WSL2-Linux-Kernel/drivers/nvme/host/core.c

4828 строки
122 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*/
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/list_sort.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/pm_qos.h>
#include <asm/unaligned.h>
#include "nvme.h"
#include "fabrics.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#define NVME_MINORS (1U << MINORBITS)
unsigned int admin_timeout = 60;
module_param(admin_timeout, uint, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
EXPORT_SYMBOL_GPL(admin_timeout);
unsigned int nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
EXPORT_SYMBOL_GPL(nvme_io_timeout);
static unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
static unsigned long default_ps_max_latency_us = 100000;
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
"max power saving latency for new devices; use PM QOS to change per device");
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
static bool streams;
module_param(streams, bool, 0644);
MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
/*
* nvme_wq - hosts nvme related works that are not reset or delete
* nvme_reset_wq - hosts nvme reset works
* nvme_delete_wq - hosts nvme delete works
*
* nvme_wq will host works such as scan, aen handling, fw activation,
* keep-alive, periodic reconnects etc. nvme_reset_wq
* runs reset works which also flush works hosted on nvme_wq for
* serialization purposes. nvme_delete_wq host controller deletion
* works which flush reset works for serialization.
*/
struct workqueue_struct *nvme_wq;
EXPORT_SYMBOL_GPL(nvme_wq);
struct workqueue_struct *nvme_reset_wq;
EXPORT_SYMBOL_GPL(nvme_reset_wq);
struct workqueue_struct *nvme_delete_wq;
EXPORT_SYMBOL_GPL(nvme_delete_wq);
static LIST_HEAD(nvme_subsystems);
static DEFINE_MUTEX(nvme_subsystems_lock);
static DEFINE_IDA(nvme_instance_ida);
static dev_t nvme_ctrl_base_chr_devt;
static struct class *nvme_class;
static struct class *nvme_subsys_class;
static void nvme_put_subsystem(struct nvme_subsystem *subsys);
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
unsigned nsid);
/*
* Prepare a queue for teardown.
*
* This must forcibly unquiesce queues to avoid blocking dispatch, and only set
* the capacity to 0 after that to avoid blocking dispatchers that may be
* holding bd_butex. This will end buffered writers dirtying pages that can't
* be synced.
*/
static void nvme_set_queue_dying(struct nvme_ns *ns)
{
if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
return;
blk_set_queue_dying(ns->queue);
blk_mq_unquiesce_queue(ns->queue);
set_capacity_and_notify(ns->disk, 0);
}
static void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
/*
* Only new queue scan work when admin and IO queues are both alive
*/
if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
queue_work(nvme_wq, &ctrl->scan_work);
}
/*
* Use this function to proceed with scheduling reset_work for a controller
* that had previously been set to the resetting state. This is intended for
* code paths that can't be interrupted by other reset attempts. A hot removal
* may prevent this from succeeding.
*/
int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
{
if (ctrl->state != NVME_CTRL_RESETTING)
return -EBUSY;
if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
return -EBUSY;
return 0;
}
EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
static void nvme_failfast_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvme_ctrl, failfast_work);
if (ctrl->state != NVME_CTRL_CONNECTING)
return;
set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
dev_info(ctrl->device, "failfast expired\n");
nvme_kick_requeue_lists(ctrl);
}
static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
{
if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
return;
schedule_delayed_work(&ctrl->failfast_work,
ctrl->opts->fast_io_fail_tmo * HZ);
}
static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
{
if (!ctrl->opts)
return;
cancel_delayed_work_sync(&ctrl->failfast_work);
clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
}
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
return -EBUSY;
if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
return -EBUSY;
return 0;
}
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
{
int ret;
ret = nvme_reset_ctrl(ctrl);
if (!ret) {
flush_work(&ctrl->reset_work);
if (ctrl->state != NVME_CTRL_LIVE)
ret = -ENETRESET;
}
return ret;
}
static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
{
dev_info(ctrl->device,
"Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
flush_work(&ctrl->reset_work);
nvme_stop_ctrl(ctrl);
nvme_remove_namespaces(ctrl);
ctrl->ops->delete_ctrl(ctrl);
nvme_uninit_ctrl(ctrl);
}
static void nvme_delete_ctrl_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl =
container_of(work, struct nvme_ctrl, delete_work);
nvme_do_delete_ctrl(ctrl);
}
int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
return -EBUSY;
if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
return -EBUSY;
return 0;
}
EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
{
/*
* Keep a reference until nvme_do_delete_ctrl() complete,
* since ->delete_ctrl can free the controller.
*/
nvme_get_ctrl(ctrl);
if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
nvme_do_delete_ctrl(ctrl);
nvme_put_ctrl(ctrl);
}
static blk_status_t nvme_error_status(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_SUCCESS:
return BLK_STS_OK;
case NVME_SC_CAP_EXCEEDED:
return BLK_STS_NOSPC;
case NVME_SC_LBA_RANGE:
case NVME_SC_CMD_INTERRUPTED:
case NVME_SC_NS_NOT_READY:
return BLK_STS_TARGET;
case NVME_SC_BAD_ATTRIBUTES:
case NVME_SC_ONCS_NOT_SUPPORTED:
case NVME_SC_INVALID_OPCODE:
case NVME_SC_INVALID_FIELD:
case NVME_SC_INVALID_NS:
return BLK_STS_NOTSUPP;
case NVME_SC_WRITE_FAULT:
case NVME_SC_READ_ERROR:
case NVME_SC_UNWRITTEN_BLOCK:
case NVME_SC_ACCESS_DENIED:
case NVME_SC_READ_ONLY:
case NVME_SC_COMPARE_FAILED:
return BLK_STS_MEDIUM;
case NVME_SC_GUARD_CHECK:
case NVME_SC_APPTAG_CHECK:
case NVME_SC_REFTAG_CHECK:
case NVME_SC_INVALID_PI:
return BLK_STS_PROTECTION;
case NVME_SC_RESERVATION_CONFLICT:
return BLK_STS_NEXUS;
case NVME_SC_HOST_PATH_ERROR:
return BLK_STS_TRANSPORT;
case NVME_SC_ZONE_TOO_MANY_ACTIVE:
return BLK_STS_ZONE_ACTIVE_RESOURCE;
case NVME_SC_ZONE_TOO_MANY_OPEN:
return BLK_STS_ZONE_OPEN_RESOURCE;
default:
return BLK_STS_IOERR;
}
}
static void nvme_retry_req(struct request *req)
{
unsigned long delay = 0;
u16 crd;
/* The mask and shift result must be <= 3 */
crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
if (crd)
delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
nvme_req(req)->retries++;
blk_mq_requeue_request(req, false);
blk_mq_delay_kick_requeue_list(req->q, delay);
}
enum nvme_disposition {
COMPLETE,
RETRY,
FAILOVER,
};
static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
{
if (likely(nvme_req(req)->status == 0))
return COMPLETE;
if (blk_noretry_request(req) ||
(nvme_req(req)->status & NVME_SC_DNR) ||
nvme_req(req)->retries >= nvme_max_retries)
return COMPLETE;
if (req->cmd_flags & REQ_NVME_MPATH) {
if (nvme_is_path_error(nvme_req(req)->status) ||
blk_queue_dying(req->q))
return FAILOVER;
} else {
if (blk_queue_dying(req->q))
return COMPLETE;
}
return RETRY;
}
static inline void nvme_end_req(struct request *req)
{
blk_status_t status = nvme_error_status(nvme_req(req)->status);
if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
req_op(req) == REQ_OP_ZONE_APPEND)
req->__sector = nvme_lba_to_sect(req->q->queuedata,
le64_to_cpu(nvme_req(req)->result.u64));
nvme_trace_bio_complete(req);
blk_mq_end_request(req, status);
}
void nvme_complete_rq(struct request *req)
{
trace_nvme_complete_rq(req);
nvme_cleanup_cmd(req);
if (nvme_req(req)->ctrl->kas)
nvme_req(req)->ctrl->comp_seen = true;
switch (nvme_decide_disposition(req)) {
case COMPLETE:
nvme_end_req(req);
return;
case RETRY:
nvme_retry_req(req);
return;
case FAILOVER:
nvme_failover_req(req);
return;
}
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);
/*
* Called to unwind from ->queue_rq on a failed command submission so that the
* multipathing code gets called to potentially failover to another path.
* The caller needs to unwind all transport specific resource allocations and
* must return propagate the return value.
*/
blk_status_t nvme_host_path_error(struct request *req)
{
nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
blk_mq_set_request_complete(req);
nvme_complete_rq(req);
return BLK_STS_OK;
}
EXPORT_SYMBOL_GPL(nvme_host_path_error);
bool nvme_cancel_request(struct request *req, void *data, bool reserved)
{
dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
"Cancelling I/O %d", req->tag);
/* don't abort one completed request */
if (blk_mq_request_completed(req))
return true;
nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
blk_mq_complete_request(req);
return true;
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);
void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
{
if (ctrl->tagset) {
blk_mq_tagset_busy_iter(ctrl->tagset,
nvme_cancel_request, ctrl);
blk_mq_tagset_wait_completed_request(ctrl->tagset);
}
}
EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
{
if (ctrl->admin_tagset) {
blk_mq_tagset_busy_iter(ctrl->admin_tagset,
nvme_cancel_request, ctrl);
blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
}
}
EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
enum nvme_ctrl_state new_state)
{
enum nvme_ctrl_state old_state;
unsigned long flags;
bool changed = false;
spin_lock_irqsave(&ctrl->lock, flags);
old_state = ctrl->state;
switch (new_state) {
case NVME_CTRL_LIVE:
switch (old_state) {
case NVME_CTRL_NEW:
case NVME_CTRL_RESETTING:
case NVME_CTRL_CONNECTING:
changed = true;
fallthrough;
default:
break;
}
break;
case NVME_CTRL_RESETTING:
switch (old_state) {
case NVME_CTRL_NEW:
case NVME_CTRL_LIVE:
changed = true;
fallthrough;
default:
break;
}
break;
case NVME_CTRL_CONNECTING:
switch (old_state) {
case NVME_CTRL_NEW:
case NVME_CTRL_RESETTING:
changed = true;
fallthrough;
default:
break;
}
break;
case NVME_CTRL_DELETING:
switch (old_state) {
case NVME_CTRL_LIVE:
case NVME_CTRL_RESETTING:
case NVME_CTRL_CONNECTING:
changed = true;
fallthrough;
default:
break;
}
break;
case NVME_CTRL_DELETING_NOIO:
switch (old_state) {
case NVME_CTRL_DELETING:
case NVME_CTRL_DEAD:
changed = true;
fallthrough;
default:
break;
}
break;
case NVME_CTRL_DEAD:
switch (old_state) {
case NVME_CTRL_DELETING:
changed = true;
fallthrough;
default:
break;
}
break;
default:
break;
}
if (changed) {
ctrl->state = new_state;
wake_up_all(&ctrl->state_wq);
}
spin_unlock_irqrestore(&ctrl->lock, flags);
if (!changed)
return false;
if (ctrl->state == NVME_CTRL_LIVE) {
if (old_state == NVME_CTRL_CONNECTING)
nvme_stop_failfast_work(ctrl);
nvme_kick_requeue_lists(ctrl);
} else if (ctrl->state == NVME_CTRL_CONNECTING &&
old_state == NVME_CTRL_RESETTING) {
nvme_start_failfast_work(ctrl);
}
return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
/*
* Returns true for sink states that can't ever transition back to live.
*/
static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
{
switch (ctrl->state) {
case NVME_CTRL_NEW:
case NVME_CTRL_LIVE:
case NVME_CTRL_RESETTING:
case NVME_CTRL_CONNECTING:
return false;
case NVME_CTRL_DELETING:
case NVME_CTRL_DELETING_NOIO:
case NVME_CTRL_DEAD:
return true;
default:
WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
return true;
}
}
/*
* Waits for the controller state to be resetting, or returns false if it is
* not possible to ever transition to that state.
*/
bool nvme_wait_reset(struct nvme_ctrl *ctrl)
{
wait_event(ctrl->state_wq,
nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
nvme_state_terminal(ctrl));
return ctrl->state == NVME_CTRL_RESETTING;
}
EXPORT_SYMBOL_GPL(nvme_wait_reset);
static void nvme_free_ns_head(struct kref *ref)
{
struct nvme_ns_head *head =
container_of(ref, struct nvme_ns_head, ref);
nvme_mpath_remove_disk(head);
ida_simple_remove(&head->subsys->ns_ida, head->instance);
cleanup_srcu_struct(&head->srcu);
nvme_put_subsystem(head->subsys);
kfree(head);
}
static void nvme_put_ns_head(struct nvme_ns_head *head)
{
kref_put(&head->ref, nvme_free_ns_head);
}
static void nvme_free_ns(struct kref *kref)
{
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
if (ns->ndev)
nvme_nvm_unregister(ns);
put_disk(ns->disk);
nvme_put_ns_head(ns->head);
nvme_put_ctrl(ns->ctrl);
kfree(ns);
}
void nvme_put_ns(struct nvme_ns *ns)
{
kref_put(&ns->kref, nvme_free_ns);
}
EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
static inline void nvme_clear_nvme_request(struct request *req)
{
if (!(req->rq_flags & RQF_DONTPREP)) {
nvme_req(req)->retries = 0;
nvme_req(req)->flags = 0;
req->rq_flags |= RQF_DONTPREP;
}
}
static inline unsigned int nvme_req_op(struct nvme_command *cmd)
{
return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
}
static inline void nvme_init_request(struct request *req,
struct nvme_command *cmd)
{
if (req->q->queuedata)
req->timeout = NVME_IO_TIMEOUT;
else /* no queuedata implies admin queue */
req->timeout = NVME_ADMIN_TIMEOUT;
req->cmd_flags |= REQ_FAILFAST_DRIVER;
nvme_clear_nvme_request(req);
nvme_req(req)->cmd = cmd;
}
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, blk_mq_req_flags_t flags)
{
struct request *req;
req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
if (!IS_ERR(req))
nvme_init_request(req, cmd);
return req;
}
EXPORT_SYMBOL_GPL(nvme_alloc_request);
static struct request *nvme_alloc_request_qid(struct request_queue *q,
struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
{
struct request *req;
req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
qid ? qid - 1 : 0);
if (!IS_ERR(req))
nvme_init_request(req, cmd);
return req;
}
static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
c.directive.opcode = nvme_admin_directive_send;
c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
c.directive.dtype = NVME_DIR_IDENTIFY;
c.directive.tdtype = NVME_DIR_STREAMS;
c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
}
static int nvme_disable_streams(struct nvme_ctrl *ctrl)
{
return nvme_toggle_streams(ctrl, false);
}
static int nvme_enable_streams(struct nvme_ctrl *ctrl)
{
return nvme_toggle_streams(ctrl, true);
}
static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
struct streams_directive_params *s, u32 nsid)
{
struct nvme_command c;
memset(&c, 0, sizeof(c));
memset(s, 0, sizeof(*s));
c.directive.opcode = nvme_admin_directive_recv;
c.directive.nsid = cpu_to_le32(nsid);
c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
c.directive.dtype = NVME_DIR_STREAMS;
return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
}
static int nvme_configure_directives(struct nvme_ctrl *ctrl)
{
struct streams_directive_params s;
int ret;
if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
return 0;
if (!streams)
return 0;
ret = nvme_enable_streams(ctrl);
if (ret)
return ret;
ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
if (ret)
goto out_disable_stream;
ctrl->nssa = le16_to_cpu(s.nssa);
if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
dev_info(ctrl->device, "too few streams (%u) available\n",
ctrl->nssa);
goto out_disable_stream;
}
ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
return 0;
out_disable_stream:
nvme_disable_streams(ctrl);
return ret;
}
/*
* Check if 'req' has a write hint associated with it. If it does, assign
* a valid namespace stream to the write.
*/
static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
struct request *req, u16 *control,
u32 *dsmgmt)
{
enum rw_hint streamid = req->write_hint;
if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
streamid = 0;
else {
streamid--;
if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
return;
*control |= NVME_RW_DTYPE_STREAMS;
*dsmgmt |= streamid << 16;
}
if (streamid < ARRAY_SIZE(req->q->write_hints))
req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
}
static void nvme_setup_passthrough(struct request *req,
struct nvme_command *cmd)
{
memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
/* passthru commands should let the driver set the SGL flags */
cmd->common.flags &= ~NVME_CMD_SGL_ALL;
}
static inline void nvme_setup_flush(struct nvme_ns *ns,
struct nvme_command *cmnd)
{
cmnd->common.opcode = nvme_cmd_flush;
cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
}
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmnd)
{
unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
struct nvme_dsm_range *range;
struct bio *bio;
/*
* Some devices do not consider the DSM 'Number of Ranges' field when
* determining how much data to DMA. Always allocate memory for maximum
* number of segments to prevent device reading beyond end of buffer.
*/
static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
if (!range) {
/*
* If we fail allocation our range, fallback to the controller
* discard page. If that's also busy, it's safe to return
* busy, as we know we can make progress once that's freed.
*/
if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
return BLK_STS_RESOURCE;
range = page_address(ns->ctrl->discard_page);
}
__rq_for_each_bio(bio, req) {
u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
if (n < segments) {
range[n].cattr = cpu_to_le32(0);
range[n].nlb = cpu_to_le32(nlb);
range[n].slba = cpu_to_le64(slba);
}
n++;
}
if (WARN_ON_ONCE(n != segments)) {
if (virt_to_page(range) == ns->ctrl->discard_page)
clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
else
kfree(range);
return BLK_STS_IOERR;
}
cmnd->dsm.opcode = nvme_cmd_dsm;
cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
cmnd->dsm.nr = cpu_to_le32(segments - 1);
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
req->special_vec.bv_page = virt_to_page(range);
req->special_vec.bv_offset = offset_in_page(range);
req->special_vec.bv_len = alloc_size;
req->rq_flags |= RQF_SPECIAL_PAYLOAD;
return BLK_STS_OK;
}
static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
struct request *req, struct nvme_command *cmnd)
{
if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
return nvme_setup_discard(ns, req, cmnd);
cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
cmnd->write_zeroes.slba =
cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
cmnd->write_zeroes.length =
cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
cmnd->write_zeroes.control = 0;
return BLK_STS_OK;
}
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
struct request *req, struct nvme_command *cmnd,
enum nvme_opcode op)
{
struct nvme_ctrl *ctrl = ns->ctrl;
u16 control = 0;
u32 dsmgmt = 0;
if (req->cmd_flags & REQ_FUA)
control |= NVME_RW_FUA;
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
if (req->cmd_flags & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
cmnd->rw.opcode = op;
cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
if (ns->ms) {
/*
* If formated with metadata, the block layer always provides a
* metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
* we enable the PRACT bit for protection information or set the
* namespace capacity to zero to prevent any I/O.
*/
if (!blk_integrity_rq(req)) {
if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
return BLK_STS_NOTSUPP;
control |= NVME_RW_PRINFO_PRACT;
}
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
control |= NVME_RW_PRINFO_PRCHK_GUARD;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
control |= NVME_RW_PRINFO_PRCHK_GUARD |
NVME_RW_PRINFO_PRCHK_REF;
if (op == nvme_cmd_zone_append)
control |= NVME_RW_APPEND_PIREMAP;
cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
break;
}
}
cmnd->rw.control = cpu_to_le16(control);
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
return 0;
}
void nvme_cleanup_cmd(struct request *req)
{
if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
struct page *page = req->special_vec.bv_page;
if (page == ctrl->discard_page)
clear_bit_unlock(0, &ctrl->discard_page_busy);
else
kfree(page_address(page) + req->special_vec.bv_offset);
}
}
EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmd)
{
blk_status_t ret = BLK_STS_OK;
nvme_clear_nvme_request(req);
memset(cmd, 0, sizeof(*cmd));
switch (req_op(req)) {
case REQ_OP_DRV_IN:
case REQ_OP_DRV_OUT:
nvme_setup_passthrough(req, cmd);
break;
case REQ_OP_FLUSH:
nvme_setup_flush(ns, cmd);
break;
case REQ_OP_ZONE_RESET_ALL:
case REQ_OP_ZONE_RESET:
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
break;
case REQ_OP_ZONE_OPEN:
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
break;
case REQ_OP_ZONE_CLOSE:
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
break;
case REQ_OP_ZONE_FINISH:
ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
break;
case REQ_OP_WRITE_ZEROES:
ret = nvme_setup_write_zeroes(ns, req, cmd);
break;
case REQ_OP_DISCARD:
ret = nvme_setup_discard(ns, req, cmd);
break;
case REQ_OP_READ:
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
break;
case REQ_OP_WRITE:
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
break;
case REQ_OP_ZONE_APPEND:
ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
break;
default:
WARN_ON_ONCE(1);
return BLK_STS_IOERR;
}
cmd->common.command_id = req->tag;
trace_nvme_setup_cmd(req, cmd);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);
static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
{
struct completion *waiting = rq->end_io_data;
rq->end_io_data = NULL;
complete(waiting);
}
static void nvme_execute_rq_polled(struct request_queue *q,
struct gendisk *bd_disk, struct request *rq, int at_head)
{
DECLARE_COMPLETION_ONSTACK(wait);
WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
rq->cmd_flags |= REQ_HIPRI;
rq->end_io_data = &wait;
blk_execute_rq_nowait(bd_disk, rq, at_head, nvme_end_sync_rq);
while (!completion_done(&wait)) {
blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
cond_resched();
}
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
union nvme_result *result, void *buffer, unsigned bufflen,
unsigned timeout, int qid, int at_head,
blk_mq_req_flags_t flags, bool poll)
{
struct request *req;
int ret;
if (qid == NVME_QID_ANY)
req = nvme_alloc_request(q, cmd, flags);
else
req = nvme_alloc_request_qid(q, cmd, flags, qid);
if (IS_ERR(req))
return PTR_ERR(req);
if (timeout)
req->timeout = timeout;
if (buffer && bufflen) {
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
if (ret)
goto out;
}
if (poll)
nvme_execute_rq_polled(req->q, NULL, req, at_head);
else
blk_execute_rq(NULL, req, at_head);
if (result)
*result = nvme_req(req)->result;
if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
ret = -EINTR;
else
ret = nvme_req(req)->status;
out:
blk_mq_free_request(req);
return ret;
}
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen)
{
return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
NVME_QID_ANY, 0, 0, false);
}
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
unsigned len, u32 seed, bool write)
{
struct bio_integrity_payload *bip;
int ret = -ENOMEM;
void *buf;
buf = kmalloc(len, GFP_KERNEL);
if (!buf)
goto out;
ret = -EFAULT;
if (write && copy_from_user(buf, ubuf, len))
goto out_free_meta;
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
if (IS_ERR(bip)) {
ret = PTR_ERR(bip);
goto out_free_meta;
}
bip->bip_iter.bi_size = len;
bip->bip_iter.bi_sector = seed;
ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
offset_in_page(buf));
if (ret == len)
return buf;
ret = -ENOMEM;
out_free_meta:
kfree(buf);
out:
return ERR_PTR(ret);
}
static u32 nvme_known_admin_effects(u8 opcode)
{
switch (opcode) {
case nvme_admin_format_nvm:
return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
NVME_CMD_EFFECTS_CSE_MASK;
case nvme_admin_sanitize_nvm:
return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
default:
break;
}
return 0;
}
u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
{
u32 effects = 0;
if (ns) {
if (ns->head->effects)
effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
dev_warn(ctrl->device,
"IO command:%02x has unhandled effects:%08x\n",
opcode, effects);
return 0;
}
if (ctrl->effects)
effects = le32_to_cpu(ctrl->effects->acs[opcode]);
effects |= nvme_known_admin_effects(opcode);
return effects;
}
EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
u8 opcode)
{
u32 effects = nvme_command_effects(ctrl, ns, opcode);
/*
* For simplicity, IO to all namespaces is quiesced even if the command
* effects say only one namespace is affected.
*/
if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
mutex_lock(&ctrl->scan_lock);
mutex_lock(&ctrl->subsys->lock);
nvme_mpath_start_freeze(ctrl->subsys);
nvme_mpath_wait_freeze(ctrl->subsys);
nvme_start_freeze(ctrl);
nvme_wait_freeze(ctrl);
}
return effects;
}
static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
{
if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
nvme_unfreeze(ctrl);
nvme_mpath_unfreeze(ctrl->subsys);
mutex_unlock(&ctrl->subsys->lock);
nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
mutex_unlock(&ctrl->scan_lock);
}
if (effects & NVME_CMD_EFFECTS_CCC)
nvme_init_identify(ctrl);
if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
nvme_queue_scan(ctrl);
flush_work(&ctrl->scan_work);
}
}
void nvme_execute_passthru_rq(struct request *rq)
{
struct nvme_command *cmd = nvme_req(rq)->cmd;
struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
struct nvme_ns *ns = rq->q->queuedata;
struct gendisk *disk = ns ? ns->disk : NULL;
u32 effects;
effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
blk_execute_rq(disk, rq, 0);
nvme_passthru_end(ctrl, effects);
}
EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
static int nvme_submit_user_cmd(struct request_queue *q,
struct nvme_command *cmd, void __user *ubuffer,
unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
u32 meta_seed, u64 *result, unsigned timeout)
{
bool write = nvme_is_write(cmd);
struct nvme_ns *ns = q->queuedata;
struct block_device *bdev = ns ? ns->disk->part0 : NULL;
struct request *req;
struct bio *bio = NULL;
void *meta = NULL;
int ret;
req = nvme_alloc_request(q, cmd, 0);
if (IS_ERR(req))
return PTR_ERR(req);
if (timeout)
req->timeout = timeout;
nvme_req(req)->flags |= NVME_REQ_USERCMD;
if (ubuffer && bufflen) {
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
GFP_KERNEL);
if (ret)
goto out;
bio = req->bio;
if (bdev)
bio_set_dev(bio, bdev);
if (bdev && meta_buffer && meta_len) {
meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
meta_seed, write);
if (IS_ERR(meta)) {
ret = PTR_ERR(meta);
goto out_unmap;
}
req->cmd_flags |= REQ_INTEGRITY;
}
}
nvme_execute_passthru_rq(req);
if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
ret = -EINTR;
else
ret = nvme_req(req)->status;
if (result)
*result = le64_to_cpu(nvme_req(req)->result.u64);
if (meta && !ret && !write) {
if (copy_to_user(meta_buffer, meta, meta_len))
ret = -EFAULT;
}
kfree(meta);
out_unmap:
if (bio)
blk_rq_unmap_user(bio);
out:
blk_mq_free_request(req);
return ret;
}
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
{
struct nvme_ctrl *ctrl = rq->end_io_data;
unsigned long flags;
bool startka = false;
blk_mq_free_request(rq);
if (status) {
dev_err(ctrl->device,
"failed nvme_keep_alive_end_io error=%d\n",
status);
return;
}
ctrl->comp_seen = false;
spin_lock_irqsave(&ctrl->lock, flags);
if (ctrl->state == NVME_CTRL_LIVE ||
ctrl->state == NVME_CTRL_CONNECTING)
startka = true;
spin_unlock_irqrestore(&ctrl->lock, flags);
if (startka)
queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
}
static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
struct request *rq;
rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd,
BLK_MQ_REQ_RESERVED);
if (IS_ERR(rq))
return PTR_ERR(rq);
rq->timeout = ctrl->kato * HZ;
rq->end_io_data = ctrl;
blk_execute_rq_nowait(NULL, rq, 0, nvme_keep_alive_end_io);
return 0;
}
static void nvme_keep_alive_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvme_ctrl, ka_work);
bool comp_seen = ctrl->comp_seen;
if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
dev_dbg(ctrl->device,
"reschedule traffic based keep-alive timer\n");
ctrl->comp_seen = false;
queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
return;
}
if (nvme_keep_alive(ctrl)) {
/* allocation failure, reset the controller */
dev_err(ctrl->device, "keep-alive failed\n");
nvme_reset_ctrl(ctrl);
return;
}
}
static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
if (unlikely(ctrl->kato == 0))
return;
queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
}
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
if (unlikely(ctrl->kato == 0))
return;
cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
/*
* In NVMe 1.0 the CNS field was just a binary controller or namespace
* flag, thus sending any new CNS opcodes has a big chance of not working.
* Qemu unfortunately had that bug after reporting a 1.1 version compliance
* (but not for any later version).
*/
static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
{
if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
return ctrl->vs < NVME_VS(1, 2, 0);
return ctrl->vs < NVME_VS(1, 1, 0);
}
static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify;
c.identify.cns = NVME_ID_CNS_CTRL;
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
sizeof(struct nvme_id_ctrl));
if (error)
kfree(*id);
return error;
}
static bool nvme_multi_css(struct nvme_ctrl *ctrl)
{
return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
}
static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
struct nvme_ns_id_desc *cur, bool *csi_seen)
{
const char *warn_str = "ctrl returned bogus length:";
void *data = cur;
switch (cur->nidt) {
case NVME_NIDT_EUI64:
if (cur->nidl != NVME_NIDT_EUI64_LEN) {
dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
warn_str, cur->nidl);
return -1;
}
memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
return NVME_NIDT_EUI64_LEN;
case NVME_NIDT_NGUID:
if (cur->nidl != NVME_NIDT_NGUID_LEN) {
dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
warn_str, cur->nidl);
return -1;
}
memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
return NVME_NIDT_NGUID_LEN;
case NVME_NIDT_UUID:
if (cur->nidl != NVME_NIDT_UUID_LEN) {
dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
warn_str, cur->nidl);
return -1;
}
uuid_copy(&ids->uuid, data + sizeof(*cur));
return NVME_NIDT_UUID_LEN;
case NVME_NIDT_CSI:
if (cur->nidl != NVME_NIDT_CSI_LEN) {
dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
warn_str, cur->nidl);
return -1;
}
memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
*csi_seen = true;
return NVME_NIDT_CSI_LEN;
default:
/* Skip unknown types */
return cur->nidl;
}
}
static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
struct nvme_ns_ids *ids)
{
struct nvme_command c = { };
bool csi_seen = false;
int status, pos, len;
void *data;
if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
return 0;
if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
return 0;
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
if (!data)
return -ENOMEM;
status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
NVME_IDENTIFY_DATA_SIZE);
if (status) {
dev_warn(ctrl->device,
"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
nsid, status);
goto free_data;
}
for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
struct nvme_ns_id_desc *cur = data + pos;
if (cur->nidl == 0)
break;
len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
if (len < 0)
break;
len += sizeof(*cur);
}
if (nvme_multi_css(ctrl) && !csi_seen) {
dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
nsid);
status = -EINVAL;
}
free_data:
kfree(data);
return status;
}
static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
struct nvme_ns_ids *ids, struct nvme_id_ns **id)
{
struct nvme_command c = { };
int error;
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
c.identify.opcode = nvme_admin_identify;
c.identify.nsid = cpu_to_le32(nsid);
c.identify.cns = NVME_ID_CNS_NS;
*id = kmalloc(sizeof(**id), GFP_KERNEL);
if (!*id)
return -ENOMEM;
error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
if (error) {
dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
goto out_free_id;
}
error = -ENODEV;
if ((*id)->ncap == 0) /* namespace not allocated or attached */
goto out_free_id;
if (ctrl->vs >= NVME_VS(1, 1, 0) &&
!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
if (ctrl->vs >= NVME_VS(1, 2, 0) &&
!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
return 0;
out_free_id:
kfree(*id);
return error;
}
static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen, u32 *result)
{
union nvme_result res = { 0 };
struct nvme_command c;
int ret;
memset(&c, 0, sizeof(c));
c.features.opcode = op;
c.features.fid = cpu_to_le32(fid);
c.features.dword11 = cpu_to_le32(dword11);
ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
if (ret >= 0 && result)
*result = le32_to_cpu(res.u32);
return ret;
}
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen,
u32 *result)
{
return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
buflen, result);
}
EXPORT_SYMBOL_GPL(nvme_set_features);
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
unsigned int dword11, void *buffer, size_t buflen,
u32 *result)
{
return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
buflen, result);
}
EXPORT_SYMBOL_GPL(nvme_get_features);
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
u32 q_count = (*count - 1) | ((*count - 1) << 16);
u32 result;
int status, nr_io_queues;
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
&result);
if (status < 0)
return status;
/*
* Degraded controllers might return an error when setting the queue
* count. We still want to be able to bring them online and offer
* access to the admin queue, as that might be only way to fix them up.
*/
if (status > 0) {
dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
*count = 0;
} else {
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
*count = min(*count, nr_io_queues);
}
return 0;
}
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
#define NVME_AEN_SUPPORTED \
(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
static void nvme_enable_aen(struct nvme_ctrl *ctrl)
{
u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
int status;
if (!supported_aens)
return;
status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
NULL, 0, &result);
if (status)
dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
supported_aens);
queue_work(nvme_wq, &ctrl->async_event_work);
}
/*
* Convert integer values from ioctl structures to user pointers, silently
* ignoring the upper bits in the compat case to match behaviour of 32-bit
* kernels.
*/
static void __user *nvme_to_user_ptr(uintptr_t ptrval)
{
if (in_compat_syscall())
ptrval = (compat_uptr_t)ptrval;
return (void __user *)ptrval;
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
struct nvme_user_io io;
struct nvme_command c;
unsigned length, meta_len;
void __user *metadata;
if (copy_from_user(&io, uio, sizeof(io)))
return -EFAULT;
if (io.flags)
return -EINVAL;
switch (io.opcode) {
case nvme_cmd_write:
case nvme_cmd_read:
case nvme_cmd_compare:
break;
default:
return -EINVAL;
}
length = (io.nblocks + 1) << ns->lba_shift;
if ((io.control & NVME_RW_PRINFO_PRACT) &&
ns->ms == sizeof(struct t10_pi_tuple)) {
/*
* Protection information is stripped/inserted by the
* controller.
*/
if (nvme_to_user_ptr(io.metadata))
return -EINVAL;
meta_len = 0;
metadata = NULL;
} else {
meta_len = (io.nblocks + 1) * ns->ms;
metadata = nvme_to_user_ptr(io.metadata);
}
if (ns->features & NVME_NS_EXT_LBAS) {
length += meta_len;
meta_len = 0;
} else if (meta_len) {
if ((io.metadata & 3) || !io.metadata)
return -EINVAL;
}
memset(&c, 0, sizeof(c));
c.rw.opcode = io.opcode;
c.rw.flags = io.flags;
c.rw.nsid = cpu_to_le32(ns->head->ns_id);
c.rw.slba = cpu_to_le64(io.slba);
c.rw.length = cpu_to_le16(io.nblocks);
c.rw.control = cpu_to_le16(io.control);
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
c.rw.reftag = cpu_to_le32(io.reftag);
c.rw.apptag = cpu_to_le16(io.apptag);
c.rw.appmask = cpu_to_le16(io.appmask);
return nvme_submit_user_cmd(ns->queue, &c,
nvme_to_user_ptr(io.addr), length,
metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
}
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd)
{
struct nvme_passthru_cmd cmd;
struct nvme_command c;
unsigned timeout = 0;
u64 result;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
if (cmd.flags)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10 = cpu_to_le32(cmd.cdw10);
c.common.cdw11 = cpu_to_le32(cmd.cdw11);
c.common.cdw12 = cpu_to_le32(cmd.cdw12);
c.common.cdw13 = cpu_to_le32(cmd.cdw13);
c.common.cdw14 = cpu_to_le32(cmd.cdw14);
c.common.cdw15 = cpu_to_le32(cmd.cdw15);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
nvme_to_user_ptr(cmd.addr), cmd.data_len,
nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
0, &result, timeout);
if (status >= 0) {
if (put_user(result, &ucmd->result))
return -EFAULT;
}
return status;
}
static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
struct nvme_passthru_cmd64 __user *ucmd)
{
struct nvme_passthru_cmd64 cmd;
struct nvme_command c;
unsigned timeout = 0;
int status;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
return -EFAULT;
if (cmd.flags)
return -EINVAL;
memset(&c, 0, sizeof(c));
c.common.opcode = cmd.opcode;
c.common.flags = cmd.flags;
c.common.nsid = cpu_to_le32(cmd.nsid);
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
c.common.cdw10 = cpu_to_le32(cmd.cdw10);
c.common.cdw11 = cpu_to_le32(cmd.cdw11);
c.common.cdw12 = cpu_to_le32(cmd.cdw12);
c.common.cdw13 = cpu_to_le32(cmd.cdw13);
c.common.cdw14 = cpu_to_le32(cmd.cdw14);
c.common.cdw15 = cpu_to_le32(cmd.cdw15);
if (cmd.timeout_ms)
timeout = msecs_to_jiffies(cmd.timeout_ms);
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
nvme_to_user_ptr(cmd.addr), cmd.data_len,
nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
0, &cmd.result, timeout);
if (status >= 0) {
if (put_user(cmd.result, &ucmd->result))
return -EFAULT;
}
return status;
}
/*
* Issue ioctl requests on the first available path. Note that unlike normal
* block layer requests we will not retry failed request on another controller.
*/
struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
struct nvme_ns_head **head, int *srcu_idx)
{
#ifdef CONFIG_NVME_MULTIPATH
if (disk->fops == &nvme_ns_head_ops) {
struct nvme_ns *ns;
*head = disk->private_data;
*srcu_idx = srcu_read_lock(&(*head)->srcu);
ns = nvme_find_path(*head);
if (!ns)
srcu_read_unlock(&(*head)->srcu, *srcu_idx);
return ns;
}
#endif
*head = NULL;
*srcu_idx = -1;
return disk->private_data;
}
void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
{
if (head)
srcu_read_unlock(&head->srcu, idx);
}
static bool is_ctrl_ioctl(unsigned int cmd)
{
if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
return true;
if (is_sed_ioctl(cmd))
return true;
return false;
}
static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
void __user *argp,
struct nvme_ns_head *head,
int srcu_idx)
{
struct nvme_ctrl *ctrl = ns->ctrl;
int ret;
nvme_get_ctrl(ns->ctrl);
nvme_put_ns_from_disk(head, srcu_idx);
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
ret = nvme_user_cmd(ctrl, NULL, argp);
break;
case NVME_IOCTL_ADMIN64_CMD:
ret = nvme_user_cmd64(ctrl, NULL, argp);
break;
default:
ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
break;
}
nvme_put_ctrl(ctrl);
return ret;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct nvme_ns_head *head = NULL;
void __user *argp = (void __user *)arg;
struct nvme_ns *ns;
int srcu_idx, ret;
ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
if (unlikely(!ns))
return -EWOULDBLOCK;
/*
* Handle ioctls that apply to the controller instead of the namespace
* seperately and drop the ns SRCU reference early. This avoids a
* deadlock when deleting namespaces using the passthrough interface.
*/
if (is_ctrl_ioctl(cmd))
return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
switch (cmd) {
case NVME_IOCTL_ID:
force_successful_syscall_return();
ret = ns->head->ns_id;
break;
case NVME_IOCTL_IO_CMD:
ret = nvme_user_cmd(ns->ctrl, ns, argp);
break;
case NVME_IOCTL_SUBMIT_IO:
ret = nvme_submit_io(ns, argp);
break;
case NVME_IOCTL_IO64_CMD:
ret = nvme_user_cmd64(ns->ctrl, ns, argp);
break;
default:
if (ns->ndev)
ret = nvme_nvm_ioctl(ns, cmd, arg);
else
ret = -ENOTTY;
}
nvme_put_ns_from_disk(head, srcu_idx);
return ret;
}
#ifdef CONFIG_COMPAT
struct nvme_user_io32 {
__u8 opcode;
__u8 flags;
__u16 control;
__u16 nblocks;
__u16 rsvd;
__u64 metadata;
__u64 addr;
__u64 slba;
__u32 dsmgmt;
__u32 reftag;
__u16 apptag;
__u16 appmask;
} __attribute__((__packed__));
#define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
/*
* Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
* between 32 bit programs and 64 bit kernel.
* The cause is that the results of sizeof(struct nvme_user_io),
* which is used to define NVME_IOCTL_SUBMIT_IO,
* are not same between 32 bit compiler and 64 bit compiler.
* NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
* NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
* Other IOCTL numbers are same between 32 bit and 64 bit.
* So there is nothing to do regarding to other IOCTL numbers.
*/
if (cmd == NVME_IOCTL_SUBMIT_IO32)
return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif /* CONFIG_COMPAT */
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
struct nvme_ns *ns = bdev->bd_disk->private_data;
#ifdef CONFIG_NVME_MULTIPATH
/* should never be called due to GENHD_FL_HIDDEN */
if (WARN_ON_ONCE(ns->head->disk))
goto fail;
#endif
if (!kref_get_unless_zero(&ns->kref))
goto fail;
if (!try_module_get(ns->ctrl->ops->module))
goto fail_put_ns;
return 0;
fail_put_ns:
nvme_put_ns(ns);
fail:
return -ENXIO;
}
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
struct nvme_ns *ns = disk->private_data;
module_put(ns->ctrl->ops->module);
nvme_put_ns(ns);
}
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
/* some standard values */
geo->heads = 1 << 6;
geo->sectors = 1 << 5;
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
return 0;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
u32 max_integrity_segments)
{
struct blk_integrity integrity;
memset(&integrity, 0, sizeof(integrity));
switch (pi_type) {
case NVME_NS_DPS_PI_TYPE3:
integrity.profile = &t10_pi_type3_crc;
integrity.tag_size = sizeof(u16) + sizeof(u32);
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
integrity.profile = &t10_pi_type1_crc;
integrity.tag_size = sizeof(u16);
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
break;
default:
integrity.profile = NULL;
break;
}
integrity.tuple_size = ms;
blk_integrity_register(disk, &integrity);
blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
}
#else
static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
u32 max_integrity_segments)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
{
struct nvme_ctrl *ctrl = ns->ctrl;
struct request_queue *queue = disk->queue;
u32 size = queue_logical_block_size(queue);
if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
return;
}
if (ctrl->nr_streams && ns->sws && ns->sgs)
size *= ns->sws * ns->sgs;
BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
NVME_DSM_MAX_RANGES);
queue->limits.discard_alignment = 0;
queue->limits.discard_granularity = size;
/* If discard is already enabled, don't reset queue limits */
if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
return;
blk_queue_max_discard_sectors(queue, UINT_MAX);
blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
}
static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
{
u64 max_blocks;
if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
(ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
return;
/*
* Even though NVMe spec explicitly states that MDTS is not
* applicable to the write-zeroes:- "The restriction does not apply to
* commands that do not transfer data between the host and the
* controller (e.g., Write Uncorrectable ro Write Zeroes command).".
* In order to be more cautious use controller's max_hw_sectors value
* to configure the maximum sectors for the write-zeroes which is
* configured based on the controller's MDTS field in the
* nvme_init_identify() if available.
*/
if (ns->ctrl->max_hw_sectors == UINT_MAX)
max_blocks = (u64)USHRT_MAX + 1;
else
max_blocks = ns->ctrl->max_hw_sectors + 1;
blk_queue_max_write_zeroes_sectors(disk->queue,
nvme_lba_to_sect(ns, max_blocks));
}
static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
{
return !uuid_is_null(&ids->uuid) ||
memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
}
static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
{
return uuid_equal(&a->uuid, &b->uuid) &&
memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
a->csi == b->csi;
}
static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
u32 *phys_bs, u32 *io_opt)
{
struct streams_directive_params s;
int ret;
if (!ctrl->nr_streams)
return 0;
ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
if (ret)
return ret;
ns->sws = le32_to_cpu(s.sws);
ns->sgs = le16_to_cpu(s.sgs);
if (ns->sws) {
*phys_bs = ns->sws * (1 << ns->lba_shift);
if (ns->sgs)
*io_opt = *phys_bs * ns->sgs;
}
return 0;
}
static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
{
struct nvme_ctrl *ctrl = ns->ctrl;
/*
* The PI implementation requires the metadata size to be equal to the
* t10 pi tuple size.
*/
ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
if (ns->ms == sizeof(struct t10_pi_tuple))
ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
else
ns->pi_type = 0;
ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
return 0;
if (ctrl->ops->flags & NVME_F_FABRICS) {
/*
* The NVMe over Fabrics specification only supports metadata as
* part of the extended data LBA. We rely on HCA/HBA support to
* remap the separate metadata buffer from the block layer.
*/
if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
return -EINVAL;
if (ctrl->max_integrity_segments)
ns->features |=
(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
} else {
/*
* For PCIe controllers, we can't easily remap the separate
* metadata buffer from the block layer and thus require a
* separate metadata buffer for block layer metadata/PI support.
* We allow extended LBAs for the passthrough interface, though.
*/
if (id->flbas & NVME_NS_FLBAS_META_EXT)
ns->features |= NVME_NS_EXT_LBAS;
else
ns->features |= NVME_NS_METADATA_SUPPORTED;
}
return 0;
}
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
struct request_queue *q)
{
bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
if (ctrl->max_hw_sectors) {
u32 max_segments =
(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
max_segments = min_not_zero(max_segments, ctrl->max_segments);
blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
}
blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
blk_queue_dma_alignment(q, 7);
blk_queue_write_cache(q, vwc, vwc);
}
static void nvme_update_disk_info(struct gendisk *disk,
struct nvme_ns *ns, struct nvme_id_ns *id)
{
sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
unsigned short bs = 1 << ns->lba_shift;
u32 atomic_bs, phys_bs, io_opt = 0;
/*
* The block layer can't support LBA sizes larger than the page size
* yet, so catch this early and don't allow block I/O.
*/
if (ns->lba_shift > PAGE_SHIFT) {
capacity = 0;
bs = (1 << 9);
}
blk_integrity_unregister(disk);
atomic_bs = phys_bs = bs;
nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
if (id->nabo == 0) {
/*
* Bit 1 indicates whether NAWUPF is defined for this namespace
* and whether it should be used instead of AWUPF. If NAWUPF ==
* 0 then AWUPF must be used instead.
*/
if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
else
atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
}
if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
/* NPWG = Namespace Preferred Write Granularity */
phys_bs = bs * (1 + le16_to_cpu(id->npwg));
/* NOWS = Namespace Optimal Write Size */
io_opt = bs * (1 + le16_to_cpu(id->nows));
}
blk_queue_logical_block_size(disk->queue, bs);
/*
* Linux filesystems assume writing a single physical block is
* an atomic operation. Hence limit the physical block size to the
* value of the Atomic Write Unit Power Fail parameter.
*/
blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
blk_queue_io_min(disk->queue, phys_bs);
blk_queue_io_opt(disk->queue, io_opt);
/*
* Register a metadata profile for PI, or the plain non-integrity NVMe
* metadata masquerading as Type 0 if supported, otherwise reject block
* I/O to namespaces with metadata except when the namespace supports
* PI, as it can strip/insert in that case.
*/
if (ns->ms) {
if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
(ns->features & NVME_NS_METADATA_SUPPORTED))
nvme_init_integrity(disk, ns->ms, ns->pi_type,
ns->ctrl->max_integrity_segments);
else if (!nvme_ns_has_pi(ns))
capacity = 0;
}
set_capacity_and_notify(disk, capacity);
nvme_config_discard(disk, ns);
nvme_config_write_zeroes(disk, ns);
set_disk_ro(disk, (id->nsattr & NVME_NS_ATTR_RO) ||
test_bit(NVME_NS_FORCE_RO, &ns->flags));
}
static inline bool nvme_first_scan(struct gendisk *disk)
{
/* nvme_alloc_ns() scans the disk prior to adding it */
return !(disk->flags & GENHD_FL_UP);
}
static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
{
struct nvme_ctrl *ctrl = ns->ctrl;
u32 iob;
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
is_power_of_2(ctrl->max_hw_sectors))
iob = ctrl->max_hw_sectors;
else
iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
if (!iob)
return;
if (!is_power_of_2(iob)) {
if (nvme_first_scan(ns->disk))
pr_warn("%s: ignoring unaligned IO boundary:%u\n",
ns->disk->disk_name, iob);
return;
}
if (blk_queue_is_zoned(ns->disk->queue)) {
if (nvme_first_scan(ns->disk))
pr_warn("%s: ignoring zoned namespace IO boundary\n",
ns->disk->disk_name);
return;
}
blk_queue_chunk_sectors(ns->queue, iob);
}
static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
{
unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
int ret;
blk_mq_freeze_queue(ns->disk->queue);
ns->lba_shift = id->lbaf[lbaf].ds;
nvme_set_queue_limits(ns->ctrl, ns->queue);
ret = nvme_configure_metadata(ns, id);
if (ret)
goto out_unfreeze;
nvme_set_chunk_sectors(ns, id);
nvme_update_disk_info(ns->disk, ns, id);
if (ns->head->ids.csi == NVME_CSI_ZNS) {
ret = nvme_update_zone_info(ns, lbaf);
if (ret)
goto out_unfreeze;
}
blk_mq_unfreeze_queue(ns->disk->queue);
if (blk_queue_is_zoned(ns->queue)) {
ret = nvme_revalidate_zones(ns);
if (ret && !nvme_first_scan(ns->disk))
return ret;
}
#ifdef CONFIG_NVME_MULTIPATH
if (ns->head->disk) {
blk_mq_freeze_queue(ns->head->disk->queue);
nvme_update_disk_info(ns->head->disk, ns, id);
blk_stack_limits(&ns->head->disk->queue->limits,
&ns->queue->limits, 0);
blk_queue_update_readahead(ns->head->disk->queue);
blk_mq_unfreeze_queue(ns->head->disk->queue);
}
#endif
return 0;
out_unfreeze:
blk_mq_unfreeze_queue(ns->disk->queue);
return ret;
}
static char nvme_pr_type(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return 1;
case PR_EXCLUSIVE_ACCESS:
return 2;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return 3;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return 4;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return 5;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return 6;
default:
return 0;
}
};
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_ns_head *head = NULL;
struct nvme_ns *ns;
struct nvme_command c;
int srcu_idx, ret;
u8 data[16] = { 0, };
ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
if (unlikely(!ns))
return -EWOULDBLOCK;
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
memset(&c, 0, sizeof(c));
c.common.opcode = op;
c.common.nsid = cpu_to_le32(ns->head->ns_id);
c.common.cdw10 = cpu_to_le32(cdw10);
ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
nvme_put_ns_from_disk(head, srcu_idx);
return ret;
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
};
#ifdef CONFIG_BLK_SED_OPAL
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
bool send)
{
struct nvme_ctrl *ctrl = data;
struct nvme_command cmd;
memset(&cmd, 0, sizeof(cmd));
if (send)
cmd.common.opcode = nvme_admin_security_send;
else
cmd.common.opcode = nvme_admin_security_recv;
cmd.common.nsid = 0;
cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
cmd.common.cdw11 = cpu_to_le32(len);
return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, 0,
NVME_QID_ANY, 1, 0, false);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */
static const struct block_device_operations nvme_bdev_ops = {
.owner = THIS_MODULE,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.open = nvme_open,
.release = nvme_release,
.getgeo = nvme_getgeo,
.report_zones = nvme_report_zones,
.pr_ops = &nvme_pr_ops,
};
#ifdef CONFIG_NVME_MULTIPATH
static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
{
struct nvme_ns_head *head = bdev->bd_disk->private_data;
if (!kref_get_unless_zero(&head->ref))
return -ENXIO;
return 0;
}
static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
{
nvme_put_ns_head(disk->private_data);
}
const struct block_device_operations nvme_ns_head_ops = {
.owner = THIS_MODULE,
.submit_bio = nvme_ns_head_submit_bio,
.open = nvme_ns_head_open,
.release = nvme_ns_head_release,
.ioctl = nvme_ioctl,
.compat_ioctl = nvme_compat_ioctl,
.getgeo = nvme_getgeo,
.report_zones = nvme_report_zones,
.pr_ops = &nvme_pr_ops,
};
#endif /* CONFIG_NVME_MULTIPATH */
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
unsigned long timeout =
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
int ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if (csts == ~0)
return -ENODEV;
if ((csts & NVME_CSTS_RDY) == bit)
break;
usleep_range(1000, 2000);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->device,
"Device not ready; aborting %s, CSTS=0x%x\n",
enabled ? "initialisation" : "reset", csts);
return -ENODEV;
}
}
return ret;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
{
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
msleep(NVME_QUIRK_DELAY_AMOUNT);
return nvme_wait_ready(ctrl, ctrl->cap, false);
}
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
{
unsigned dev_page_min;
int ret;
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
if (ret) {
dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
return ret;
}
dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
dev_err(ctrl->device,
"Minimum device page size %u too large for host (%u)\n",
1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
return -ENODEV;
}
if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
ctrl->ctrl_config = NVME_CC_CSS_CSI;
else
ctrl->ctrl_config = NVME_CC_CSS_NVM;
ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
ctrl->ctrl_config |= NVME_CC_ENABLE;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
return nvme_wait_ready(ctrl, ctrl->cap, true);
}
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
u32 csts;
int ret;
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
if (ret)
return ret;
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
break;
msleep(100);
if (fatal_signal_pending(current))
return -EINTR;
if (time_after(jiffies, timeout)) {
dev_err(ctrl->device,
"Device shutdown incomplete; abort shutdown\n");
return -ENODEV;
}
}
return ret;
}
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
{
__le64 ts;
int ret;
if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
return 0;
ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
NULL);
if (ret)
dev_warn_once(ctrl->device,
"could not set timestamp (%d)\n", ret);
return ret;
}
static int nvme_configure_acre(struct nvme_ctrl *ctrl)
{
struct nvme_feat_host_behavior *host;
int ret;
/* Don't bother enabling the feature if retry delay is not reported */
if (!ctrl->crdt[0])
return 0;
host = kzalloc(sizeof(*host), GFP_KERNEL);
if (!host)
return 0;
host->acre = NVME_ENABLE_ACRE;
ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
host, sizeof(*host), NULL);
kfree(host);
return ret;
}
static int nvme_configure_apst(struct nvme_ctrl *ctrl)
{
/*
* APST (Autonomous Power State Transition) lets us program a
* table of power state transitions that the controller will
* perform automatically. We configure it with a simple
* heuristic: we are willing to spend at most 2% of the time
* transitioning between power states. Therefore, when running
* in any given state, we will enter the next lower-power
* non-operational state after waiting 50 * (enlat + exlat)
* microseconds, as long as that state's exit latency is under
* the requested maximum latency.
*
* We will not autonomously enter any non-operational state for
* which the total latency exceeds ps_max_latency_us. Users
* can set ps_max_latency_us to zero to turn off APST.
*/
unsigned apste;
struct nvme_feat_auto_pst *table;
u64 max_lat_us = 0;
int max_ps = -1;
int ret;
/*
* If APST isn't supported or if we haven't been initialized yet,
* then don't do anything.
*/
if (!ctrl->apsta)
return 0;
if (ctrl->npss > 31) {
dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
return 0;
}
table = kzalloc(sizeof(*table), GFP_KERNEL);
if (!table)
return 0;
if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
/* Turn off APST. */
apste = 0;
dev_dbg(ctrl->device, "APST disabled\n");
} else {
__le64 target = cpu_to_le64(0);
int state;
/*
* Walk through all states from lowest- to highest-power.
* According to the spec, lower-numbered states use more
* power. NPSS, despite the name, is the index of the
* lowest-power state, not the number of states.
*/
for (state = (int)ctrl->npss; state >= 0; state--) {
u64 total_latency_us, exit_latency_us, transition_ms;
if (target)
table->entries[state] = target;
/*
* Don't allow transitions to the deepest state
* if it's quirked off.
*/
if (state == ctrl->npss &&
(ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
continue;
/*
* Is this state a useful non-operational state for
* higher-power states to autonomously transition to?
*/
if (!(ctrl->psd[state].flags &
NVME_PS_FLAGS_NON_OP_STATE))
continue;
exit_latency_us =
(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
if (exit_latency_us > ctrl->ps_max_latency_us)
continue;
total_latency_us =
exit_latency_us +
le32_to_cpu(ctrl->psd[state].entry_lat);
/*
* This state is good. Use it as the APST idle
* target for higher power states.
*/
transition_ms = total_latency_us + 19;
do_div(transition_ms, 20);
if (transition_ms > (1 << 24) - 1)
transition_ms = (1 << 24) - 1;
target = cpu_to_le64((state << 3) |
(transition_ms << 8));
if (max_ps == -1)
max_ps = state;
if (total_latency_us > max_lat_us)
max_lat_us = total_latency_us;
}
apste = 1;
if (max_ps == -1) {
dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
} else {
dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
max_ps, max_lat_us, (int)sizeof(*table), table);
}
}
ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
table, sizeof(*table), NULL);
if (ret)
dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
kfree(table);
return ret;
}
static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
u64 latency;
switch (val) {
case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
case PM_QOS_LATENCY_ANY:
latency = U64_MAX;
break;
default:
latency = val;
}
if (ctrl->ps_max_latency_us != latency) {
ctrl->ps_max_latency_us = latency;
nvme_configure_apst(ctrl);
}
}
struct nvme_core_quirk_entry {
/*
* NVMe model and firmware strings are padded with spaces. For
* simplicity, strings in the quirk table are padded with NULLs
* instead.
*/
u16 vid;
const char *mn;
const char *fr;
unsigned long quirks;
};
static const struct nvme_core_quirk_entry core_quirks[] = {
{
/*
* This Toshiba device seems to die using any APST states. See:
* https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
*/
.vid = 0x1179,
.mn = "THNSF5256GPUK TOSHIBA",
.quirks = NVME_QUIRK_NO_APST,
},
{
/*
* This LiteON CL1-3D*-Q11 firmware version has a race
* condition associated with actions related to suspend to idle
* LiteON has resolved the problem in future firmware
*/
.vid = 0x14a4,
.fr = "22301111",
.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
}
};
/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
size_t matchlen;
if (!match)
return true;
matchlen = strlen(match);
WARN_ON_ONCE(matchlen > len);
if (memcmp(idstr, match, matchlen))
return false;
for (; matchlen < len; matchlen++)
if (idstr[matchlen] != ' ')
return false;
return true;
}
static bool quirk_matches(const struct nvme_id_ctrl *id,
const struct nvme_core_quirk_entry *q)
{
return q->vid == le16_to_cpu(id->vid) &&
string_matches(id->mn, q->mn, sizeof(id->mn)) &&
string_matches(id->fr, q->fr, sizeof(id->fr));
}
static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
struct nvme_id_ctrl *id)
{
size_t nqnlen;
int off;
if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
return;
}
if (ctrl->vs >= NVME_VS(1, 2, 1))
dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
}
/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
"nqn.2014.08.org.nvmexpress:%04x%04x",
le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
off += sizeof(id->sn);
memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
off += sizeof(id->mn);
memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
}
static void nvme_release_subsystem(struct device *dev)
{
struct nvme_subsystem *subsys =
container_of(dev, struct nvme_subsystem, dev);
if (subsys->instance >= 0)
ida_simple_remove(&nvme_instance_ida, subsys->instance);
kfree(subsys);
}
static void nvme_destroy_subsystem(struct kref *ref)
{
struct nvme_subsystem *subsys =
container_of(ref, struct nvme_subsystem, ref);
mutex_lock(&nvme_subsystems_lock);
list_del(&subsys->entry);
mutex_unlock(&nvme_subsystems_lock);
ida_destroy(&subsys->ns_ida);
device_del(&subsys->dev);
put_device(&subsys->dev);
}
static void nvme_put_subsystem(struct nvme_subsystem *subsys)
{
kref_put(&subsys->ref, nvme_destroy_subsystem);
}
static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
{
struct nvme_subsystem *subsys;
lockdep_assert_held(&nvme_subsystems_lock);
/*
* Fail matches for discovery subsystems. This results
* in each discovery controller bound to a unique subsystem.
* This avoids issues with validating controller values
* that can only be true when there is a single unique subsystem.
* There may be multiple and completely independent entities
* that provide discovery controllers.
*/
if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
return NULL;
list_for_each_entry(subsys, &nvme_subsystems, entry) {
if (strcmp(subsys->subnqn, subsysnqn))
continue;
if (!kref_get_unless_zero(&subsys->ref))
continue;
return subsys;
}
return NULL;
}
#define SUBSYS_ATTR_RO(_name, _mode, _show) \
struct device_attribute subsys_attr_##_name = \
__ATTR(_name, _mode, _show, NULL)
static ssize_t nvme_subsys_show_nqn(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_subsystem *subsys =
container_of(dev, struct nvme_subsystem, dev);
return sysfs_emit(buf, "%s\n", subsys->subnqn);
}
static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
#define nvme_subsys_show_str_function(field) \
static ssize_t subsys_##field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct nvme_subsystem *subsys = \
container_of(dev, struct nvme_subsystem, dev); \
return sprintf(buf, "%.*s\n", \
(int)sizeof(subsys->field), subsys->field); \
} \
static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
nvme_subsys_show_str_function(model);
nvme_subsys_show_str_function(serial);
nvme_subsys_show_str_function(firmware_rev);
static struct attribute *nvme_subsys_attrs[] = {
&subsys_attr_model.attr,
&subsys_attr_serial.attr,
&subsys_attr_firmware_rev.attr,
&subsys_attr_subsysnqn.attr,
#ifdef CONFIG_NVME_MULTIPATH
&subsys_attr_iopolicy.attr,
#endif
NULL,
};
static const struct attribute_group nvme_subsys_attrs_group = {
.attrs = nvme_subsys_attrs,
};
static const struct attribute_group *nvme_subsys_attrs_groups[] = {
&nvme_subsys_attrs_group,
NULL,
};
static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
{
return ctrl->opts && ctrl->opts->discovery_nqn;
}
static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
{
struct nvme_ctrl *tmp;
lockdep_assert_held(&nvme_subsystems_lock);
list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
if (nvme_state_terminal(tmp))
continue;
if (tmp->cntlid == ctrl->cntlid) {
dev_err(ctrl->device,
"Duplicate cntlid %u with %s, rejecting\n",
ctrl->cntlid, dev_name(tmp->device));
return false;
}
if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
nvme_discovery_ctrl(ctrl))
continue;
dev_err(ctrl->device,
"Subsystem does not support multiple controllers\n");
return false;
}
return true;
}
static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
{
struct nvme_subsystem *subsys, *found;
int ret;
subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
if (!subsys)
return -ENOMEM;
subsys->instance = -1;
mutex_init(&subsys->lock);
kref_init(&subsys->ref);
INIT_LIST_HEAD(&subsys->ctrls);
INIT_LIST_HEAD(&subsys->nsheads);
nvme_init_subnqn(subsys, ctrl, id);
memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
memcpy(subsys->model, id->mn, sizeof(subsys->model));
memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
subsys->vendor_id = le16_to_cpu(id->vid);
subsys->cmic = id->cmic;
subsys->awupf = le16_to_cpu(id->awupf);
#ifdef CONFIG_NVME_MULTIPATH
subsys->iopolicy = NVME_IOPOLICY_NUMA;
#endif
subsys->dev.class = nvme_subsys_class;
subsys->dev.release = nvme_release_subsystem;
subsys->dev.groups = nvme_subsys_attrs_groups;
dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
device_initialize(&subsys->dev);
mutex_lock(&nvme_subsystems_lock);
found = __nvme_find_get_subsystem(subsys->subnqn);
if (found) {
put_device(&subsys->dev);
subsys = found;
if (!nvme_validate_cntlid(subsys, ctrl, id)) {
ret = -EINVAL;
goto out_put_subsystem;
}
} else {
ret = device_add(&subsys->dev);
if (ret) {
dev_err(ctrl->device,
"failed to register subsystem device.\n");
put_device(&subsys->dev);
goto out_unlock;
}
ida_init(&subsys->ns_ida);
list_add_tail(&subsys->entry, &nvme_subsystems);
}
ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
dev_name(ctrl->device));
if (ret) {
dev_err(ctrl->device,
"failed to create sysfs link from subsystem.\n");
goto out_put_subsystem;
}
if (!found)
subsys->instance = ctrl->instance;
ctrl->subsys = subsys;
list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
mutex_unlock(&nvme_subsystems_lock);
return 0;
out_put_subsystem:
nvme_put_subsystem(subsys);
out_unlock:
mutex_unlock(&nvme_subsystems_lock);
return ret;
}
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
void *log, size_t size, u64 offset)
{
struct nvme_command c = { };
u32 dwlen = nvme_bytes_to_numd(size);
c.get_log_page.opcode = nvme_admin_get_log_page;
c.get_log_page.nsid = cpu_to_le32(nsid);
c.get_log_page.lid = log_page;
c.get_log_page.lsp = lsp;
c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
c.get_log_page.csi = csi;
return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
}
static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
struct nvme_effects_log **log)
{
struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
int ret;
if (cel)
goto out;
cel = kzalloc(sizeof(*cel), GFP_KERNEL);
if (!cel)
return -ENOMEM;
ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
cel, sizeof(*cel), 0);
if (ret) {
kfree(cel);
return ret;
}
xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
out:
*log = cel;
return 0;
}
/*
* Initialize the cached copies of the Identify data and various controller
* register in our nvme_ctrl structure. This should be called as soon as
* the admin queue is fully up and running.
*/
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
int ret, page_shift;
u32 max_hw_sectors;
bool prev_apst_enabled;
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
if (ret) {
dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
return ret;
}
page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
if (ctrl->vs >= NVME_VS(1, 1, 0))
ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
ret = nvme_identify_ctrl(ctrl, &id);
if (ret) {
dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
return -EIO;
}
if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
if (ret < 0)
goto out_free;
}
if (!(ctrl->ops->flags & NVME_F_FABRICS))
ctrl->cntlid = le16_to_cpu(id->cntlid);
if (!ctrl->identified) {
int i;
ret = nvme_init_subsystem(ctrl, id);
if (ret)
goto out_free;
/*
* Check for quirks. Quirk can depend on firmware version,
* so, in principle, the set of quirks present can change
* across a reset. As a possible future enhancement, we
* could re-scan for quirks every time we reinitialize
* the device, but we'd have to make sure that the driver
* behaves intelligently if the quirks change.
*/
for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
if (quirk_matches(id, &core_quirks[i]))
ctrl->quirks |= core_quirks[i].quirks;
}
}
if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
}
ctrl->crdt[0] = le16_to_cpu(id->crdt1);
ctrl->crdt[1] = le16_to_cpu(id->crdt2);
ctrl->crdt[2] = le16_to_cpu(id->crdt3);
ctrl->oacs = le16_to_cpu(id->oacs);
ctrl->oncs = le16_to_cpu(id->oncs);
ctrl->mtfa = le16_to_cpu(id->mtfa);
ctrl->oaes = le32_to_cpu(id->oaes);
ctrl->wctemp = le16_to_cpu(id->wctemp);
ctrl->cctemp = le16_to_cpu(id->cctemp);
atomic_set(&ctrl->abort_limit, id->acl + 1);
ctrl->vwc = id->vwc;
if (id->mdts)
max_hw_sectors = 1 << (id->mdts + page_shift - 9);
else
max_hw_sectors = UINT_MAX;
ctrl->max_hw_sectors =
min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
nvme_set_queue_limits(ctrl, ctrl->admin_q);
ctrl->sgls = le32_to_cpu(id->sgls);
ctrl->kas = le16_to_cpu(id->kas);
ctrl->max_namespaces = le32_to_cpu(id->mnan);
ctrl->ctratt = le32_to_cpu(id->ctratt);
if (id->rtd3e) {
/* us -> s */
u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
shutdown_timeout, 60);
if (ctrl->shutdown_timeout != shutdown_timeout)
dev_info(ctrl->device,
"Shutdown timeout set to %u seconds\n",
ctrl->shutdown_timeout);
} else
ctrl->shutdown_timeout = shutdown_timeout;
ctrl->npss = id->npss;
ctrl->apsta = id->apsta;
prev_apst_enabled = ctrl->apst_enabled;
if (ctrl->quirks & NVME_QUIRK_NO_APST) {
if (force_apst && id->apsta) {
dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
ctrl->apst_enabled = true;
} else {
ctrl->apst_enabled = false;
}
} else {
ctrl->apst_enabled = id->apsta;
}
memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
if (ctrl->ops->flags & NVME_F_FABRICS) {
ctrl->icdoff = le16_to_cpu(id->icdoff);
ctrl->ioccsz = le32_to_cpu(id->ioccsz);
ctrl->iorcsz = le32_to_cpu(id->iorcsz);
ctrl->maxcmd = le16_to_cpu(id->maxcmd);
/*
* In fabrics we need to verify the cntlid matches the
* admin connect
*/
if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
dev_err(ctrl->device,
"Mismatching cntlid: Connect %u vs Identify "
"%u, rejecting\n",
ctrl->cntlid, le16_to_cpu(id->cntlid));
ret = -EINVAL;
goto out_free;
}
if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
dev_err(ctrl->device,
"keep-alive support is mandatory for fabrics\n");
ret = -EINVAL;
goto out_free;
}
} else {
ctrl->hmpre = le32_to_cpu(id->hmpre);
ctrl->hmmin = le32_to_cpu(id->hmmin);
ctrl->hmminds = le32_to_cpu(id->hmminds);
ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
}
ret = nvme_mpath_init(ctrl, id);
kfree(id);
if (ret < 0)
return ret;
if (ctrl->apst_enabled && !prev_apst_enabled)
dev_pm_qos_expose_latency_tolerance(ctrl->device);
else if (!ctrl->apst_enabled && prev_apst_enabled)
dev_pm_qos_hide_latency_tolerance(ctrl->device);
ret = nvme_configure_apst(ctrl);
if (ret < 0)
return ret;
ret = nvme_configure_timestamp(ctrl);
if (ret < 0)
return ret;
ret = nvme_configure_directives(ctrl);
if (ret < 0)
return ret;
ret = nvme_configure_acre(ctrl);
if (ret < 0)
return ret;
if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
ret = nvme_hwmon_init(ctrl);
if (ret < 0)
return ret;
}
ctrl->identified = true;
return 0;
out_free:
kfree(id);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_init_identify);
static int nvme_dev_open(struct inode *inode, struct file *file)
{
struct nvme_ctrl *ctrl =
container_of(inode->i_cdev, struct nvme_ctrl, cdev);
switch (ctrl->state) {
case NVME_CTRL_LIVE:
break;
default:
return -EWOULDBLOCK;
}
nvme_get_ctrl(ctrl);
if (!try_module_get(ctrl->ops->module)) {
nvme_put_ctrl(ctrl);
return -EINVAL;
}
file->private_data = ctrl;
return 0;
}
static int nvme_dev_release(struct inode *inode, struct file *file)
{
struct nvme_ctrl *ctrl =
container_of(inode->i_cdev, struct nvme_ctrl, cdev);
module_put(ctrl->ops->module);
nvme_put_ctrl(ctrl);
return 0;
}
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
struct nvme_ns *ns;
int ret;
down_read(&ctrl->namespaces_rwsem);
if (list_empty(&ctrl->namespaces)) {
ret = -ENOTTY;
goto out_unlock;
}
ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
dev_warn(ctrl->device,
"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
ret = -EINVAL;
goto out_unlock;
}
dev_warn(ctrl->device,
"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
kref_get(&ns->kref);
up_read(&ctrl->namespaces_rwsem);
ret = nvme_user_cmd(ctrl, ns, argp);
nvme_put_ns(ns);
return ret;
out_unlock:
up_read(&ctrl->namespaces_rwsem);
return ret;
}
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct nvme_ctrl *ctrl = file->private_data;
void __user *argp = (void __user *)arg;
switch (cmd) {
case NVME_IOCTL_ADMIN_CMD:
return nvme_user_cmd(ctrl, NULL, argp);
case NVME_IOCTL_ADMIN64_CMD:
return nvme_user_cmd64(ctrl, NULL, argp);
case NVME_IOCTL_IO_CMD:
return nvme_dev_user_cmd(ctrl, argp);
case NVME_IOCTL_RESET:
dev_warn(ctrl->device, "resetting controller\n");
return nvme_reset_ctrl_sync(ctrl);
case NVME_IOCTL_SUBSYS_RESET:
return nvme_reset_subsystem(ctrl);
case NVME_IOCTL_RESCAN:
nvme_queue_scan(ctrl);
return 0;
default:
return -ENOTTY;
}
}
static const struct file_operations nvme_dev_fops = {
.owner = THIS_MODULE,
.open = nvme_dev_open,
.release = nvme_dev_release,
.unlocked_ioctl = nvme_dev_ioctl,
.compat_ioctl = compat_ptr_ioctl,
};
static ssize_t nvme_sysfs_reset(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
int ret;
ret = nvme_reset_ctrl_sync(ctrl);
if (ret < 0)
return ret;
return count;
}
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
static ssize_t nvme_sysfs_rescan(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
nvme_queue_scan(ctrl);
return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
{
struct gendisk *disk = dev_to_disk(dev);
if (disk->fops == &nvme_bdev_ops)
return nvme_get_ns_from_dev(dev)->head;
else
return disk->private_data;
}
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns_head *head = dev_to_ns_head(dev);
struct nvme_ns_ids *ids = &head->ids;
struct nvme_subsystem *subsys = head->subsys;
int serial_len = sizeof(subsys->serial);
int model_len = sizeof(subsys->model);
if (!uuid_is_null(&ids->uuid))
return sprintf(buf, "uuid.%pU\n", &ids->uuid);
if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
return sprintf(buf, "eui.%16phN\n", ids->nguid);
if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
return sprintf(buf, "eui.%8phN\n", ids->eui64);
while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
subsys->serial[serial_len - 1] == '\0'))
serial_len--;
while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
subsys->model[model_len - 1] == '\0'))
model_len--;
return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
serial_len, subsys->serial, model_len, subsys->model,
head->ns_id);
}
static DEVICE_ATTR_RO(wwid);
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
}
static DEVICE_ATTR_RO(nguid);
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
/* For backward compatibility expose the NGUID to userspace if
* we have no UUID set
*/
if (uuid_is_null(&ids->uuid)) {
printk_ratelimited(KERN_WARNING
"No UUID available providing old NGUID\n");
return sprintf(buf, "%pU\n", ids->nguid);
}
return sprintf(buf, "%pU\n", &ids->uuid);
}
static DEVICE_ATTR_RO(uuid);
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
}
static DEVICE_ATTR_RO(eui);
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
}
static DEVICE_ATTR_RO(nsid);
static struct attribute *nvme_ns_id_attrs[] = {
&dev_attr_wwid.attr,
&dev_attr_uuid.attr,
&dev_attr_nguid.attr,
&dev_attr_eui.attr,
&dev_attr_nsid.attr,
#ifdef CONFIG_NVME_MULTIPATH
&dev_attr_ana_grpid.attr,
&dev_attr_ana_state.attr,
#endif
NULL,
};
static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
if (a == &dev_attr_uuid.attr) {
if (uuid_is_null(&ids->uuid) &&
!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
return 0;
}
if (a == &dev_attr_nguid.attr) {
if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
return 0;
}
if (a == &dev_attr_eui.attr) {
if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
return 0;
}
#ifdef CONFIG_NVME_MULTIPATH
if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
return 0;
if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
return 0;
}
#endif
return a->mode;
}
static const struct attribute_group nvme_ns_id_attr_group = {
.attrs = nvme_ns_id_attrs,
.is_visible = nvme_ns_id_attrs_are_visible,
};
const struct attribute_group *nvme_ns_id_attr_groups[] = {
&nvme_ns_id_attr_group,
#ifdef CONFIG_NVM
&nvme_nvm_attr_group,
#endif
NULL,
};
#define nvme_show_str_function(field) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
return sprintf(buf, "%.*s\n", \
(int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
} \
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
#define nvme_show_int_function(field) \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
return sprintf(buf, "%d\n", ctrl->field); \
} \
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
nvme_show_int_function(cntlid);
nvme_show_int_function(numa_node);
nvme_show_int_function(queue_count);
nvme_show_int_function(sqsize);
static ssize_t nvme_sysfs_delete(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
if (device_remove_file_self(dev, attr))
nvme_delete_ctrl_sync(ctrl);
return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
static ssize_t nvme_sysfs_show_transport(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
static ssize_t nvme_sysfs_show_state(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
static const char *const state_name[] = {
[NVME_CTRL_NEW] = "new",
[NVME_CTRL_LIVE] = "live",
[NVME_CTRL_RESETTING] = "resetting",
[NVME_CTRL_CONNECTING] = "connecting",
[NVME_CTRL_DELETING] = "deleting",
[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
[NVME_CTRL_DEAD] = "dead",
};
if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
state_name[ctrl->state])
return sprintf(buf, "%s\n", state_name[ctrl->state]);
return sprintf(buf, "unknown state\n");
}
static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
}
static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
static ssize_t nvme_sysfs_show_hostid(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
}
static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
static ssize_t nvme_sysfs_show_address(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
struct nvmf_ctrl_options *opts = ctrl->opts;
if (ctrl->opts->max_reconnects == -1)
return sprintf(buf, "off\n");
return sprintf(buf, "%d\n",
opts->max_reconnects * opts->reconnect_delay);
}
static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
struct nvmf_ctrl_options *opts = ctrl->opts;
int ctrl_loss_tmo, err;
err = kstrtoint(buf, 10, &ctrl_loss_tmo);
if (err)
return -EINVAL;
else if (ctrl_loss_tmo < 0)
opts->max_reconnects = -1;
else
opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
opts->reconnect_delay);
return count;
}
static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
if (ctrl->opts->reconnect_delay == -1)
return sprintf(buf, "off\n");
return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
}
static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
unsigned int v;
int err;
err = kstrtou32(buf, 10, &v);
if (err)
return err;
ctrl->opts->reconnect_delay = v;
return count;
}
static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
static struct attribute *nvme_dev_attrs[] = {
&dev_attr_reset_controller.attr,
&dev_attr_rescan_controller.attr,
&dev_attr_model.attr,
&dev_attr_serial.attr,
&dev_attr_firmware_rev.attr,
&dev_attr_cntlid.attr,
&dev_attr_delete_controller.attr,
&dev_attr_transport.attr,
&dev_attr_subsysnqn.attr,
&dev_attr_address.attr,
&dev_attr_state.attr,
&dev_attr_numa_node.attr,
&dev_attr_queue_count.attr,
&dev_attr_sqsize.attr,
&dev_attr_hostnqn.attr,
&dev_attr_hostid.attr,
&dev_attr_ctrl_loss_tmo.attr,
&dev_attr_reconnect_delay.attr,
NULL
};
static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
return 0;
if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
return 0;
if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
return 0;
if (a == &dev_attr_hostid.attr && !ctrl->opts)
return 0;
if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
return 0;
if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
return 0;
return a->mode;
}
static const struct attribute_group nvme_dev_attrs_group = {
.attrs = nvme_dev_attrs,
.is_visible = nvme_dev_attrs_are_visible,
};
static const struct attribute_group *nvme_dev_attr_groups[] = {
&nvme_dev_attrs_group,
NULL,
};
static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
unsigned nsid)
{
struct nvme_ns_head *h;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(h, &subsys->nsheads, entry) {
if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
return h;
}
return NULL;
}
static int __nvme_check_ids(struct nvme_subsystem *subsys,
struct nvme_ns_head *new)
{
struct nvme_ns_head *h;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(h, &subsys->nsheads, entry) {
if (nvme_ns_ids_valid(&new->ids) &&
nvme_ns_ids_equal(&new->ids, &h->ids))
return -EINVAL;
}
return 0;
}
static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
unsigned nsid, struct nvme_ns_ids *ids)
{
struct nvme_ns_head *head;
size_t size = sizeof(*head);
int ret = -ENOMEM;
#ifdef CONFIG_NVME_MULTIPATH
size += num_possible_nodes() * sizeof(struct nvme_ns *);
#endif
head = kzalloc(size, GFP_KERNEL);
if (!head)
goto out;
ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
if (ret < 0)
goto out_free_head;
head->instance = ret;
INIT_LIST_HEAD(&head->list);
ret = init_srcu_struct(&head->srcu);
if (ret)
goto out_ida_remove;
head->subsys = ctrl->subsys;
head->ns_id = nsid;
head->ids = *ids;
kref_init(&head->ref);
ret = __nvme_check_ids(ctrl->subsys, head);
if (ret) {
dev_err(ctrl->device,
"duplicate IDs for nsid %d\n", nsid);
goto out_cleanup_srcu;
}
if (head->ids.csi) {
ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
if (ret)
goto out_cleanup_srcu;
} else
head->effects = ctrl->effects;
ret = nvme_mpath_alloc_disk(ctrl, head);
if (ret)
goto out_cleanup_srcu;
list_add_tail(&head->entry, &ctrl->subsys->nsheads);
kref_get(&ctrl->subsys->ref);
return head;
out_cleanup_srcu:
cleanup_srcu_struct(&head->srcu);
out_ida_remove:
ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
out_free_head:
kfree(head);
out:
if (ret > 0)
ret = blk_status_to_errno(nvme_error_status(ret));
return ERR_PTR(ret);
}
static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
struct nvme_ns_ids *ids, bool is_shared)
{
struct nvme_ctrl *ctrl = ns->ctrl;
struct nvme_ns_head *head = NULL;
int ret = 0;
mutex_lock(&ctrl->subsys->lock);
head = nvme_find_ns_head(ctrl->subsys, nsid);
if (!head) {
head = nvme_alloc_ns_head(ctrl, nsid, ids);
if (IS_ERR(head)) {
ret = PTR_ERR(head);
goto out_unlock;
}
head->shared = is_shared;
} else {
ret = -EINVAL;
if (!is_shared || !head->shared) {
dev_err(ctrl->device,
"Duplicate unshared namespace %d\n", nsid);
goto out_put_ns_head;
}
if (!nvme_ns_ids_equal(&head->ids, ids)) {
dev_err(ctrl->device,
"IDs don't match for shared namespace %d\n",
nsid);
goto out_put_ns_head;
}
}
list_add_tail_rcu(&ns->siblings, &head->list);
ns->head = head;
mutex_unlock(&ctrl->subsys->lock);
return 0;
out_put_ns_head:
nvme_put_ns_head(head);
out_unlock:
mutex_unlock(&ctrl->subsys->lock);
return ret;
}
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
return nsa->head->ns_id - nsb->head->ns_id;
}
struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns *ns, *ret = NULL;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list) {
if (ns->head->ns_id == nsid) {
if (!kref_get_unless_zero(&ns->kref))
continue;
ret = ns;
break;
}
if (ns->head->ns_id > nsid)
break;
}
up_read(&ctrl->namespaces_rwsem);
return ret;
}
EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
struct nvme_ns_ids *ids)
{
struct nvme_ns *ns;
struct gendisk *disk;
struct nvme_id_ns *id;
char disk_name[DISK_NAME_LEN];
int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT;
if (nvme_identify_ns(ctrl, nsid, ids, &id))
return;
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
if (!ns)
goto out_free_id;
ns->queue = blk_mq_init_queue(ctrl->tagset);
if (IS_ERR(ns->queue))
goto out_free_ns;
if (ctrl->opts && ctrl->opts->data_digest)
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
ns->queue->queuedata = ns;
ns->ctrl = ctrl;
kref_init(&ns->kref);
if (nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED))
goto out_free_queue;
nvme_set_disk_name(disk_name, ns, ctrl, &flags);
disk = alloc_disk_node(0, node);
if (!disk)
goto out_unlink_ns;
disk->fops = &nvme_bdev_ops;
disk->private_data = ns;
disk->queue = ns->queue;
disk->flags = flags;
memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
ns->disk = disk;
if (nvme_update_ns_info(ns, id))
goto out_put_disk;
if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
if (nvme_nvm_register(ns, disk_name, node)) {
dev_warn(ctrl->device, "LightNVM init failure\n");
goto out_put_disk;
}
}
down_write(&ctrl->namespaces_rwsem);
list_add_tail(&ns->list, &ctrl->namespaces);
up_write(&ctrl->namespaces_rwsem);
nvme_get_ctrl(ctrl);
device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
nvme_mpath_add_disk(ns, id);
nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
kfree(id);
return;
out_put_disk:
/* prevent double queue cleanup */
ns->disk->queue = NULL;
put_disk(ns->disk);
out_unlink_ns:
mutex_lock(&ctrl->subsys->lock);
list_del_rcu(&ns->siblings);
if (list_empty(&ns->head->list))
list_del_init(&ns->head->entry);
mutex_unlock(&ctrl->subsys->lock);
nvme_put_ns_head(ns->head);
out_free_queue:
blk_cleanup_queue(ns->queue);
out_free_ns:
kfree(ns);
out_free_id:
kfree(id);
}
static void nvme_ns_remove(struct nvme_ns *ns)
{
if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
return;
set_capacity(ns->disk, 0);
nvme_fault_inject_fini(&ns->fault_inject);
mutex_lock(&ns->ctrl->subsys->lock);
list_del_rcu(&ns->siblings);
if (list_empty(&ns->head->list))
list_del_init(&ns->head->entry);
mutex_unlock(&ns->ctrl->subsys->lock);
synchronize_rcu(); /* guarantee not available in head->list */
nvme_mpath_clear_current_path(ns);
synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
if (ns->disk->flags & GENHD_FL_UP) {
del_gendisk(ns->disk);
blk_cleanup_queue(ns->queue);
if (blk_get_integrity(ns->disk))
blk_integrity_unregister(ns->disk);
}
down_write(&ns->ctrl->namespaces_rwsem);
list_del_init(&ns->list);
up_write(&ns->ctrl->namespaces_rwsem);
nvme_mpath_check_last_path(ns);
nvme_put_ns(ns);
}
static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
{
struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
if (ns) {
nvme_ns_remove(ns);
nvme_put_ns(ns);
}
}
static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
{
struct nvme_id_ns *id;
int ret = -ENODEV;
if (test_bit(NVME_NS_DEAD, &ns->flags))
goto out;
ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
if (ret)
goto out;
ret = -ENODEV;
if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
dev_err(ns->ctrl->device,
"identifiers changed for nsid %d\n", ns->head->ns_id);
goto out_free_id;
}
ret = nvme_update_ns_info(ns, id);
out_free_id:
kfree(id);
out:
/*
* Only remove the namespace if we got a fatal error back from the
* device, otherwise ignore the error and just move on.
*
* TODO: we should probably schedule a delayed retry here.
*/
if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
nvme_ns_remove(ns);
}
static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
struct nvme_ns_ids ids = { };
struct nvme_ns *ns;
if (nvme_identify_ns_descs(ctrl, nsid, &ids))
return;
ns = nvme_find_get_ns(ctrl, nsid);
if (ns) {
nvme_validate_ns(ns, &ids);
nvme_put_ns(ns);
return;
}
switch (ids.csi) {
case NVME_CSI_NVM:
nvme_alloc_ns(ctrl, nsid, &ids);
break;
case NVME_CSI_ZNS:
if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
dev_warn(ctrl->device,
"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
nsid);
break;
}
nvme_alloc_ns(ctrl, nsid, &ids);
break;
default:
dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
ids.csi, nsid);
break;
}
}
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
unsigned nsid)
{
struct nvme_ns *ns, *next;
LIST_HEAD(rm_list);
down_write(&ctrl->namespaces_rwsem);
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
list_move_tail(&ns->list, &rm_list);
}
up_write(&ctrl->namespaces_rwsem);
list_for_each_entry_safe(ns, next, &rm_list, list)
nvme_ns_remove(ns);
}
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
{
const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
__le32 *ns_list;
u32 prev = 0;
int ret = 0, i;
if (nvme_ctrl_limited_cns(ctrl))
return -EOPNOTSUPP;
ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
if (!ns_list)
return -ENOMEM;
for (;;) {
struct nvme_command cmd = {
.identify.opcode = nvme_admin_identify,
.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
.identify.nsid = cpu_to_le32(prev),
};
ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
NVME_IDENTIFY_DATA_SIZE);
if (ret) {
dev_warn(ctrl->device,
"Identify NS List failed (status=0x%x)\n", ret);
goto free;
}
for (i = 0; i < nr_entries; i++) {
u32 nsid = le32_to_cpu(ns_list[i]);
if (!nsid) /* end of the list? */
goto out;
nvme_validate_or_alloc_ns(ctrl, nsid);
while (++prev < nsid)
nvme_ns_remove_by_nsid(ctrl, prev);
}
}
out:
nvme_remove_invalid_namespaces(ctrl, prev);
free:
kfree(ns_list);
return ret;
}
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
{
struct nvme_id_ctrl *id;
u32 nn, i;
if (nvme_identify_ctrl(ctrl, &id))
return;
nn = le32_to_cpu(id->nn);
kfree(id);
for (i = 1; i <= nn; i++)
nvme_validate_or_alloc_ns(ctrl, i);
nvme_remove_invalid_namespaces(ctrl, nn);
}
static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
{
size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
__le32 *log;
int error;
log = kzalloc(log_size, GFP_KERNEL);
if (!log)
return;
/*
* We need to read the log to clear the AEN, but we don't want to rely
* on it for the changed namespace information as userspace could have
* raced with us in reading the log page, which could cause us to miss
* updates.
*/
error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
NVME_CSI_NVM, log, log_size, 0);
if (error)
dev_warn(ctrl->device,
"reading changed ns log failed: %d\n", error);
kfree(log);
}
static void nvme_scan_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl =
container_of(work, struct nvme_ctrl, scan_work);
/* No tagset on a live ctrl means IO queues could not created */
if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
return;
if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
dev_info(ctrl->device, "rescanning namespaces.\n");
nvme_clear_changed_ns_log(ctrl);
}
mutex_lock(&ctrl->scan_lock);
if (nvme_scan_ns_list(ctrl) != 0)
nvme_scan_ns_sequential(ctrl);
mutex_unlock(&ctrl->scan_lock);
down_write(&ctrl->namespaces_rwsem);
list_sort(NULL, &ctrl->namespaces, ns_cmp);
up_write(&ctrl->namespaces_rwsem);
}
/*
* This function iterates the namespace list unlocked to allow recovery from
* controller failure. It is up to the caller to ensure the namespace list is
* not modified by scan work while this function is executing.
*/
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns, *next;
LIST_HEAD(ns_list);
/*
* make sure to requeue I/O to all namespaces as these
* might result from the scan itself and must complete
* for the scan_work to make progress
*/
nvme_mpath_clear_ctrl_paths(ctrl);
/* prevent racing with ns scanning */
flush_work(&ctrl->scan_work);
/*
* The dead states indicates the controller was not gracefully
* disconnected. In that case, we won't be able to flush any data while
* removing the namespaces' disks; fail all the queues now to avoid
* potentially having to clean up the failed sync later.
*/
if (ctrl->state == NVME_CTRL_DEAD)
nvme_kill_queues(ctrl);
/* this is a no-op when called from the controller reset handler */
nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
down_write(&ctrl->namespaces_rwsem);
list_splice_init(&ctrl->namespaces, &ns_list);
up_write(&ctrl->namespaces_rwsem);
list_for_each_entry_safe(ns, next, &ns_list, list)
nvme_ns_remove(ns);
}
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct nvme_ctrl *ctrl =
container_of(dev, struct nvme_ctrl, ctrl_device);
struct nvmf_ctrl_options *opts = ctrl->opts;
int ret;
ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
if (ret)
return ret;
if (opts) {
ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
if (ret)
return ret;
ret = add_uevent_var(env, "NVME_TRSVCID=%s",
opts->trsvcid ?: "none");
if (ret)
return ret;
ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
opts->host_traddr ?: "none");
}
return ret;
}
static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
{
char *envp[2] = { NULL, NULL };
u32 aen_result = ctrl->aen_result;
ctrl->aen_result = 0;
if (!aen_result)
return;
envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
if (!envp[0])
return;
kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
kfree(envp[0]);
}
static void nvme_async_event_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl =
container_of(work, struct nvme_ctrl, async_event_work);
nvme_aen_uevent(ctrl);
ctrl->ops->submit_async_event(ctrl);
}
static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
{
u32 csts;
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
return false;
if (csts == ~0)
return false;
return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
}
static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
{
struct nvme_fw_slot_info_log *log;
log = kmalloc(sizeof(*log), GFP_KERNEL);
if (!log)
return;
if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
log, sizeof(*log), 0))
dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
kfree(log);
}
static void nvme_fw_act_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl = container_of(work,
struct nvme_ctrl, fw_act_work);
unsigned long fw_act_timeout;
if (ctrl->mtfa)
fw_act_timeout = jiffies +
msecs_to_jiffies(ctrl->mtfa * 100);
else
fw_act_timeout = jiffies +
msecs_to_jiffies(admin_timeout * 1000);
nvme_stop_queues(ctrl);
while (nvme_ctrl_pp_status(ctrl)) {
if (time_after(jiffies, fw_act_timeout)) {
dev_warn(ctrl->device,
"Fw activation timeout, reset controller\n");
nvme_try_sched_reset(ctrl);
return;
}
msleep(100);
}
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
return;
nvme_start_queues(ctrl);
/* read FW slot information to clear the AER */
nvme_get_fw_slot_info(ctrl);
}
static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
{
u32 aer_notice_type = (result & 0xff00) >> 8;
trace_nvme_async_event(ctrl, aer_notice_type);
switch (aer_notice_type) {
case NVME_AER_NOTICE_NS_CHANGED:
set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
nvme_queue_scan(ctrl);
break;
case NVME_AER_NOTICE_FW_ACT_STARTING:
/*
* We are (ab)using the RESETTING state to prevent subsequent
* recovery actions from interfering with the controller's
* firmware activation.
*/
if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
queue_work(nvme_wq, &ctrl->fw_act_work);
break;
#ifdef CONFIG_NVME_MULTIPATH
case NVME_AER_NOTICE_ANA:
if (!ctrl->ana_log_buf)
break;
queue_work(nvme_wq, &ctrl->ana_work);
break;
#endif
case NVME_AER_NOTICE_DISC_CHANGED:
ctrl->aen_result = result;
break;
default:
dev_warn(ctrl->device, "async event result %08x\n", result);
}
}
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
volatile union nvme_result *res)
{
u32 result = le32_to_cpu(res->u32);
u32 aer_type = result & 0x07;
if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
return;
switch (aer_type) {
case NVME_AER_NOTICE:
nvme_handle_aen_notice(ctrl, result);
break;
case NVME_AER_ERROR:
case NVME_AER_SMART:
case NVME_AER_CSS:
case NVME_AER_VS:
trace_nvme_async_event(ctrl, aer_type);
ctrl->aen_result = result;
break;
default:
break;
}
queue_work(nvme_wq, &ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);
void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
{
nvme_mpath_stop(ctrl);
nvme_stop_keep_alive(ctrl);
nvme_stop_failfast_work(ctrl);
flush_work(&ctrl->async_event_work);
cancel_work_sync(&ctrl->fw_act_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
void nvme_start_ctrl(struct nvme_ctrl *ctrl)
{
nvme_start_keep_alive(ctrl);
nvme_enable_aen(ctrl);
if (ctrl->queue_count > 1) {
nvme_queue_scan(ctrl);
nvme_start_queues(ctrl);
}
}
EXPORT_SYMBOL_GPL(nvme_start_ctrl);
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
{
nvme_hwmon_exit(ctrl);
nvme_fault_inject_fini(&ctrl->fault_inject);
dev_pm_qos_hide_latency_tolerance(ctrl->device);
cdev_device_del(&ctrl->cdev, ctrl->device);
nvme_put_ctrl(ctrl);
}
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
static void nvme_free_cels(struct nvme_ctrl *ctrl)
{
struct nvme_effects_log *cel;
unsigned long i;
xa_for_each(&ctrl->cels, i, cel) {
xa_erase(&ctrl->cels, i);
kfree(cel);
}
xa_destroy(&ctrl->cels);
}
static void nvme_free_ctrl(struct device *dev)
{
struct nvme_ctrl *ctrl =
container_of(dev, struct nvme_ctrl, ctrl_device);
struct nvme_subsystem *subsys = ctrl->subsys;
if (!subsys || ctrl->instance != subsys->instance)
ida_simple_remove(&nvme_instance_ida, ctrl->instance);
nvme_free_cels(ctrl);
nvme_mpath_uninit(ctrl);
__free_page(ctrl->discard_page);
if (subsys) {
mutex_lock(&nvme_subsystems_lock);
list_del(&ctrl->subsys_entry);
sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
mutex_unlock(&nvme_subsystems_lock);
}
ctrl->ops->free_ctrl(ctrl);
if (subsys)
nvme_put_subsystem(subsys);
}
/*
* Initialize a NVMe controller structures. This needs to be called during
* earliest initialization so that we have the initialized structured around
* during probing.
*/
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
int ret;
ctrl->state = NVME_CTRL_NEW;
clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
spin_lock_init(&ctrl->lock);
mutex_init(&ctrl->scan_lock);
INIT_LIST_HEAD(&ctrl->namespaces);
xa_init(&ctrl->cels);
init_rwsem(&ctrl->namespaces_rwsem);
ctrl->dev = dev;
ctrl->ops = ops;
ctrl->quirks = quirks;
ctrl->numa_node = NUMA_NO_NODE;
INIT_WORK(&ctrl->scan_work, nvme_scan_work);
INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
init_waitqueue_head(&ctrl->state_wq);
INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
PAGE_SIZE);
ctrl->discard_page = alloc_page(GFP_KERNEL);
if (!ctrl->discard_page) {
ret = -ENOMEM;
goto out;
}
ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
if (ret < 0)
goto out;
ctrl->instance = ret;
device_initialize(&ctrl->ctrl_device);
ctrl->device = &ctrl->ctrl_device;
ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
ctrl->instance);
ctrl->device->class = nvme_class;
ctrl->device->parent = ctrl->dev;
ctrl->device->groups = nvme_dev_attr_groups;
ctrl->device->release = nvme_free_ctrl;
dev_set_drvdata(ctrl->device, ctrl);
ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
if (ret)
goto out_release_instance;
nvme_get_ctrl(ctrl);
cdev_init(&ctrl->cdev, &nvme_dev_fops);
ctrl->cdev.owner = ops->module;
ret = cdev_device_add(&ctrl->cdev, ctrl->device);
if (ret)
goto out_free_name;
/*
* Initialize latency tolerance controls. The sysfs files won't
* be visible to userspace unless the device actually supports APST.
*/
ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
dev_pm_qos_update_user_latency_tolerance(ctrl->device,
min(default_ps_max_latency_us, (unsigned long)S32_MAX));
nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
return 0;
out_free_name:
nvme_put_ctrl(ctrl);
kfree_const(ctrl->device->kobj.name);
out_release_instance:
ida_simple_remove(&nvme_instance_ida, ctrl->instance);
out:
if (ctrl->discard_page)
__free_page(ctrl->discard_page);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
/**
* nvme_kill_queues(): Ends all namespace queues
* @ctrl: the dead controller that needs to end
*
* Call this function when the driver determines it is unable to get the
* controller in a state capable of servicing IO.
*/
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
/* Forcibly unquiesce queues to avoid blocking dispatch */
if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
blk_mq_unquiesce_queue(ctrl->admin_q);
list_for_each_entry(ns, &ctrl->namespaces, list)
nvme_set_queue_dying(ns);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_kill_queues);
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list)
blk_mq_unfreeze_queue(ns->queue);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);
int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list) {
timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
if (timeout <= 0)
break;
}
up_read(&ctrl->namespaces_rwsem);
return timeout;
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list)
blk_mq_freeze_queue_wait(ns->queue);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);
void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list)
blk_freeze_queue_start(ns->queue);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);
void nvme_stop_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list)
blk_mq_quiesce_queue(ns->queue);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_stop_queues);
void nvme_start_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list)
blk_mq_unquiesce_queue(ns->queue);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_start_queues);
void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
{
struct nvme_ns *ns;
down_read(&ctrl->namespaces_rwsem);
list_for_each_entry(ns, &ctrl->namespaces, list)
blk_sync_queue(ns->queue);
up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
void nvme_sync_queues(struct nvme_ctrl *ctrl)
{
nvme_sync_io_queues(ctrl);
if (ctrl->admin_q)
blk_sync_queue(ctrl->admin_q);
}
EXPORT_SYMBOL_GPL(nvme_sync_queues);
struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
{
if (file->f_op != &nvme_dev_fops)
return NULL;
return file->private_data;
}
EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
/*
* Check we didn't inadvertently grow the command structure sizes:
*/
static inline void _nvme_check_size(void)
{
BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
}
static int __init nvme_core_init(void)
{
int result = -ENOMEM;
_nvme_check_size();
nvme_wq = alloc_workqueue("nvme-wq",
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
if (!nvme_wq)
goto out;
nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
if (!nvme_reset_wq)
goto destroy_wq;
nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
if (!nvme_delete_wq)
goto destroy_reset_wq;
result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
NVME_MINORS, "nvme");
if (result < 0)
goto destroy_delete_wq;
nvme_class = class_create(THIS_MODULE, "nvme");
if (IS_ERR(nvme_class)) {
result = PTR_ERR(nvme_class);
goto unregister_chrdev;
}
nvme_class->dev_uevent = nvme_class_uevent;
nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
if (IS_ERR(nvme_subsys_class)) {
result = PTR_ERR(nvme_subsys_class);
goto destroy_class;
}
return 0;
destroy_class:
class_destroy(nvme_class);
unregister_chrdev:
unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
destroy_delete_wq:
destroy_workqueue(nvme_delete_wq);
destroy_reset_wq:
destroy_workqueue(nvme_reset_wq);
destroy_wq:
destroy_workqueue(nvme_wq);
out:
return result;
}
static void __exit nvme_core_exit(void)
{
class_destroy(nvme_subsys_class);
class_destroy(nvme_class);
unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
destroy_workqueue(nvme_delete_wq);
destroy_workqueue(nvme_reset_wq);
destroy_workqueue(nvme_wq);
ida_destroy(&nvme_instance_ida);
}
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);