_show(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct pem_data *data = pem_update_device(dev);
long value;
if (IS_ERR(data))
return PTR_ERR(data);
value = pem_get_data(data->data_string, sizeof(data->data_string),
attr->index);
return snprintf(buf, PAGE_SIZE, "%ld\n", value);
}
static ssize_t pem_input_show(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct pem_data *data = pem_update_device(dev);
long value;
if (IS_ERR(data))
return PTR_ERR(data);
value = pem_get_input(data->input_string, sizeof(data->input_string),
attr->index);
return snprintf(buf, PAGE_SIZE, "%ld\n", value);
}
static ssize_t pem_fan_show(struct device *dev, struct device_attribute *da,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
struct pem_data *data = pem_update_device(dev);
long value;
if (IS_ERR(data))
return PTR_ERR(data);
value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
attr->index);
return snprintf(buf, PAGE_SIZE, "%ld\n", value);
}
/* Voltages */
static SENSOR_DEVICE_ATTR_RO(in1_input, pem_data, PEM_DATA_VOUT_LSB);
static SENSOR_DEVICE_ATTR_2_RO(in1_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_VOUT_OUT_LIMIT);
static SENSOR_DEVICE_ATTR_2_RO(in1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_OV_VOLT_SHUTDOWN);
static SENSOR_DEVICE_ATTR_RO(in2_input, pem_input, PEM_INPUT_VOLTAGE);
static SENSOR_DEVICE_ATTR_2_RO(in2_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
/* Currents */
static SENSOR_DEVICE_ATTR_RO(curr1_input, pem_data, PEM_DATA_CURRENT);
static SENSOR_DEVICE_ATTR_2_RO(curr1_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_VIN_OVERCURRENT);
/* Power */
static SENSOR_DEVICE_ATTR_RO(power1_input, pem_input, PEM_INPUT_POWER_LSB);
static SENSOR_DEVICE_ATTR_2_RO(power1_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_POWER_LIMIT);
/* Fans */
static SENSOR_DEVICE_ATTR_RO(fan1_input, pem_fan, PEM_FAN_FAN1);
static SENSOR_DEVICE_ATTR_RO(fan2_input, pem_fan, PEM_FAN_FAN2);
static SENSOR_DEVICE_ATTR_RO(fan3_input, pem_fan, PEM_FAN_FAN3);
static SENSOR_DEVICE_ATTR_2_RO(fan1_alarm, pem_bool, PEM_DATA_ALARM_2,
ALRM2_FAN_FAULT);
/* Temperatures */
static SENSOR_DEVICE_ATTR_RO(temp1_input, pem_data, PEM_DATA_TEMP);
static SENSOR_DEVICE_ATTR_RO(temp1_max, pem_data, PEM_DATA_TEMP_MAX);
static SENSOR_DEVICE_ATTR_RO(temp1_crit, pem_data, PEM_DATA_TEMP_CRIT);
static SENSOR_DEVICE_ATTR_2_RO(temp1_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_TEMP_WARNING);
static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, pem_bool, PEM_DATA_ALARM_1,
ALRM1_TEMP_SHUTDOWN);
static SENSOR_DEVICE_ATTR_2_RO(temp1_fault, pem_bool, PEM_DATA_ALARM_2,
ALRM2_TEMP_FAULT);
static struct attribute *pem_attributes[] = {
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_curr1_alarm.dev_attr.attr,
&sensor_dev_attr_power1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_crit.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_fault.dev_attr.attr,
NULL,
};
static const struct attribute_group pem_group = {
.attrs = pem_attributes,
};
static struct attribute *pem_input_attributes[] = {
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_curr1_input.dev_attr.attr,
&sensor_dev_attr_power1_input.dev_attr.attr,
NULL
};
static const struct attribute_group pem_input_group = {
.attrs = pem_input_attributes,
};
static struct attribute *pem_fan_attributes[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan3_input.dev_attr.attr,
NULL
};
static const struct attribute_group pem_fan_group = {
.attrs = pem_fan_attributes,
};
static int pem_probe(struct i2c_client *client)
{
struct i2c_adapter *adapter = client->adapter;
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct pem_data *data;
int ret, idx = 0;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
| I2C_FUNC_SMBUS_WRITE_BYTE))
return -ENODEV;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->update_lock);
/*
* We use the next two commands to determine if the device is really
* there.
*/
ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
data->firmware_rev, sizeof(data->firmware_rev));
if (ret < 0)
return ret;
ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
if (ret < 0)
return ret;
dev_info(dev, "Firmware revision %d.%d.%d\n",
data->firmware_rev[0], data->firmware_rev[1],
data->firmware_rev[2]);
/* sysfs hooks */
data->groups[idx++] = &pem_group;
/*
* Check if input readings are supported.
* This is the case if we can read input data,
* and if the returned data is not all zeros.
* Note that input alarms are always supported.
*/
ret = pem_read_block(client, PEM_READ_INPUT_STRING,
data->input_string,
sizeof(data->input_string) - 1);
if (!ret && (data->input_string[0] || data->input_string[1] ||
data->input_string[2]))
data->input_length = sizeof(data->input_string) - 1;
else if (ret < 0) {
/* Input string is one byte longer for some devices */
ret = pem_read_block(client, PEM_READ_INPUT_STRING,
data->input_string,
sizeof(data->input_string));
if (!ret && (data->input_string[0] || data->input_string[1] ||
data->input_string[2] || data->input_string[3]))
data->input_length = sizeof(data->input_string);
}
if (data->input_length)
data->groups[idx++] = &pem_input_group;
/*
* Check if fan speed readings are supported.
* This is the case if we can read fan speed data,
* and if the returned data is not all zeros.
* Note that the fan alarm is always supported.
*/
ret = pem_read_block(client, PEM_READ_FAN_SPEED,
data->fan_speed,
sizeof(data->fan_speed));
if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
data->fan_speed[2] || data->fan_speed[3])) {
data->fans_supported = true;
data->groups[idx++] = &pem_fan_group;
}
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct i2c_device_id pem_id[] = {
{"lineage_pem", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, pem_id);
static struct i2c_driver pem_driver = {
.driver = {
.name = "lineage_pem",
},
.probe_new = pem_probe,
.id_table = pem_id,
};
module_i2c_driver(pem_driver);
MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
MODULE_LICENSE("GPL");