WSL2-Linux-Kernel/drivers/gpu/drm/nouveau/nouveau_bo.c

1333 строки
32 KiB
C

/*
* Copyright 2007 Dave Airlied
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Authors: Dave Airlied <airlied@linux.ie>
* Ben Skeggs <darktama@iinet.net.au>
* Jeremy Kolb <jkolb@brandeis.edu>
*/
#include <linux/dma-mapping.h>
#include "nouveau_drv.h"
#include "nouveau_chan.h"
#include "nouveau_fence.h"
#include "nouveau_bo.h"
#include "nouveau_ttm.h"
#include "nouveau_gem.h"
#include "nouveau_mem.h"
#include "nouveau_vmm.h"
#include <nvif/class.h>
#include <nvif/if500b.h>
#include <nvif/if900b.h>
static int nouveau_ttm_tt_bind(struct ttm_bo_device *bdev, struct ttm_tt *ttm,
struct ttm_resource *reg);
static void nouveau_ttm_tt_unbind(struct ttm_bo_device *bdev, struct ttm_tt *ttm);
/*
* NV10-NV40 tiling helpers
*/
static void
nv10_bo_update_tile_region(struct drm_device *dev, struct nouveau_drm_tile *reg,
u32 addr, u32 size, u32 pitch, u32 flags)
{
struct nouveau_drm *drm = nouveau_drm(dev);
int i = reg - drm->tile.reg;
struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
struct nvkm_fb_tile *tile = &fb->tile.region[i];
nouveau_fence_unref(&reg->fence);
if (tile->pitch)
nvkm_fb_tile_fini(fb, i, tile);
if (pitch)
nvkm_fb_tile_init(fb, i, addr, size, pitch, flags, tile);
nvkm_fb_tile_prog(fb, i, tile);
}
static struct nouveau_drm_tile *
nv10_bo_get_tile_region(struct drm_device *dev, int i)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_drm_tile *tile = &drm->tile.reg[i];
spin_lock(&drm->tile.lock);
if (!tile->used &&
(!tile->fence || nouveau_fence_done(tile->fence)))
tile->used = true;
else
tile = NULL;
spin_unlock(&drm->tile.lock);
return tile;
}
static void
nv10_bo_put_tile_region(struct drm_device *dev, struct nouveau_drm_tile *tile,
struct dma_fence *fence)
{
struct nouveau_drm *drm = nouveau_drm(dev);
if (tile) {
spin_lock(&drm->tile.lock);
tile->fence = (struct nouveau_fence *)dma_fence_get(fence);
tile->used = false;
spin_unlock(&drm->tile.lock);
}
}
static struct nouveau_drm_tile *
nv10_bo_set_tiling(struct drm_device *dev, u32 addr,
u32 size, u32 pitch, u32 zeta)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_fb *fb = nvxx_fb(&drm->client.device);
struct nouveau_drm_tile *tile, *found = NULL;
int i;
for (i = 0; i < fb->tile.regions; i++) {
tile = nv10_bo_get_tile_region(dev, i);
if (pitch && !found) {
found = tile;
continue;
} else if (tile && fb->tile.region[i].pitch) {
/* Kill an unused tile region. */
nv10_bo_update_tile_region(dev, tile, 0, 0, 0, 0);
}
nv10_bo_put_tile_region(dev, tile, NULL);
}
if (found)
nv10_bo_update_tile_region(dev, found, addr, size, pitch, zeta);
return found;
}
static void
nouveau_bo_del_ttm(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
WARN_ON(nvbo->bo.pin_count > 0);
nouveau_bo_del_io_reserve_lru(bo);
nv10_bo_put_tile_region(dev, nvbo->tile, NULL);
/*
* If nouveau_bo_new() allocated this buffer, the GEM object was never
* initialized, so don't attempt to release it.
*/
if (bo->base.dev)
drm_gem_object_release(&bo->base);
kfree(nvbo);
}
static inline u64
roundup_64(u64 x, u32 y)
{
x += y - 1;
do_div(x, y);
return x * y;
}
static void
nouveau_bo_fixup_align(struct nouveau_bo *nvbo, int *align, u64 *size)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct nvif_device *device = &drm->client.device;
if (device->info.family < NV_DEVICE_INFO_V0_TESLA) {
if (nvbo->mode) {
if (device->info.chipset >= 0x40) {
*align = 65536;
*size = roundup_64(*size, 64 * nvbo->mode);
} else if (device->info.chipset >= 0x30) {
*align = 32768;
*size = roundup_64(*size, 64 * nvbo->mode);
} else if (device->info.chipset >= 0x20) {
*align = 16384;
*size = roundup_64(*size, 64 * nvbo->mode);
} else if (device->info.chipset >= 0x10) {
*align = 16384;
*size = roundup_64(*size, 32 * nvbo->mode);
}
}
} else {
*size = roundup_64(*size, (1 << nvbo->page));
*align = max((1 << nvbo->page), *align);
}
*size = roundup_64(*size, PAGE_SIZE);
}
struct nouveau_bo *
nouveau_bo_alloc(struct nouveau_cli *cli, u64 *size, int *align, u32 domain,
u32 tile_mode, u32 tile_flags)
{
struct nouveau_drm *drm = cli->drm;
struct nouveau_bo *nvbo;
struct nvif_mmu *mmu = &cli->mmu;
struct nvif_vmm *vmm = cli->svm.cli ? &cli->svm.vmm : &cli->vmm.vmm;
int i, pi = -1;
if (!*size) {
NV_WARN(drm, "skipped size %016llx\n", *size);
return ERR_PTR(-EINVAL);
}
nvbo = kzalloc(sizeof(struct nouveau_bo), GFP_KERNEL);
if (!nvbo)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&nvbo->head);
INIT_LIST_HEAD(&nvbo->entry);
INIT_LIST_HEAD(&nvbo->vma_list);
nvbo->bo.bdev = &drm->ttm.bdev;
/* This is confusing, and doesn't actually mean we want an uncached
* mapping, but is what NOUVEAU_GEM_DOMAIN_COHERENT gets translated
* into in nouveau_gem_new().
*/
if (domain & NOUVEAU_GEM_DOMAIN_COHERENT) {
/* Determine if we can get a cache-coherent map, forcing
* uncached mapping if we can't.
*/
if (!nouveau_drm_use_coherent_gpu_mapping(drm))
nvbo->force_coherent = true;
}
if (cli->device.info.family >= NV_DEVICE_INFO_V0_FERMI) {
nvbo->kind = (tile_flags & 0x0000ff00) >> 8;
if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
kfree(nvbo);
return ERR_PTR(-EINVAL);
}
nvbo->comp = mmu->kind[nvbo->kind] != nvbo->kind;
} else
if (cli->device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
nvbo->kind = (tile_flags & 0x00007f00) >> 8;
nvbo->comp = (tile_flags & 0x00030000) >> 16;
if (!nvif_mmu_kind_valid(mmu, nvbo->kind)) {
kfree(nvbo);
return ERR_PTR(-EINVAL);
}
} else {
nvbo->zeta = (tile_flags & 0x00000007);
}
nvbo->mode = tile_mode;
nvbo->contig = !(tile_flags & NOUVEAU_GEM_TILE_NONCONTIG);
/* Determine the desirable target GPU page size for the buffer. */
for (i = 0; i < vmm->page_nr; i++) {
/* Because we cannot currently allow VMM maps to fail
* during buffer migration, we need to determine page
* size for the buffer up-front, and pre-allocate its
* page tables.
*
* Skip page sizes that can't support needed domains.
*/
if (cli->device.info.family > NV_DEVICE_INFO_V0_CURIE &&
(domain & NOUVEAU_GEM_DOMAIN_VRAM) && !vmm->page[i].vram)
continue;
if ((domain & NOUVEAU_GEM_DOMAIN_GART) &&
(!vmm->page[i].host || vmm->page[i].shift > PAGE_SHIFT))
continue;
/* Select this page size if it's the first that supports
* the potential memory domains, or when it's compatible
* with the requested compression settings.
*/
if (pi < 0 || !nvbo->comp || vmm->page[i].comp)
pi = i;
/* Stop once the buffer is larger than the current page size. */
if (*size >= 1ULL << vmm->page[i].shift)
break;
}
if (WARN_ON(pi < 0))
return ERR_PTR(-EINVAL);
/* Disable compression if suitable settings couldn't be found. */
if (nvbo->comp && !vmm->page[pi].comp) {
if (mmu->object.oclass >= NVIF_CLASS_MMU_GF100)
nvbo->kind = mmu->kind[nvbo->kind];
nvbo->comp = 0;
}
nvbo->page = vmm->page[pi].shift;
nouveau_bo_fixup_align(nvbo, align, size);
return nvbo;
}
int
nouveau_bo_init(struct nouveau_bo *nvbo, u64 size, int align, u32 domain,
struct sg_table *sg, struct dma_resv *robj)
{
int type = sg ? ttm_bo_type_sg : ttm_bo_type_device;
size_t acc_size;
int ret;
acc_size = ttm_bo_dma_acc_size(nvbo->bo.bdev, size, sizeof(*nvbo));
nvbo->bo.mem.num_pages = size >> PAGE_SHIFT;
nouveau_bo_placement_set(nvbo, domain, 0);
INIT_LIST_HEAD(&nvbo->io_reserve_lru);
ret = ttm_bo_init(nvbo->bo.bdev, &nvbo->bo, size, type,
&nvbo->placement, align >> PAGE_SHIFT, false,
acc_size, sg, robj, nouveau_bo_del_ttm);
if (ret) {
/* ttm will call nouveau_bo_del_ttm if it fails.. */
return ret;
}
return 0;
}
int
nouveau_bo_new(struct nouveau_cli *cli, u64 size, int align,
uint32_t domain, uint32_t tile_mode, uint32_t tile_flags,
struct sg_table *sg, struct dma_resv *robj,
struct nouveau_bo **pnvbo)
{
struct nouveau_bo *nvbo;
int ret;
nvbo = nouveau_bo_alloc(cli, &size, &align, domain, tile_mode,
tile_flags);
if (IS_ERR(nvbo))
return PTR_ERR(nvbo);
ret = nouveau_bo_init(nvbo, size, align, domain, sg, robj);
if (ret)
return ret;
*pnvbo = nvbo;
return 0;
}
static void
set_placement_list(struct ttm_place *pl, unsigned *n, uint32_t domain)
{
*n = 0;
if (domain & NOUVEAU_GEM_DOMAIN_VRAM) {
pl[*n].mem_type = TTM_PL_VRAM;
pl[*n].flags = 0;
(*n)++;
}
if (domain & NOUVEAU_GEM_DOMAIN_GART) {
pl[*n].mem_type = TTM_PL_TT;
pl[*n].flags = 0;
(*n)++;
}
if (domain & NOUVEAU_GEM_DOMAIN_CPU) {
pl[*n].mem_type = TTM_PL_SYSTEM;
pl[(*n)++].flags = 0;
}
}
static void
set_placement_range(struct nouveau_bo *nvbo, uint32_t domain)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
u32 vram_pages = drm->client.device.info.ram_size >> PAGE_SHIFT;
unsigned i, fpfn, lpfn;
if (drm->client.device.info.family == NV_DEVICE_INFO_V0_CELSIUS &&
nvbo->mode && (domain & NOUVEAU_GEM_DOMAIN_VRAM) &&
nvbo->bo.mem.num_pages < vram_pages / 4) {
/*
* Make sure that the color and depth buffers are handled
* by independent memory controller units. Up to a 9x
* speed up when alpha-blending and depth-test are enabled
* at the same time.
*/
if (nvbo->zeta) {
fpfn = vram_pages / 2;
lpfn = ~0;
} else {
fpfn = 0;
lpfn = vram_pages / 2;
}
for (i = 0; i < nvbo->placement.num_placement; ++i) {
nvbo->placements[i].fpfn = fpfn;
nvbo->placements[i].lpfn = lpfn;
}
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
nvbo->busy_placements[i].fpfn = fpfn;
nvbo->busy_placements[i].lpfn = lpfn;
}
}
}
void
nouveau_bo_placement_set(struct nouveau_bo *nvbo, uint32_t domain,
uint32_t busy)
{
struct ttm_placement *pl = &nvbo->placement;
pl->placement = nvbo->placements;
set_placement_list(nvbo->placements, &pl->num_placement, domain);
pl->busy_placement = nvbo->busy_placements;
set_placement_list(nvbo->busy_placements, &pl->num_busy_placement,
domain | busy);
set_placement_range(nvbo, domain);
}
int
nouveau_bo_pin(struct nouveau_bo *nvbo, uint32_t domain, bool contig)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
bool force = false, evict = false;
int ret;
ret = ttm_bo_reserve(bo, false, false, NULL);
if (ret)
return ret;
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
domain == NOUVEAU_GEM_DOMAIN_VRAM && contig) {
if (!nvbo->contig) {
nvbo->contig = true;
force = true;
evict = true;
}
}
if (nvbo->bo.pin_count) {
bool error = evict;
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
error |= !(domain & NOUVEAU_GEM_DOMAIN_VRAM);
break;
case TTM_PL_TT:
error |= !(domain & NOUVEAU_GEM_DOMAIN_GART);
default:
break;
}
if (error) {
NV_ERROR(drm, "bo %p pinned elsewhere: "
"0x%08x vs 0x%08x\n", bo,
bo->mem.mem_type, domain);
ret = -EBUSY;
}
ttm_bo_pin(&nvbo->bo);
goto out;
}
if (evict) {
nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
goto out;
}
nouveau_bo_placement_set(nvbo, domain, 0);
ret = nouveau_bo_validate(nvbo, false, false);
if (ret)
goto out;
ttm_bo_pin(&nvbo->bo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
drm->gem.vram_available -= bo->mem.size;
break;
case TTM_PL_TT:
drm->gem.gart_available -= bo->mem.size;
break;
default:
break;
}
out:
if (force && ret)
nvbo->contig = false;
ttm_bo_unreserve(bo);
return ret;
}
int
nouveau_bo_unpin(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_buffer_object *bo = &nvbo->bo;
int ret;
ret = ttm_bo_reserve(bo, false, false, NULL);
if (ret)
return ret;
ttm_bo_unpin(&nvbo->bo);
if (!nvbo->bo.pin_count) {
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
drm->gem.vram_available += bo->mem.size;
break;
case TTM_PL_TT:
drm->gem.gart_available += bo->mem.size;
break;
default:
break;
}
}
ttm_bo_unreserve(bo);
return 0;
}
int
nouveau_bo_map(struct nouveau_bo *nvbo)
{
int ret;
ret = ttm_bo_reserve(&nvbo->bo, false, false, NULL);
if (ret)
return ret;
ret = ttm_bo_kmap(&nvbo->bo, 0, nvbo->bo.mem.num_pages, &nvbo->kmap);
ttm_bo_unreserve(&nvbo->bo);
return ret;
}
void
nouveau_bo_unmap(struct nouveau_bo *nvbo)
{
if (!nvbo)
return;
ttm_bo_kunmap(&nvbo->kmap);
}
void
nouveau_bo_sync_for_device(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
int i, j;
if (!ttm_dma)
return;
/* Don't waste time looping if the object is coherent */
if (nvbo->force_coherent)
return;
for (i = 0; i < ttm_dma->num_pages; ++i) {
struct page *p = ttm_dma->pages[i];
size_t num_pages = 1;
for (j = i + 1; j < ttm_dma->num_pages; ++j) {
if (++p != ttm_dma->pages[j])
break;
++num_pages;
}
dma_sync_single_for_device(drm->dev->dev,
ttm_dma->dma_address[i],
num_pages * PAGE_SIZE, DMA_TO_DEVICE);
i += num_pages;
}
}
void
nouveau_bo_sync_for_cpu(struct nouveau_bo *nvbo)
{
struct nouveau_drm *drm = nouveau_bdev(nvbo->bo.bdev);
struct ttm_tt *ttm_dma = (struct ttm_tt *)nvbo->bo.ttm;
int i, j;
if (!ttm_dma)
return;
/* Don't waste time looping if the object is coherent */
if (nvbo->force_coherent)
return;
for (i = 0; i < ttm_dma->num_pages; ++i) {
struct page *p = ttm_dma->pages[i];
size_t num_pages = 1;
for (j = i + 1; j < ttm_dma->num_pages; ++j) {
if (++p != ttm_dma->pages[j])
break;
++num_pages;
}
dma_sync_single_for_cpu(drm->dev->dev, ttm_dma->dma_address[i],
num_pages * PAGE_SIZE, DMA_FROM_DEVICE);
i += num_pages;
}
}
void nouveau_bo_add_io_reserve_lru(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
mutex_lock(&drm->ttm.io_reserve_mutex);
list_move_tail(&nvbo->io_reserve_lru, &drm->ttm.io_reserve_lru);
mutex_unlock(&drm->ttm.io_reserve_mutex);
}
void nouveau_bo_del_io_reserve_lru(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
mutex_lock(&drm->ttm.io_reserve_mutex);
list_del_init(&nvbo->io_reserve_lru);
mutex_unlock(&drm->ttm.io_reserve_mutex);
}
int
nouveau_bo_validate(struct nouveau_bo *nvbo, bool interruptible,
bool no_wait_gpu)
{
struct ttm_operation_ctx ctx = { interruptible, no_wait_gpu };
int ret;
ret = ttm_bo_validate(&nvbo->bo, &nvbo->placement, &ctx);
if (ret)
return ret;
nouveau_bo_sync_for_device(nvbo);
return 0;
}
void
nouveau_bo_wr16(struct nouveau_bo *nvbo, unsigned index, u16 val)
{
bool is_iomem;
u16 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem += index;
if (is_iomem)
iowrite16_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
u32
nouveau_bo_rd32(struct nouveau_bo *nvbo, unsigned index)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem += index;
if (is_iomem)
return ioread32_native((void __force __iomem *)mem);
else
return *mem;
}
void
nouveau_bo_wr32(struct nouveau_bo *nvbo, unsigned index, u32 val)
{
bool is_iomem;
u32 *mem = ttm_kmap_obj_virtual(&nvbo->kmap, &is_iomem);
mem += index;
if (is_iomem)
iowrite32_native(val, (void __force __iomem *)mem);
else
*mem = val;
}
static struct ttm_tt *
nouveau_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags)
{
#if IS_ENABLED(CONFIG_AGP)
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
if (drm->agp.bridge) {
return ttm_agp_tt_create(bo, drm->agp.bridge, page_flags);
}
#endif
return nouveau_sgdma_create_ttm(bo, page_flags);
}
static int
nouveau_ttm_tt_bind(struct ttm_bo_device *bdev, struct ttm_tt *ttm,
struct ttm_resource *reg)
{
#if IS_ENABLED(CONFIG_AGP)
struct nouveau_drm *drm = nouveau_bdev(bdev);
#endif
if (!reg)
return -EINVAL;
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge)
return ttm_agp_bind(ttm, reg);
#endif
return nouveau_sgdma_bind(bdev, ttm, reg);
}
static void
nouveau_ttm_tt_unbind(struct ttm_bo_device *bdev, struct ttm_tt *ttm)
{
#if IS_ENABLED(CONFIG_AGP)
struct nouveau_drm *drm = nouveau_bdev(bdev);
if (drm->agp.bridge) {
ttm_agp_unbind(ttm);
return;
}
#endif
nouveau_sgdma_unbind(bdev, ttm);
}
static void
nouveau_bo_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *pl)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
switch (bo->mem.mem_type) {
case TTM_PL_VRAM:
nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART,
NOUVEAU_GEM_DOMAIN_CPU);
break;
default:
nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_CPU, 0);
break;
}
*pl = nvbo->placement;
}
static int
nouveau_bo_move_prep(struct nouveau_drm *drm, struct ttm_buffer_object *bo,
struct ttm_resource *reg)
{
struct nouveau_mem *old_mem = nouveau_mem(&bo->mem);
struct nouveau_mem *new_mem = nouveau_mem(reg);
struct nvif_vmm *vmm = &drm->client.vmm.vmm;
int ret;
ret = nvif_vmm_get(vmm, LAZY, false, old_mem->mem.page, 0,
old_mem->mem.size, &old_mem->vma[0]);
if (ret)
return ret;
ret = nvif_vmm_get(vmm, LAZY, false, new_mem->mem.page, 0,
new_mem->mem.size, &old_mem->vma[1]);
if (ret)
goto done;
ret = nouveau_mem_map(old_mem, vmm, &old_mem->vma[0]);
if (ret)
goto done;
ret = nouveau_mem_map(new_mem, vmm, &old_mem->vma[1]);
done:
if (ret) {
nvif_vmm_put(vmm, &old_mem->vma[1]);
nvif_vmm_put(vmm, &old_mem->vma[0]);
}
return 0;
}
static int
nouveau_bo_move_m2mf(struct ttm_buffer_object *bo, int evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_reg)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_channel *chan = drm->ttm.chan;
struct nouveau_cli *cli = (void *)chan->user.client;
struct nouveau_fence *fence;
int ret;
/* create temporary vmas for the transfer and attach them to the
* old nvkm_mem node, these will get cleaned up after ttm has
* destroyed the ttm_resource
*/
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_move_prep(drm, bo, new_reg);
if (ret)
return ret;
}
mutex_lock_nested(&cli->mutex, SINGLE_DEPTH_NESTING);
ret = nouveau_fence_sync(nouveau_bo(bo), chan, true, ctx->interruptible);
if (ret == 0) {
ret = drm->ttm.move(chan, bo, &bo->mem, new_reg);
if (ret == 0) {
ret = nouveau_fence_new(chan, false, &fence);
if (ret == 0) {
ret = ttm_bo_move_accel_cleanup(bo,
&fence->base,
evict, false,
new_reg);
nouveau_fence_unref(&fence);
}
}
}
mutex_unlock(&cli->mutex);
return ret;
}
void
nouveau_bo_move_init(struct nouveau_drm *drm)
{
static const struct _method_table {
const char *name;
int engine;
s32 oclass;
int (*exec)(struct nouveau_channel *,
struct ttm_buffer_object *,
struct ttm_resource *, struct ttm_resource *);
int (*init)(struct nouveau_channel *, u32 handle);
} _methods[] = {
{ "COPY", 4, 0xc5b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xc5b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xc3b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xc3b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xc1b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xc1b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xc0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xc0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xb0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xb0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 4, 0xa0b5, nve0_bo_move_copy, nve0_bo_move_init },
{ "GRCE", 0, 0xa0b5, nve0_bo_move_copy, nvc0_bo_move_init },
{ "COPY1", 5, 0x90b8, nvc0_bo_move_copy, nvc0_bo_move_init },
{ "COPY0", 4, 0x90b5, nvc0_bo_move_copy, nvc0_bo_move_init },
{ "COPY", 0, 0x85b5, nva3_bo_move_copy, nv50_bo_move_init },
{ "CRYPT", 0, 0x74c1, nv84_bo_move_exec, nv50_bo_move_init },
{ "M2MF", 0, 0x9039, nvc0_bo_move_m2mf, nvc0_bo_move_init },
{ "M2MF", 0, 0x5039, nv50_bo_move_m2mf, nv50_bo_move_init },
{ "M2MF", 0, 0x0039, nv04_bo_move_m2mf, nv04_bo_move_init },
{},
};
const struct _method_table *mthd = _methods;
const char *name = "CPU";
int ret;
do {
struct nouveau_channel *chan;
if (mthd->engine)
chan = drm->cechan;
else
chan = drm->channel;
if (chan == NULL)
continue;
ret = nvif_object_ctor(&chan->user, "ttmBoMove",
mthd->oclass | (mthd->engine << 16),
mthd->oclass, NULL, 0,
&drm->ttm.copy);
if (ret == 0) {
ret = mthd->init(chan, drm->ttm.copy.handle);
if (ret) {
nvif_object_dtor(&drm->ttm.copy);
continue;
}
drm->ttm.move = mthd->exec;
drm->ttm.chan = chan;
name = mthd->name;
break;
}
} while ((++mthd)->exec);
NV_INFO(drm, "MM: using %s for buffer copies\n", name);
}
static void
nouveau_bo_move_ntfy(struct ttm_buffer_object *bo, bool evict,
struct ttm_resource *new_reg)
{
struct nouveau_mem *mem = new_reg ? nouveau_mem(new_reg) : NULL;
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nouveau_vma *vma;
/* ttm can now (stupidly) pass the driver bos it didn't create... */
if (bo->destroy != nouveau_bo_del_ttm)
return;
nouveau_bo_del_io_reserve_lru(bo);
if (mem && new_reg->mem_type != TTM_PL_SYSTEM &&
mem->mem.page == nvbo->page) {
list_for_each_entry(vma, &nvbo->vma_list, head) {
nouveau_vma_map(vma, mem);
}
} else {
list_for_each_entry(vma, &nvbo->vma_list, head) {
WARN_ON(ttm_bo_wait(bo, false, false));
nouveau_vma_unmap(vma);
}
}
if (new_reg) {
if (new_reg->mm_node)
nvbo->offset = (new_reg->start << PAGE_SHIFT);
else
nvbo->offset = 0;
}
}
static int
nouveau_bo_vm_bind(struct ttm_buffer_object *bo, struct ttm_resource *new_reg,
struct nouveau_drm_tile **new_tile)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct nouveau_bo *nvbo = nouveau_bo(bo);
u64 offset = new_reg->start << PAGE_SHIFT;
*new_tile = NULL;
if (new_reg->mem_type != TTM_PL_VRAM)
return 0;
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_CELSIUS) {
*new_tile = nv10_bo_set_tiling(dev, offset, new_reg->size,
nvbo->mode, nvbo->zeta);
}
return 0;
}
static void
nouveau_bo_vm_cleanup(struct ttm_buffer_object *bo,
struct nouveau_drm_tile *new_tile,
struct nouveau_drm_tile **old_tile)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct drm_device *dev = drm->dev;
struct dma_fence *fence = dma_resv_get_excl(bo->base.resv);
nv10_bo_put_tile_region(dev, *old_tile, fence);
*old_tile = new_tile;
}
static int
nouveau_bo_move(struct ttm_buffer_object *bo, bool evict,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_reg,
struct ttm_place *hop)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct ttm_resource *old_reg = &bo->mem;
struct nouveau_drm_tile *new_tile = NULL;
int ret = 0;
if (new_reg->mem_type == TTM_PL_TT) {
ret = nouveau_ttm_tt_bind(bo->bdev, bo->ttm, new_reg);
if (ret)
return ret;
}
nouveau_bo_move_ntfy(bo, evict, new_reg);
ret = ttm_bo_wait_ctx(bo, ctx);
if (ret)
goto out_ntfy;
if (nvbo->bo.pin_count)
NV_WARN(drm, "Moving pinned object %p!\n", nvbo);
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_bo_vm_bind(bo, new_reg, &new_tile);
if (ret)
goto out_ntfy;
}
/* Fake bo copy. */
if (old_reg->mem_type == TTM_PL_SYSTEM && !bo->ttm) {
ttm_bo_move_null(bo, new_reg);
goto out;
}
if (old_reg->mem_type == TTM_PL_SYSTEM &&
new_reg->mem_type == TTM_PL_TT) {
ttm_bo_move_null(bo, new_reg);
goto out;
}
if (old_reg->mem_type == TTM_PL_TT &&
new_reg->mem_type == TTM_PL_SYSTEM) {
nouveau_ttm_tt_unbind(bo->bdev, bo->ttm);
ttm_resource_free(bo, &bo->mem);
ttm_bo_assign_mem(bo, new_reg);
goto out;
}
/* Hardware assisted copy. */
if (drm->ttm.move) {
if ((old_reg->mem_type == TTM_PL_SYSTEM &&
new_reg->mem_type == TTM_PL_VRAM) ||
(old_reg->mem_type == TTM_PL_VRAM &&
new_reg->mem_type == TTM_PL_SYSTEM)) {
hop->fpfn = 0;
hop->lpfn = 0;
hop->mem_type = TTM_PL_TT;
hop->flags = 0;
return -EMULTIHOP;
}
ret = nouveau_bo_move_m2mf(bo, evict, ctx,
new_reg);
} else
ret = -ENODEV;
if (ret) {
/* Fallback to software copy. */
ret = ttm_bo_move_memcpy(bo, ctx, new_reg);
}
out:
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA) {
if (ret)
nouveau_bo_vm_cleanup(bo, NULL, &new_tile);
else
nouveau_bo_vm_cleanup(bo, new_tile, &nvbo->tile);
}
out_ntfy:
if (ret) {
swap(*new_reg, bo->mem);
nouveau_bo_move_ntfy(bo, false, new_reg);
swap(*new_reg, bo->mem);
}
return ret;
}
static int
nouveau_bo_verify_access(struct ttm_buffer_object *bo, struct file *filp)
{
struct nouveau_bo *nvbo = nouveau_bo(bo);
return drm_vma_node_verify_access(&nvbo->bo.base.vma_node,
filp->private_data);
}
static void
nouveau_ttm_io_mem_free_locked(struct nouveau_drm *drm,
struct ttm_resource *reg)
{
struct nouveau_mem *mem = nouveau_mem(reg);
if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
switch (reg->mem_type) {
case TTM_PL_TT:
if (mem->kind)
nvif_object_unmap_handle(&mem->mem.object);
break;
case TTM_PL_VRAM:
nvif_object_unmap_handle(&mem->mem.object);
break;
default:
break;
}
}
}
static int
nouveau_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_resource *reg)
{
struct nouveau_drm *drm = nouveau_bdev(bdev);
struct nvkm_device *device = nvxx_device(&drm->client.device);
struct nouveau_mem *mem = nouveau_mem(reg);
struct nvif_mmu *mmu = &drm->client.mmu;
int ret;
mutex_lock(&drm->ttm.io_reserve_mutex);
retry:
switch (reg->mem_type) {
case TTM_PL_SYSTEM:
/* System memory */
ret = 0;
goto out;
case TTM_PL_TT:
#if IS_ENABLED(CONFIG_AGP)
if (drm->agp.bridge) {
reg->bus.offset = (reg->start << PAGE_SHIFT) +
drm->agp.base;
reg->bus.is_iomem = !drm->agp.cma;
reg->bus.caching = ttm_write_combined;
}
#endif
if (drm->client.mem->oclass < NVIF_CLASS_MEM_NV50 ||
!mem->kind) {
/* untiled */
ret = 0;
break;
}
fallthrough; /* tiled memory */
case TTM_PL_VRAM:
reg->bus.offset = (reg->start << PAGE_SHIFT) +
device->func->resource_addr(device, 1);
reg->bus.is_iomem = true;
/* Some BARs do not support being ioremapped WC */
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA &&
mmu->type[drm->ttm.type_vram].type & NVIF_MEM_UNCACHED)
reg->bus.caching = ttm_uncached;
else
reg->bus.caching = ttm_write_combined;
if (drm->client.mem->oclass >= NVIF_CLASS_MEM_NV50) {
union {
struct nv50_mem_map_v0 nv50;
struct gf100_mem_map_v0 gf100;
} args;
u64 handle, length;
u32 argc = 0;
switch (mem->mem.object.oclass) {
case NVIF_CLASS_MEM_NV50:
args.nv50.version = 0;
args.nv50.ro = 0;
args.nv50.kind = mem->kind;
args.nv50.comp = mem->comp;
argc = sizeof(args.nv50);
break;
case NVIF_CLASS_MEM_GF100:
args.gf100.version = 0;
args.gf100.ro = 0;
args.gf100.kind = mem->kind;
argc = sizeof(args.gf100);
break;
default:
WARN_ON(1);
break;
}
ret = nvif_object_map_handle(&mem->mem.object,
&args, argc,
&handle, &length);
if (ret != 1) {
if (WARN_ON(ret == 0))
ret = -EINVAL;
goto out;
}
reg->bus.offset = handle;
}
ret = 0;
break;
default:
ret = -EINVAL;
}
out:
if (ret == -ENOSPC) {
struct nouveau_bo *nvbo;
nvbo = list_first_entry_or_null(&drm->ttm.io_reserve_lru,
typeof(*nvbo),
io_reserve_lru);
if (nvbo) {
list_del_init(&nvbo->io_reserve_lru);
drm_vma_node_unmap(&nvbo->bo.base.vma_node,
bdev->dev_mapping);
nouveau_ttm_io_mem_free_locked(drm, &nvbo->bo.mem);
goto retry;
}
}
mutex_unlock(&drm->ttm.io_reserve_mutex);
return ret;
}
static void
nouveau_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_resource *reg)
{
struct nouveau_drm *drm = nouveau_bdev(bdev);
mutex_lock(&drm->ttm.io_reserve_mutex);
nouveau_ttm_io_mem_free_locked(drm, reg);
mutex_unlock(&drm->ttm.io_reserve_mutex);
}
vm_fault_t nouveau_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
{
struct nouveau_drm *drm = nouveau_bdev(bo->bdev);
struct nouveau_bo *nvbo = nouveau_bo(bo);
struct nvkm_device *device = nvxx_device(&drm->client.device);
u32 mappable = device->func->resource_size(device, 1) >> PAGE_SHIFT;
int i, ret;
/* as long as the bo isn't in vram, and isn't tiled, we've got
* nothing to do here.
*/
if (bo->mem.mem_type != TTM_PL_VRAM) {
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_TESLA ||
!nvbo->kind)
return 0;
if (bo->mem.mem_type != TTM_PL_SYSTEM)
return 0;
nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_GART, 0);
} else {
/* make sure bo is in mappable vram */
if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_TESLA ||
bo->mem.start + bo->mem.num_pages < mappable)
return 0;
for (i = 0; i < nvbo->placement.num_placement; ++i) {
nvbo->placements[i].fpfn = 0;
nvbo->placements[i].lpfn = mappable;
}
for (i = 0; i < nvbo->placement.num_busy_placement; ++i) {
nvbo->busy_placements[i].fpfn = 0;
nvbo->busy_placements[i].lpfn = mappable;
}
nouveau_bo_placement_set(nvbo, NOUVEAU_GEM_DOMAIN_VRAM, 0);
}
ret = nouveau_bo_validate(nvbo, false, false);
if (unlikely(ret == -EBUSY || ret == -ERESTARTSYS))
return VM_FAULT_NOPAGE;
else if (unlikely(ret))
return VM_FAULT_SIGBUS;
ttm_bo_move_to_lru_tail_unlocked(bo);
return 0;
}
static int
nouveau_ttm_tt_populate(struct ttm_bo_device *bdev,
struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
{
struct ttm_tt *ttm_dma = (void *)ttm;
struct nouveau_drm *drm;
struct device *dev;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (ttm_tt_is_populated(ttm))
return 0;
if (slave && ttm->sg) {
/* make userspace faulting work */
drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
ttm_dma->dma_address, ttm->num_pages);
return 0;
}
drm = nouveau_bdev(bdev);
dev = drm->dev->dev;
return ttm_pool_alloc(&drm->ttm.bdev.pool, ttm, ctx);
}
static void
nouveau_ttm_tt_unpopulate(struct ttm_bo_device *bdev,
struct ttm_tt *ttm)
{
struct nouveau_drm *drm;
struct device *dev;
bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
if (slave)
return;
drm = nouveau_bdev(bdev);
dev = drm->dev->dev;
return ttm_pool_free(&drm->ttm.bdev.pool, ttm);
}
static void
nouveau_ttm_tt_destroy(struct ttm_bo_device *bdev,
struct ttm_tt *ttm)
{
#if IS_ENABLED(CONFIG_AGP)
struct nouveau_drm *drm = nouveau_bdev(bdev);
if (drm->agp.bridge) {
ttm_agp_unbind(ttm);
ttm_tt_destroy_common(bdev, ttm);
ttm_agp_destroy(ttm);
return;
}
#endif
nouveau_sgdma_destroy(bdev, ttm);
}
void
nouveau_bo_fence(struct nouveau_bo *nvbo, struct nouveau_fence *fence, bool exclusive)
{
struct dma_resv *resv = nvbo->bo.base.resv;
if (exclusive)
dma_resv_add_excl_fence(resv, &fence->base);
else if (fence)
dma_resv_add_shared_fence(resv, &fence->base);
}
static void
nouveau_bo_delete_mem_notify(struct ttm_buffer_object *bo)
{
nouveau_bo_move_ntfy(bo, false, NULL);
}
struct ttm_bo_driver nouveau_bo_driver = {
.ttm_tt_create = &nouveau_ttm_tt_create,
.ttm_tt_populate = &nouveau_ttm_tt_populate,
.ttm_tt_unpopulate = &nouveau_ttm_tt_unpopulate,
.ttm_tt_destroy = &nouveau_ttm_tt_destroy,
.eviction_valuable = ttm_bo_eviction_valuable,
.evict_flags = nouveau_bo_evict_flags,
.delete_mem_notify = nouveau_bo_delete_mem_notify,
.move = nouveau_bo_move,
.verify_access = nouveau_bo_verify_access,
.io_mem_reserve = &nouveau_ttm_io_mem_reserve,
.io_mem_free = &nouveau_ttm_io_mem_free,
};