1367 строки
34 KiB
C
1367 строки
34 KiB
C
/*
|
|
* Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
|
|
*
|
|
* Copyright (c) 2007 Xceive Corporation
|
|
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
|
|
* Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
*
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dvb/frontend.h>
|
|
#include <linux/i2c.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
|
|
#include "xc5000.h"
|
|
#include "tuner-i2c.h"
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
|
|
|
|
static int no_poweroff;
|
|
module_param(no_poweroff, int, 0644);
|
|
MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
|
|
"\t\t1 keep device energized and with tuner ready all the times.\n"
|
|
"\t\tFaster, but consumes more power and keeps the device hotter");
|
|
|
|
static DEFINE_MUTEX(xc5000_list_mutex);
|
|
static LIST_HEAD(hybrid_tuner_instance_list);
|
|
|
|
#define dprintk(level, fmt, arg...) if (debug >= level) \
|
|
printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
|
|
|
|
struct xc5000_priv {
|
|
struct tuner_i2c_props i2c_props;
|
|
struct list_head hybrid_tuner_instance_list;
|
|
|
|
u32 if_khz;
|
|
u16 xtal_khz;
|
|
u32 freq_hz;
|
|
u32 bandwidth;
|
|
u8 video_standard;
|
|
u8 rf_mode;
|
|
u8 radio_input;
|
|
|
|
int chip_id;
|
|
u16 pll_register_no;
|
|
u8 init_status_supported;
|
|
u8 fw_checksum_supported;
|
|
};
|
|
|
|
/* Misc Defines */
|
|
#define MAX_TV_STANDARD 24
|
|
#define XC_MAX_I2C_WRITE_LENGTH 64
|
|
|
|
/* Signal Types */
|
|
#define XC_RF_MODE_AIR 0
|
|
#define XC_RF_MODE_CABLE 1
|
|
|
|
/* Result codes */
|
|
#define XC_RESULT_SUCCESS 0
|
|
#define XC_RESULT_RESET_FAILURE 1
|
|
#define XC_RESULT_I2C_WRITE_FAILURE 2
|
|
#define XC_RESULT_I2C_READ_FAILURE 3
|
|
#define XC_RESULT_OUT_OF_RANGE 5
|
|
|
|
/* Product id */
|
|
#define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
|
|
#define XC_PRODUCT_ID_FW_LOADED 0x1388
|
|
|
|
/* Registers */
|
|
#define XREG_INIT 0x00
|
|
#define XREG_VIDEO_MODE 0x01
|
|
#define XREG_AUDIO_MODE 0x02
|
|
#define XREG_RF_FREQ 0x03
|
|
#define XREG_D_CODE 0x04
|
|
#define XREG_IF_OUT 0x05
|
|
#define XREG_SEEK_MODE 0x07
|
|
#define XREG_POWER_DOWN 0x0A /* Obsolete */
|
|
/* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
|
|
#define XREG_OUTPUT_AMP 0x0B
|
|
#define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
|
|
#define XREG_SMOOTHEDCVBS 0x0E
|
|
#define XREG_XTALFREQ 0x0F
|
|
#define XREG_FINERFREQ 0x10
|
|
#define XREG_DDIMODE 0x11
|
|
|
|
#define XREG_ADC_ENV 0x00
|
|
#define XREG_QUALITY 0x01
|
|
#define XREG_FRAME_LINES 0x02
|
|
#define XREG_HSYNC_FREQ 0x03
|
|
#define XREG_LOCK 0x04
|
|
#define XREG_FREQ_ERROR 0x05
|
|
#define XREG_SNR 0x06
|
|
#define XREG_VERSION 0x07
|
|
#define XREG_PRODUCT_ID 0x08
|
|
#define XREG_BUSY 0x09
|
|
#define XREG_BUILD 0x0D
|
|
#define XREG_TOTALGAIN 0x0F
|
|
#define XREG_FW_CHECKSUM 0x12
|
|
#define XREG_INIT_STATUS 0x13
|
|
|
|
/*
|
|
Basic firmware description. This will remain with
|
|
the driver for documentation purposes.
|
|
|
|
This represents an I2C firmware file encoded as a
|
|
string of unsigned char. Format is as follows:
|
|
|
|
char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
|
|
char[1 ]=len0_LSB -> length of first write transaction
|
|
char[2 ]=data0 -> first byte to be sent
|
|
char[3 ]=data1
|
|
char[4 ]=data2
|
|
char[ ]=...
|
|
char[M ]=dataN -> last byte to be sent
|
|
char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
|
|
char[M+2]=len1_LSB -> length of second write transaction
|
|
char[M+3]=data0
|
|
char[M+4]=data1
|
|
...
|
|
etc.
|
|
|
|
The [len] value should be interpreted as follows:
|
|
|
|
len= len_MSB _ len_LSB
|
|
len=1111_1111_1111_1111 : End of I2C_SEQUENCE
|
|
len=0000_0000_0000_0000 : Reset command: Do hardware reset
|
|
len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
|
|
len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
|
|
|
|
For the RESET and WAIT commands, the two following bytes will contain
|
|
immediately the length of the following transaction.
|
|
|
|
*/
|
|
struct XC_TV_STANDARD {
|
|
char *Name;
|
|
u16 AudioMode;
|
|
u16 VideoMode;
|
|
};
|
|
|
|
/* Tuner standards */
|
|
#define MN_NTSC_PAL_BTSC 0
|
|
#define MN_NTSC_PAL_A2 1
|
|
#define MN_NTSC_PAL_EIAJ 2
|
|
#define MN_NTSC_PAL_Mono 3
|
|
#define BG_PAL_A2 4
|
|
#define BG_PAL_NICAM 5
|
|
#define BG_PAL_MONO 6
|
|
#define I_PAL_NICAM 7
|
|
#define I_PAL_NICAM_MONO 8
|
|
#define DK_PAL_A2 9
|
|
#define DK_PAL_NICAM 10
|
|
#define DK_PAL_MONO 11
|
|
#define DK_SECAM_A2DK1 12
|
|
#define DK_SECAM_A2LDK3 13
|
|
#define DK_SECAM_A2MONO 14
|
|
#define L_SECAM_NICAM 15
|
|
#define LC_SECAM_NICAM 16
|
|
#define DTV6 17
|
|
#define DTV8 18
|
|
#define DTV7_8 19
|
|
#define DTV7 20
|
|
#define FM_Radio_INPUT2 21
|
|
#define FM_Radio_INPUT1 22
|
|
#define FM_Radio_INPUT1_MONO 23
|
|
|
|
static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
|
|
{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
|
|
{"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
|
|
{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
|
|
{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
|
|
{"B/G-PAL-A2", 0x0A00, 0x8049},
|
|
{"B/G-PAL-NICAM", 0x0C04, 0x8049},
|
|
{"B/G-PAL-MONO", 0x0878, 0x8059},
|
|
{"I-PAL-NICAM", 0x1080, 0x8009},
|
|
{"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
|
|
{"D/K-PAL-A2", 0x1600, 0x8009},
|
|
{"D/K-PAL-NICAM", 0x0E80, 0x8009},
|
|
{"D/K-PAL-MONO", 0x1478, 0x8009},
|
|
{"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
|
|
{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
|
|
{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
|
|
{"L-SECAM-NICAM", 0x8E82, 0x0009},
|
|
{"L'-SECAM-NICAM", 0x8E82, 0x4009},
|
|
{"DTV6", 0x00C0, 0x8002},
|
|
{"DTV8", 0x00C0, 0x800B},
|
|
{"DTV7/8", 0x00C0, 0x801B},
|
|
{"DTV7", 0x00C0, 0x8007},
|
|
{"FM Radio-INPUT2", 0x9802, 0x9002},
|
|
{"FM Radio-INPUT1", 0x0208, 0x9002},
|
|
{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
|
|
};
|
|
|
|
|
|
struct xc5000_fw_cfg {
|
|
char *name;
|
|
u16 size;
|
|
u16 pll_reg;
|
|
u8 init_status_supported;
|
|
u8 fw_checksum_supported;
|
|
};
|
|
|
|
#define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
|
|
static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
|
|
.name = XC5000A_FIRMWARE,
|
|
.size = 12401,
|
|
.pll_reg = 0x806c,
|
|
};
|
|
|
|
#define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
|
|
static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
|
|
.name = XC5000C_FIRMWARE,
|
|
.size = 16497,
|
|
.pll_reg = 0x13,
|
|
.init_status_supported = 1,
|
|
.fw_checksum_supported = 1,
|
|
};
|
|
|
|
static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
|
|
{
|
|
switch (chip_id) {
|
|
default:
|
|
case XC5000A:
|
|
return &xc5000a_1_6_114;
|
|
case XC5000C:
|
|
return &xc5000c_41_024_5;
|
|
}
|
|
}
|
|
|
|
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
|
|
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
|
|
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
|
|
static int xc5000_TunerReset(struct dvb_frontend *fe);
|
|
|
|
static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
|
|
{
|
|
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
|
|
.flags = 0, .buf = buf, .len = len };
|
|
|
|
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
|
|
printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
|
|
return XC_RESULT_I2C_WRITE_FAILURE;
|
|
}
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
#if 0
|
|
/* This routine is never used because the only time we read data from the
|
|
i2c bus is when we read registers, and we want that to be an atomic i2c
|
|
transaction in case we are on a multi-master bus */
|
|
static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
|
|
{
|
|
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
|
|
.flags = I2C_M_RD, .buf = buf, .len = len };
|
|
|
|
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
|
|
printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
|
|
return -EREMOTEIO;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
|
|
{
|
|
u8 buf[2] = { reg >> 8, reg & 0xff };
|
|
u8 bval[2] = { 0, 0 };
|
|
struct i2c_msg msg[2] = {
|
|
{ .addr = priv->i2c_props.addr,
|
|
.flags = 0, .buf = &buf[0], .len = 2 },
|
|
{ .addr = priv->i2c_props.addr,
|
|
.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
|
|
};
|
|
|
|
if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
|
|
printk(KERN_WARNING "xc5000: I2C read failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
*val = (bval[0] << 8) | bval[1];
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static void xc_wait(int wait_ms)
|
|
{
|
|
msleep(wait_ms);
|
|
}
|
|
|
|
static int xc5000_TunerReset(struct dvb_frontend *fe)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
if (fe->callback) {
|
|
ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
|
|
fe->dvb->priv :
|
|
priv->i2c_props.adap->algo_data,
|
|
DVB_FRONTEND_COMPONENT_TUNER,
|
|
XC5000_TUNER_RESET, 0);
|
|
if (ret) {
|
|
printk(KERN_ERR "xc5000: reset failed\n");
|
|
return XC_RESULT_RESET_FAILURE;
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
|
|
return XC_RESULT_RESET_FAILURE;
|
|
}
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
|
|
{
|
|
u8 buf[4];
|
|
int WatchDogTimer = 100;
|
|
int result;
|
|
|
|
buf[0] = (regAddr >> 8) & 0xFF;
|
|
buf[1] = regAddr & 0xFF;
|
|
buf[2] = (i2cData >> 8) & 0xFF;
|
|
buf[3] = i2cData & 0xFF;
|
|
result = xc_send_i2c_data(priv, buf, 4);
|
|
if (result == XC_RESULT_SUCCESS) {
|
|
/* wait for busy flag to clear */
|
|
while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
|
|
result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
|
|
if (result == XC_RESULT_SUCCESS) {
|
|
if ((buf[0] == 0) && (buf[1] == 0)) {
|
|
/* busy flag cleared */
|
|
break;
|
|
} else {
|
|
xc_wait(5); /* wait 5 ms */
|
|
WatchDogTimer--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (WatchDogTimer <= 0)
|
|
result = XC_RESULT_I2C_WRITE_FAILURE;
|
|
|
|
return result;
|
|
}
|
|
|
|
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
|
|
int i, nbytes_to_send, result;
|
|
unsigned int len, pos, index;
|
|
u8 buf[XC_MAX_I2C_WRITE_LENGTH];
|
|
|
|
index = 0;
|
|
while ((i2c_sequence[index] != 0xFF) ||
|
|
(i2c_sequence[index + 1] != 0xFF)) {
|
|
len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
|
|
if (len == 0x0000) {
|
|
/* RESET command */
|
|
result = xc5000_TunerReset(fe);
|
|
index += 2;
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
} else if (len & 0x8000) {
|
|
/* WAIT command */
|
|
xc_wait(len & 0x7FFF);
|
|
index += 2;
|
|
} else {
|
|
/* Send i2c data whilst ensuring individual transactions
|
|
* do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
|
|
*/
|
|
index += 2;
|
|
buf[0] = i2c_sequence[index];
|
|
buf[1] = i2c_sequence[index + 1];
|
|
pos = 2;
|
|
while (pos < len) {
|
|
if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
|
|
nbytes_to_send =
|
|
XC_MAX_I2C_WRITE_LENGTH;
|
|
else
|
|
nbytes_to_send = (len - pos + 2);
|
|
for (i = 2; i < nbytes_to_send; i++) {
|
|
buf[i] = i2c_sequence[index + pos +
|
|
i - 2];
|
|
}
|
|
result = xc_send_i2c_data(priv, buf,
|
|
nbytes_to_send);
|
|
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
pos += nbytes_to_send - 2;
|
|
}
|
|
index += len;
|
|
}
|
|
}
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static int xc_initialize(struct xc5000_priv *priv)
|
|
{
|
|
dprintk(1, "%s()\n", __func__);
|
|
return xc_write_reg(priv, XREG_INIT, 0);
|
|
}
|
|
|
|
static int xc_SetTVStandard(struct xc5000_priv *priv,
|
|
u16 VideoMode, u16 AudioMode)
|
|
{
|
|
int ret;
|
|
dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
|
|
dprintk(1, "%s() Standard = %s\n",
|
|
__func__,
|
|
XC5000_Standard[priv->video_standard].Name);
|
|
|
|
ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
|
|
if (ret == XC_RESULT_SUCCESS)
|
|
ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
|
|
{
|
|
dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
|
|
rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
|
|
|
|
if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
|
|
rf_mode = XC_RF_MODE_CABLE;
|
|
printk(KERN_ERR
|
|
"%s(), Invalid mode, defaulting to CABLE",
|
|
__func__);
|
|
}
|
|
return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
|
|
}
|
|
|
|
static const struct dvb_tuner_ops xc5000_tuner_ops;
|
|
|
|
static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
|
|
{
|
|
u16 freq_code;
|
|
|
|
dprintk(1, "%s(%u)\n", __func__, freq_hz);
|
|
|
|
if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
|
|
(freq_hz < xc5000_tuner_ops.info.frequency_min))
|
|
return XC_RESULT_OUT_OF_RANGE;
|
|
|
|
freq_code = (u16)(freq_hz / 15625);
|
|
|
|
/* Starting in firmware version 1.1.44, Xceive recommends using the
|
|
FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
|
|
only be used for fast scanning for channel lock) */
|
|
return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
|
|
}
|
|
|
|
|
|
static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
|
|
{
|
|
u32 freq_code = (freq_khz * 1024)/1000;
|
|
dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
|
|
__func__, freq_khz, freq_code);
|
|
|
|
return xc_write_reg(priv, XREG_IF_OUT, freq_code);
|
|
}
|
|
|
|
|
|
static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
|
|
{
|
|
return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
|
|
}
|
|
|
|
static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
|
|
{
|
|
int result;
|
|
u16 regData;
|
|
u32 tmp;
|
|
|
|
result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®Data);
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
tmp = (u32)regData;
|
|
(*freq_error_hz) = (tmp * 15625) / 1000;
|
|
return result;
|
|
}
|
|
|
|
static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
|
|
{
|
|
return xc5000_readreg(priv, XREG_LOCK, lock_status);
|
|
}
|
|
|
|
static int xc_get_version(struct xc5000_priv *priv,
|
|
u8 *hw_majorversion, u8 *hw_minorversion,
|
|
u8 *fw_majorversion, u8 *fw_minorversion)
|
|
{
|
|
u16 data;
|
|
int result;
|
|
|
|
result = xc5000_readreg(priv, XREG_VERSION, &data);
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
(*hw_majorversion) = (data >> 12) & 0x0F;
|
|
(*hw_minorversion) = (data >> 8) & 0x0F;
|
|
(*fw_majorversion) = (data >> 4) & 0x0F;
|
|
(*fw_minorversion) = data & 0x0F;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
|
|
{
|
|
return xc5000_readreg(priv, XREG_BUILD, buildrev);
|
|
}
|
|
|
|
static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
|
|
{
|
|
u16 regData;
|
|
int result;
|
|
|
|
result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®Data);
|
|
if (result != XC_RESULT_SUCCESS)
|
|
return result;
|
|
|
|
(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
|
|
return result;
|
|
}
|
|
|
|
static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
|
|
{
|
|
return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
|
|
}
|
|
|
|
static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
|
|
{
|
|
return xc5000_readreg(priv, XREG_QUALITY, quality);
|
|
}
|
|
|
|
static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
|
|
{
|
|
return xc5000_readreg(priv, XREG_SNR, snr);
|
|
}
|
|
|
|
static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
|
|
{
|
|
return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
|
|
}
|
|
|
|
static u16 WaitForLock(struct xc5000_priv *priv)
|
|
{
|
|
u16 lockState = 0;
|
|
int watchDogCount = 40;
|
|
|
|
while ((lockState == 0) && (watchDogCount > 0)) {
|
|
xc_get_lock_status(priv, &lockState);
|
|
if (lockState != 1) {
|
|
xc_wait(5);
|
|
watchDogCount--;
|
|
}
|
|
}
|
|
return lockState;
|
|
}
|
|
|
|
#define XC_TUNE_ANALOG 0
|
|
#define XC_TUNE_DIGITAL 1
|
|
static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
|
|
{
|
|
int found = 0;
|
|
|
|
dprintk(1, "%s(%u)\n", __func__, freq_hz);
|
|
|
|
if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
|
|
return 0;
|
|
|
|
if (mode == XC_TUNE_ANALOG) {
|
|
if (WaitForLock(priv) == 1)
|
|
found = 1;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
static int xc_set_xtal(struct dvb_frontend *fe)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
int ret = XC_RESULT_SUCCESS;
|
|
|
|
switch (priv->chip_id) {
|
|
default:
|
|
case XC5000A:
|
|
/* 32.000 MHz xtal is default */
|
|
break;
|
|
case XC5000C:
|
|
switch (priv->xtal_khz) {
|
|
default:
|
|
case 32000:
|
|
/* 32.000 MHz xtal is default */
|
|
break;
|
|
case 31875:
|
|
/* 31.875 MHz xtal configuration */
|
|
ret = xc_write_reg(priv, 0x000f, 0x8081);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int xc5000_fwupload(struct dvb_frontend *fe)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
const struct firmware *fw;
|
|
int ret;
|
|
const struct xc5000_fw_cfg *desired_fw =
|
|
xc5000_assign_firmware(priv->chip_id);
|
|
priv->pll_register_no = desired_fw->pll_reg;
|
|
priv->init_status_supported = desired_fw->init_status_supported;
|
|
priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
|
|
|
|
/* request the firmware, this will block and timeout */
|
|
printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
|
|
desired_fw->name);
|
|
|
|
ret = request_firmware(&fw, desired_fw->name,
|
|
priv->i2c_props.adap->dev.parent);
|
|
if (ret) {
|
|
printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
|
|
ret = XC_RESULT_RESET_FAILURE;
|
|
goto out;
|
|
} else {
|
|
printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
|
|
fw->size);
|
|
ret = XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
if (fw->size != desired_fw->size) {
|
|
printk(KERN_ERR "xc5000: firmware incorrect size\n");
|
|
ret = XC_RESULT_RESET_FAILURE;
|
|
} else {
|
|
printk(KERN_INFO "xc5000: firmware uploading...\n");
|
|
ret = xc_load_i2c_sequence(fe, fw->data);
|
|
if (XC_RESULT_SUCCESS == ret)
|
|
ret = xc_set_xtal(fe);
|
|
if (XC_RESULT_SUCCESS == ret)
|
|
printk(KERN_INFO "xc5000: firmware upload complete...\n");
|
|
else
|
|
printk(KERN_ERR "xc5000: firmware upload failed...\n");
|
|
}
|
|
|
|
out:
|
|
release_firmware(fw);
|
|
return ret;
|
|
}
|
|
|
|
static void xc_debug_dump(struct xc5000_priv *priv)
|
|
{
|
|
u16 adc_envelope;
|
|
u32 freq_error_hz = 0;
|
|
u16 lock_status;
|
|
u32 hsync_freq_hz = 0;
|
|
u16 frame_lines;
|
|
u16 quality;
|
|
u16 snr;
|
|
u16 totalgain;
|
|
u8 hw_majorversion = 0, hw_minorversion = 0;
|
|
u8 fw_majorversion = 0, fw_minorversion = 0;
|
|
u16 fw_buildversion = 0;
|
|
u16 regval;
|
|
|
|
/* Wait for stats to stabilize.
|
|
* Frame Lines needs two frame times after initial lock
|
|
* before it is valid.
|
|
*/
|
|
xc_wait(100);
|
|
|
|
xc_get_ADC_Envelope(priv, &adc_envelope);
|
|
dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
|
|
|
|
xc_get_frequency_error(priv, &freq_error_hz);
|
|
dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
|
|
|
|
xc_get_lock_status(priv, &lock_status);
|
|
dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
|
|
lock_status);
|
|
|
|
xc_get_version(priv, &hw_majorversion, &hw_minorversion,
|
|
&fw_majorversion, &fw_minorversion);
|
|
xc_get_buildversion(priv, &fw_buildversion);
|
|
dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
|
|
hw_majorversion, hw_minorversion,
|
|
fw_majorversion, fw_minorversion, fw_buildversion);
|
|
|
|
xc_get_hsync_freq(priv, &hsync_freq_hz);
|
|
dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
|
|
|
|
xc_get_frame_lines(priv, &frame_lines);
|
|
dprintk(1, "*** Frame lines = %d\n", frame_lines);
|
|
|
|
xc_get_quality(priv, &quality);
|
|
dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
|
|
|
|
xc_get_analogsnr(priv, &snr);
|
|
dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);
|
|
|
|
xc_get_totalgain(priv, &totalgain);
|
|
dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
|
|
(totalgain % 256) * 100 / 256);
|
|
|
|
if (priv->pll_register_no) {
|
|
xc5000_readreg(priv, priv->pll_register_no, ®val);
|
|
dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
|
|
}
|
|
}
|
|
|
|
static int xc5000_set_params(struct dvb_frontend *fe)
|
|
{
|
|
int ret, b;
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
u32 bw = fe->dtv_property_cache.bandwidth_hz;
|
|
u32 freq = fe->dtv_property_cache.frequency;
|
|
u32 delsys = fe->dtv_property_cache.delivery_system;
|
|
|
|
if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
|
|
dprintk(1, "Unable to load firmware and init tuner\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
|
|
|
|
switch (delsys) {
|
|
case SYS_ATSC:
|
|
dprintk(1, "%s() VSB modulation\n", __func__);
|
|
priv->rf_mode = XC_RF_MODE_AIR;
|
|
priv->freq_hz = freq - 1750000;
|
|
priv->video_standard = DTV6;
|
|
break;
|
|
case SYS_DVBC_ANNEX_B:
|
|
dprintk(1, "%s() QAM modulation\n", __func__);
|
|
priv->rf_mode = XC_RF_MODE_CABLE;
|
|
priv->freq_hz = freq - 1750000;
|
|
priv->video_standard = DTV6;
|
|
break;
|
|
case SYS_ISDBT:
|
|
/* All ISDB-T are currently for 6 MHz bw */
|
|
if (!bw)
|
|
bw = 6000000;
|
|
/* fall to OFDM handling */
|
|
case SYS_DMBTH:
|
|
case SYS_DVBT:
|
|
case SYS_DVBT2:
|
|
dprintk(1, "%s() OFDM\n", __func__);
|
|
switch (bw) {
|
|
case 6000000:
|
|
priv->video_standard = DTV6;
|
|
priv->freq_hz = freq - 1750000;
|
|
break;
|
|
case 7000000:
|
|
priv->video_standard = DTV7;
|
|
priv->freq_hz = freq - 2250000;
|
|
break;
|
|
case 8000000:
|
|
priv->video_standard = DTV8;
|
|
priv->freq_hz = freq - 2750000;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "xc5000 bandwidth not set!\n");
|
|
return -EINVAL;
|
|
}
|
|
priv->rf_mode = XC_RF_MODE_AIR;
|
|
case SYS_DVBC_ANNEX_A:
|
|
case SYS_DVBC_ANNEX_C:
|
|
dprintk(1, "%s() QAM modulation\n", __func__);
|
|
priv->rf_mode = XC_RF_MODE_CABLE;
|
|
if (bw <= 6000000) {
|
|
priv->video_standard = DTV6;
|
|
priv->freq_hz = freq - 1750000;
|
|
b = 6;
|
|
} else if (bw <= 7000000) {
|
|
priv->video_standard = DTV7;
|
|
priv->freq_hz = freq - 2250000;
|
|
b = 7;
|
|
} else {
|
|
priv->video_standard = DTV7_8;
|
|
priv->freq_hz = freq - 2750000;
|
|
b = 8;
|
|
}
|
|
dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
|
|
b, bw);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "xc5000: delivery system is not supported!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dprintk(1, "%s() frequency=%d (compensated to %d)\n",
|
|
__func__, freq, priv->freq_hz);
|
|
|
|
ret = xc_SetSignalSource(priv, priv->rf_mode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc5000: xc_SetSignalSource(%d) failed\n",
|
|
priv->rf_mode);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_SetTVStandard(priv,
|
|
XC5000_Standard[priv->video_standard].VideoMode,
|
|
XC5000_Standard[priv->video_standard].AudioMode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_set_IF_frequency(priv, priv->if_khz);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
|
|
priv->if_khz);
|
|
return -EIO;
|
|
}
|
|
|
|
xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
|
|
|
|
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
|
|
|
|
if (debug)
|
|
xc_debug_dump(priv);
|
|
|
|
priv->bandwidth = bw;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
int ret;
|
|
u16 id;
|
|
|
|
ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
|
|
if (ret == XC_RESULT_SUCCESS) {
|
|
if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
|
|
ret = XC_RESULT_RESET_FAILURE;
|
|
else
|
|
ret = XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
|
|
ret == XC_RESULT_SUCCESS ? "True" : "False", id);
|
|
return ret;
|
|
}
|
|
|
|
static int xc5000_set_tv_freq(struct dvb_frontend *fe,
|
|
struct analog_parameters *params)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
u16 pll_lock_status;
|
|
int ret;
|
|
|
|
dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
|
|
__func__, params->frequency);
|
|
|
|
/* Fix me: it could be air. */
|
|
priv->rf_mode = params->mode;
|
|
if (params->mode > XC_RF_MODE_CABLE)
|
|
priv->rf_mode = XC_RF_MODE_CABLE;
|
|
|
|
/* params->frequency is in units of 62.5khz */
|
|
priv->freq_hz = params->frequency * 62500;
|
|
|
|
/* FIX ME: Some video standards may have several possible audio
|
|
standards. We simply default to one of them here.
|
|
*/
|
|
if (params->std & V4L2_STD_MN) {
|
|
/* default to BTSC audio standard */
|
|
priv->video_standard = MN_NTSC_PAL_BTSC;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_PAL_BG) {
|
|
/* default to NICAM audio standard */
|
|
priv->video_standard = BG_PAL_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_PAL_I) {
|
|
/* default to NICAM audio standard */
|
|
priv->video_standard = I_PAL_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_PAL_DK) {
|
|
/* default to NICAM audio standard */
|
|
priv->video_standard = DK_PAL_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_SECAM_DK) {
|
|
/* default to A2 DK1 audio standard */
|
|
priv->video_standard = DK_SECAM_A2DK1;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_SECAM_L) {
|
|
priv->video_standard = L_SECAM_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
if (params->std & V4L2_STD_SECAM_LC) {
|
|
priv->video_standard = LC_SECAM_NICAM;
|
|
goto tune_channel;
|
|
}
|
|
|
|
tune_channel:
|
|
ret = xc_SetSignalSource(priv, priv->rf_mode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc5000: xc_SetSignalSource(%d) failed\n",
|
|
priv->rf_mode);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_SetTVStandard(priv,
|
|
XC5000_Standard[priv->video_standard].VideoMode,
|
|
XC5000_Standard[priv->video_standard].AudioMode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
|
|
|
|
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
|
|
|
|
if (debug)
|
|
xc_debug_dump(priv);
|
|
|
|
if (priv->pll_register_no != 0) {
|
|
msleep(20);
|
|
xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
|
|
if (pll_lock_status > 63) {
|
|
/* PLL is unlocked, force reload of the firmware */
|
|
dprintk(1, "xc5000: PLL not locked (0x%x). Reloading...\n",
|
|
pll_lock_status);
|
|
if (xc_load_fw_and_init_tuner(fe, 1) != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc5000: Unable to reload fw\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
goto tune_channel;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_set_radio_freq(struct dvb_frontend *fe,
|
|
struct analog_parameters *params)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
int ret = -EINVAL;
|
|
u8 radio_input;
|
|
|
|
dprintk(1, "%s() frequency=%d (in units of khz)\n",
|
|
__func__, params->frequency);
|
|
|
|
if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
|
|
dprintk(1, "%s() radio input not configured\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (priv->radio_input == XC5000_RADIO_FM1)
|
|
radio_input = FM_Radio_INPUT1;
|
|
else if (priv->radio_input == XC5000_RADIO_FM2)
|
|
radio_input = FM_Radio_INPUT2;
|
|
else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
|
|
radio_input = FM_Radio_INPUT1_MONO;
|
|
else {
|
|
dprintk(1, "%s() unknown radio input %d\n", __func__,
|
|
priv->radio_input);
|
|
return -EINVAL;
|
|
}
|
|
|
|
priv->freq_hz = params->frequency * 125 / 2;
|
|
|
|
priv->rf_mode = XC_RF_MODE_AIR;
|
|
|
|
ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
|
|
XC5000_Standard[radio_input].AudioMode);
|
|
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
ret = xc_SetSignalSource(priv, priv->rf_mode);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc5000: xc_SetSignalSource(%d) failed\n",
|
|
priv->rf_mode);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
if ((priv->radio_input == XC5000_RADIO_FM1) ||
|
|
(priv->radio_input == XC5000_RADIO_FM2))
|
|
xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
|
|
else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
|
|
xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
|
|
|
|
xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_set_analog_params(struct dvb_frontend *fe,
|
|
struct analog_parameters *params)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
int ret = -EINVAL;
|
|
|
|
if (priv->i2c_props.adap == NULL)
|
|
return -EINVAL;
|
|
|
|
if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
|
|
dprintk(1, "Unable to load firmware and init tuner\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (params->mode) {
|
|
case V4L2_TUNER_RADIO:
|
|
ret = xc5000_set_radio_freq(fe, params);
|
|
break;
|
|
case V4L2_TUNER_ANALOG_TV:
|
|
case V4L2_TUNER_DIGITAL_TV:
|
|
ret = xc5000_set_tv_freq(fe, params);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
*freq = priv->freq_hz;
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
*freq = priv->if_khz * 1000;
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
*bw = priv->bandwidth;
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
u16 lock_status = 0;
|
|
|
|
xc_get_lock_status(priv, &lock_status);
|
|
|
|
dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
|
|
|
|
*status = lock_status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
int ret = XC_RESULT_SUCCESS;
|
|
u16 pll_lock_status;
|
|
u16 fw_ck;
|
|
|
|
if (force || xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
|
|
|
|
fw_retry:
|
|
|
|
ret = xc5000_fwupload(fe);
|
|
if (ret != XC_RESULT_SUCCESS)
|
|
return ret;
|
|
|
|
msleep(20);
|
|
|
|
if (priv->fw_checksum_supported) {
|
|
if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)
|
|
!= XC_RESULT_SUCCESS) {
|
|
dprintk(1, "%s() FW checksum reading failed.\n",
|
|
__func__);
|
|
goto fw_retry;
|
|
}
|
|
|
|
if (fw_ck == 0) {
|
|
dprintk(1, "%s() FW checksum failed = 0x%04x\n",
|
|
__func__, fw_ck);
|
|
goto fw_retry;
|
|
}
|
|
}
|
|
|
|
/* Start the tuner self-calibration process */
|
|
ret |= xc_initialize(priv);
|
|
|
|
if (ret != XC_RESULT_SUCCESS)
|
|
goto fw_retry;
|
|
|
|
/* Wait for calibration to complete.
|
|
* We could continue but XC5000 will clock stretch subsequent
|
|
* I2C transactions until calibration is complete. This way we
|
|
* don't have to rely on clock stretching working.
|
|
*/
|
|
xc_wait(100);
|
|
|
|
if (priv->init_status_supported) {
|
|
if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck) != XC_RESULT_SUCCESS) {
|
|
dprintk(1, "%s() FW failed reading init status.\n",
|
|
__func__);
|
|
goto fw_retry;
|
|
}
|
|
|
|
if (fw_ck == 0) {
|
|
dprintk(1, "%s() FW init status failed = 0x%04x\n", __func__, fw_ck);
|
|
goto fw_retry;
|
|
}
|
|
}
|
|
|
|
if (priv->pll_register_no) {
|
|
xc5000_readreg(priv, priv->pll_register_no,
|
|
&pll_lock_status);
|
|
if (pll_lock_status > 63) {
|
|
/* PLL is unlocked, force reload of the firmware */
|
|
printk(KERN_ERR "xc5000: PLL not running after fwload.\n");
|
|
goto fw_retry;
|
|
}
|
|
}
|
|
|
|
/* Default to "CABLE" mode */
|
|
ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int xc5000_sleep(struct dvb_frontend *fe)
|
|
{
|
|
int ret;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
/* Avoid firmware reload on slow devices */
|
|
if (no_poweroff)
|
|
return 0;
|
|
|
|
/* According to Xceive technical support, the "powerdown" register
|
|
was removed in newer versions of the firmware. The "supported"
|
|
way to sleep the tuner is to pull the reset pin low for 10ms */
|
|
ret = xc5000_TunerReset(fe);
|
|
if (ret != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR
|
|
"xc5000: %s() unable to shutdown tuner\n",
|
|
__func__);
|
|
return -EREMOTEIO;
|
|
} else
|
|
return XC_RESULT_SUCCESS;
|
|
}
|
|
|
|
static int xc5000_init(struct dvb_frontend *fe)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
if (xc_load_fw_and_init_tuner(fe, 0) != XC_RESULT_SUCCESS) {
|
|
printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
if (debug)
|
|
xc_debug_dump(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_release(struct dvb_frontend *fe)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
mutex_lock(&xc5000_list_mutex);
|
|
|
|
if (priv)
|
|
hybrid_tuner_release_state(priv);
|
|
|
|
mutex_unlock(&xc5000_list_mutex);
|
|
|
|
fe->tuner_priv = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
|
|
{
|
|
struct xc5000_priv *priv = fe->tuner_priv;
|
|
struct xc5000_config *p = priv_cfg;
|
|
|
|
dprintk(1, "%s()\n", __func__);
|
|
|
|
if (p->if_khz)
|
|
priv->if_khz = p->if_khz;
|
|
|
|
if (p->radio_input)
|
|
priv->radio_input = p->radio_input;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static const struct dvb_tuner_ops xc5000_tuner_ops = {
|
|
.info = {
|
|
.name = "Xceive XC5000",
|
|
.frequency_min = 1000000,
|
|
.frequency_max = 1023000000,
|
|
.frequency_step = 50000,
|
|
},
|
|
|
|
.release = xc5000_release,
|
|
.init = xc5000_init,
|
|
.sleep = xc5000_sleep,
|
|
|
|
.set_config = xc5000_set_config,
|
|
.set_params = xc5000_set_params,
|
|
.set_analog_params = xc5000_set_analog_params,
|
|
.get_frequency = xc5000_get_frequency,
|
|
.get_if_frequency = xc5000_get_if_frequency,
|
|
.get_bandwidth = xc5000_get_bandwidth,
|
|
.get_status = xc5000_get_status
|
|
};
|
|
|
|
struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
|
|
struct i2c_adapter *i2c,
|
|
const struct xc5000_config *cfg)
|
|
{
|
|
struct xc5000_priv *priv = NULL;
|
|
int instance;
|
|
u16 id = 0;
|
|
|
|
dprintk(1, "%s(%d-%04x)\n", __func__,
|
|
i2c ? i2c_adapter_id(i2c) : -1,
|
|
cfg ? cfg->i2c_address : -1);
|
|
|
|
mutex_lock(&xc5000_list_mutex);
|
|
|
|
instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
|
|
hybrid_tuner_instance_list,
|
|
i2c, cfg->i2c_address, "xc5000");
|
|
switch (instance) {
|
|
case 0:
|
|
goto fail;
|
|
break;
|
|
case 1:
|
|
/* new tuner instance */
|
|
priv->bandwidth = 6000000;
|
|
fe->tuner_priv = priv;
|
|
break;
|
|
default:
|
|
/* existing tuner instance */
|
|
fe->tuner_priv = priv;
|
|
break;
|
|
}
|
|
|
|
if (priv->if_khz == 0) {
|
|
/* If the IF hasn't been set yet, use the value provided by
|
|
the caller (occurs in hybrid devices where the analog
|
|
call to xc5000_attach occurs before the digital side) */
|
|
priv->if_khz = cfg->if_khz;
|
|
}
|
|
|
|
if (priv->xtal_khz == 0)
|
|
priv->xtal_khz = cfg->xtal_khz;
|
|
|
|
if (priv->radio_input == 0)
|
|
priv->radio_input = cfg->radio_input;
|
|
|
|
/* don't override chip id if it's already been set
|
|
unless explicitly specified */
|
|
if ((priv->chip_id == 0) || (cfg->chip_id))
|
|
/* use default chip id if none specified, set to 0 so
|
|
it can be overridden if this is a hybrid driver */
|
|
priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
|
|
|
|
/* Check if firmware has been loaded. It is possible that another
|
|
instance of the driver has loaded the firmware.
|
|
*/
|
|
if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
|
|
goto fail;
|
|
|
|
switch (id) {
|
|
case XC_PRODUCT_ID_FW_LOADED:
|
|
printk(KERN_INFO
|
|
"xc5000: Successfully identified at address 0x%02x\n",
|
|
cfg->i2c_address);
|
|
printk(KERN_INFO
|
|
"xc5000: Firmware has been loaded previously\n");
|
|
break;
|
|
case XC_PRODUCT_ID_FW_NOT_LOADED:
|
|
printk(KERN_INFO
|
|
"xc5000: Successfully identified at address 0x%02x\n",
|
|
cfg->i2c_address);
|
|
printk(KERN_INFO
|
|
"xc5000: Firmware has not been loaded previously\n");
|
|
break;
|
|
default:
|
|
printk(KERN_ERR
|
|
"xc5000: Device not found at addr 0x%02x (0x%x)\n",
|
|
cfg->i2c_address, id);
|
|
goto fail;
|
|
}
|
|
|
|
mutex_unlock(&xc5000_list_mutex);
|
|
|
|
memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
|
|
sizeof(struct dvb_tuner_ops));
|
|
|
|
return fe;
|
|
fail:
|
|
mutex_unlock(&xc5000_list_mutex);
|
|
|
|
xc5000_release(fe);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(xc5000_attach);
|
|
|
|
MODULE_AUTHOR("Steven Toth");
|
|
MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_FIRMWARE(XC5000A_FIRMWARE);
|
|
MODULE_FIRMWARE(XC5000C_FIRMWARE);
|