WSL2-Linux-Kernel/drivers/gpu/drm/nouveau/nva3_pm.c

625 строки
17 KiB
C

/*
* Copyright 2010 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <drm/drmP.h>
#include "nouveau_drm.h"
#include "nouveau_bios.h"
#include "nouveau_pm.h"
#include <subdev/bios/pll.h>
#include <subdev/bios.h>
#include <subdev/clock.h>
#include <subdev/timer.h>
#include <subdev/fb.h>
static u32 read_clk(struct drm_device *, int, bool);
static u32 read_pll(struct drm_device *, int, u32);
static u32
read_vco(struct drm_device *dev, int clk)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 sctl = nv_rd32(device, 0x4120 + (clk * 4));
if ((sctl & 0x00000030) != 0x00000030)
return read_pll(dev, 0x41, 0x00e820);
return read_pll(dev, 0x42, 0x00e8a0);
}
static u32
read_clk(struct drm_device *dev, int clk, bool ignore_en)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
u32 sctl, sdiv, sclk;
/* refclk for the 0xe8xx plls is a fixed frequency */
if (clk >= 0x40) {
if (nv_device(drm->device)->chipset == 0xaf) {
/* no joke.. seriously.. sigh.. */
return nv_rd32(device, 0x00471c) * 1000;
}
return device->crystal;
}
sctl = nv_rd32(device, 0x4120 + (clk * 4));
if (!ignore_en && !(sctl & 0x00000100))
return 0;
switch (sctl & 0x00003000) {
case 0x00000000:
return device->crystal;
case 0x00002000:
if (sctl & 0x00000040)
return 108000;
return 100000;
case 0x00003000:
sclk = read_vco(dev, clk);
sdiv = ((sctl & 0x003f0000) >> 16) + 2;
return (sclk * 2) / sdiv;
default:
return 0;
}
}
static u32
read_pll(struct drm_device *dev, int clk, u32 pll)
{
struct nouveau_device *device = nouveau_dev(dev);
u32 ctrl = nv_rd32(device, pll + 0);
u32 sclk = 0, P = 1, N = 1, M = 1;
if (!(ctrl & 0x00000008)) {
if (ctrl & 0x00000001) {
u32 coef = nv_rd32(device, pll + 4);
M = (coef & 0x000000ff) >> 0;
N = (coef & 0x0000ff00) >> 8;
P = (coef & 0x003f0000) >> 16;
/* no post-divider on these.. */
if ((pll & 0x00ff00) == 0x00e800)
P = 1;
sclk = read_clk(dev, 0x00 + clk, false);
}
} else {
sclk = read_clk(dev, 0x10 + clk, false);
}
if (M * P)
return sclk * N / (M * P);
return 0;
}
struct creg {
u32 clk;
u32 pll;
};
static int
calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_bios *bios = nouveau_bios(device);
struct nvbios_pll limits;
u32 oclk, sclk, sdiv;
int P, N, M, diff;
int ret;
reg->pll = 0;
reg->clk = 0;
if (!khz) {
NV_DEBUG(drm, "no clock for 0x%04x/0x%02x\n", pll, clk);
return 0;
}
switch (khz) {
case 27000:
reg->clk = 0x00000100;
return khz;
case 100000:
reg->clk = 0x00002100;
return khz;
case 108000:
reg->clk = 0x00002140;
return khz;
default:
sclk = read_vco(dev, clk);
sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
/* if the clock has a PLL attached, and we can get a within
* [-2, 3) MHz of a divider, we'll disable the PLL and use
* the divider instead.
*
* divider can go as low as 2, limited here because NVIDIA
* and the VBIOS on my NVA8 seem to prefer using the PLL
* for 810MHz - is there a good reason?
*/
if (sdiv > 4) {
oclk = (sclk * 2) / sdiv;
diff = khz - oclk;
if (!pll || (diff >= -2000 && diff < 3000)) {
reg->clk = (((sdiv - 2) << 16) | 0x00003100);
return oclk;
}
}
if (!pll) {
NV_ERROR(drm, "bad freq %02x: %d %d\n", clk, khz, sclk);
return -ERANGE;
}
break;
}
ret = nvbios_pll_parse(bios, pll, &limits);
if (ret)
return ret;
limits.refclk = read_clk(dev, clk - 0x10, true);
if (!limits.refclk)
return -EINVAL;
ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
if (ret >= 0) {
reg->clk = nv_rd32(device, 0x4120 + (clk * 4));
reg->pll = (P << 16) | (N << 8) | M;
}
return ret;
}
static void
prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
const u32 src0 = 0x004120 + (clk * 4);
const u32 src1 = 0x004160 + (clk * 4);
const u32 ctrl = pll + 0;
const u32 coef = pll + 4;
if (!reg->clk && !reg->pll) {
NV_DEBUG(drm, "no clock for %02x\n", clk);
return;
}
if (reg->pll) {
nv_mask(device, src0, 0x00000101, 0x00000101);
nv_wr32(device, coef, reg->pll);
nv_mask(device, ctrl, 0x00000015, 0x00000015);
nv_mask(device, ctrl, 0x00000010, 0x00000000);
nv_wait(device, ctrl, 0x00020000, 0x00020000);
nv_mask(device, ctrl, 0x00000010, 0x00000010);
nv_mask(device, ctrl, 0x00000008, 0x00000000);
nv_mask(device, src1, 0x00000100, 0x00000000);
nv_mask(device, src1, 0x00000001, 0x00000000);
} else {
nv_mask(device, src1, 0x003f3141, 0x00000101 | reg->clk);
nv_mask(device, ctrl, 0x00000018, 0x00000018);
udelay(20);
nv_mask(device, ctrl, 0x00000001, 0x00000000);
nv_mask(device, src0, 0x00000100, 0x00000000);
nv_mask(device, src0, 0x00000001, 0x00000000);
}
}
static void
prog_clk(struct drm_device *dev, int clk, struct creg *reg)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
if (!reg->clk) {
NV_DEBUG(drm, "no clock for %02x\n", clk);
return;
}
nv_mask(device, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk);
}
int
nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
perflvl->core = read_pll(dev, 0x00, 0x4200);
perflvl->shader = read_pll(dev, 0x01, 0x4220);
perflvl->memory = read_pll(dev, 0x02, 0x4000);
perflvl->unka0 = read_clk(dev, 0x20, false);
perflvl->vdec = read_clk(dev, 0x21, false);
perflvl->daemon = read_clk(dev, 0x25, false);
perflvl->copy = perflvl->core;
return 0;
}
struct nva3_pm_state {
struct nouveau_pm_level *perflvl;
struct creg nclk;
struct creg sclk;
struct creg vdec;
struct creg unka0;
struct creg mclk;
u8 *rammap;
u8 rammap_ver;
u8 rammap_len;
u8 *ramcfg;
u8 ramcfg_len;
u32 r004018;
u32 r100760;
};
void *
nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
{
struct nva3_pm_state *info;
u8 ramcfg_cnt;
int ret;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0);
if (ret < 0)
goto out;
ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec);
if (ret < 0)
goto out;
info->rammap = nouveau_perf_rammap(dev, perflvl->memory,
&info->rammap_ver,
&info->rammap_len,
&ramcfg_cnt, &info->ramcfg_len);
if (info->rammap_ver != 0x10 || info->rammap_len < 5)
info->rammap = NULL;
info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory,
&info->rammap_ver,
&info->ramcfg_len);
if (info->rammap_ver != 0x10)
info->ramcfg = NULL;
info->perflvl = perflvl;
out:
if (ret < 0) {
kfree(info);
info = ERR_PTR(ret);
}
return info;
}
static bool
nva3_pm_grcp_idle(void *data)
{
struct drm_device *dev = data;
struct nouveau_device *device = nouveau_dev(dev);
if (!(nv_rd32(device, 0x400304) & 0x00000001))
return true;
if (nv_rd32(device, 0x400308) == 0x0050001c)
return true;
return false;
}
static void
mclk_precharge(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x1002d4, 0x00000001);
}
static void
mclk_refresh(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x1002d0, 0x00000001);
}
static void
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x100210, enable ? 0x80000000 : 0x00000000);
}
static void
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
nv_wr32(device, 0x1002dc, enable ? 0x00000001 : 0x00000000);
}
static void
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
volatile u32 post = nv_rd32(device, 0); (void)post;
udelay((nsec + 500) / 1000);
}
static u32
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
if (mr <= 1)
return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
if (mr <= 3)
return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
return 0;
}
static void
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nouveau_fb *pfb = nouveau_fb(device);
if (mr <= 1) {
if (pfb->ram.ranks > 1)
nv_wr32(device, 0x1002c8 + ((mr - 0) * 4), data);
nv_wr32(device, 0x1002c0 + ((mr - 0) * 4), data);
} else
if (mr <= 3) {
if (pfb->ram.ranks > 1)
nv_wr32(device, 0x1002e8 + ((mr - 2) * 4), data);
nv_wr32(device, 0x1002e0 + ((mr - 2) * 4), data);
}
}
static void
mclk_clock_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nva3_pm_state *info = exec->priv;
u32 ctrl;
ctrl = nv_rd32(device, 0x004000);
if (!(ctrl & 0x00000008) && info->mclk.pll) {
nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
nv_wr32(device, 0x004018, 0x00001000);
nv_wr32(device, 0x004000, (ctrl &= ~0x00000001));
nv_wr32(device, 0x004004, info->mclk.pll);
nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
udelay(64);
nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
udelay(20);
} else
if (!info->mclk.pll) {
nv_mask(device, 0x004168, 0x003f3040, info->mclk.clk);
nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
nv_wr32(device, 0x004018, 0x0000d000 | info->r004018);
}
if (info->rammap) {
if (info->ramcfg && (info->rammap[4] & 0x08)) {
u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) |
info->ramcfg[5];
u32 unk5a4 = ROM16(info->ramcfg[7]);
u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 |
(info->ramcfg[3] & 0x0f) << 16 |
(info->ramcfg[9] & 0x0f) |
0x80000000;
nv_wr32(device, 0x1005a0, unk5a0);
nv_wr32(device, 0x1005a4, unk5a4);
nv_wr32(device, 0x10f804, unk804);
nv_mask(device, 0x10053c, 0x00001000, 0x00000000);
} else {
nv_mask(device, 0x10053c, 0x00001000, 0x00001000);
nv_mask(device, 0x10f804, 0x80000000, 0x00000000);
nv_mask(device, 0x100760, 0x22222222, info->r100760);
nv_mask(device, 0x1007a0, 0x22222222, info->r100760);
nv_mask(device, 0x1007e0, 0x22222222, info->r100760);
}
}
if (info->mclk.pll) {
nv_mask(device, 0x1110e0, 0x00088000, 0x00011000);
nv_wr32(device, 0x004000, (ctrl &= ~0x00000008));
}
}
static void
mclk_timing_set(struct nouveau_mem_exec_func *exec)
{
struct nouveau_device *device = nouveau_dev(exec->dev);
struct nva3_pm_state *info = exec->priv;
struct nouveau_pm_level *perflvl = info->perflvl;
int i;
for (i = 0; i < 9; i++)
nv_wr32(device, 0x100220 + (i * 4), perflvl->timing.reg[i]);
if (info->ramcfg) {
u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000;
nv_mask(device, 0x100200, 0x00001000, data);
}
if (info->ramcfg) {
u32 unk714 = nv_rd32(device, 0x100714) & ~0xf0000010;
u32 unk718 = nv_rd32(device, 0x100718) & ~0x00000100;
u32 unk71c = nv_rd32(device, 0x10071c) & ~0x00000100;
if ( (info->ramcfg[2] & 0x20))
unk714 |= 0xf0000000;
if (!(info->ramcfg[2] & 0x04))
unk714 |= 0x00000010;
nv_wr32(device, 0x100714, unk714);
if (info->ramcfg[2] & 0x01)
unk71c |= 0x00000100;
nv_wr32(device, 0x10071c, unk71c);
if (info->ramcfg[2] & 0x02)
unk718 |= 0x00000100;
nv_wr32(device, 0x100718, unk718);
if (info->ramcfg[2] & 0x10)
nv_wr32(device, 0x111100, 0x48000000); /*XXX*/
}
}
static void
prog_mem(struct drm_device *dev, struct nva3_pm_state *info)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_mem_exec_func exec = {
.dev = dev,
.precharge = mclk_precharge,
.refresh = mclk_refresh,
.refresh_auto = mclk_refresh_auto,
.refresh_self = mclk_refresh_self,
.wait = mclk_wait,
.mrg = mclk_mrg,
.mrs = mclk_mrs,
.clock_set = mclk_clock_set,
.timing_set = mclk_timing_set,
.priv = info
};
u32 ctrl;
/* XXX: where the fuck does 750MHz come from? */
if (info->perflvl->memory <= 750000) {
info->r004018 = 0x10000000;
info->r100760 = 0x22222222;
}
ctrl = nv_rd32(device, 0x004000);
if (ctrl & 0x00000008) {
if (info->mclk.pll) {
nv_mask(device, 0x004128, 0x00000101, 0x00000101);
nv_wr32(device, 0x004004, info->mclk.pll);
nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
nv_wr32(device, 0x004000, (ctrl &= 0xffffffef));
nv_wait(device, 0x004000, 0x00020000, 0x00020000);
nv_wr32(device, 0x004000, (ctrl |= 0x00000010));
nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
nv_wr32(device, 0x004000, (ctrl |= 0x00000004));
}
} else {
u32 ssel = 0x00000101;
if (info->mclk.clk)
ssel |= info->mclk.clk;
else
ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
nv_mask(device, 0x004168, 0x003f3141, ctrl);
}
if (info->ramcfg) {
if (info->ramcfg[2] & 0x10) {
nv_mask(device, 0x111104, 0x00000600, 0x00000000);
} else {
nv_mask(device, 0x111100, 0x40000000, 0x40000000);
nv_mask(device, 0x111104, 0x00000180, 0x00000000);
}
}
if (info->rammap && !(info->rammap[4] & 0x02))
nv_mask(device, 0x100200, 0x00000800, 0x00000000);
nv_wr32(device, 0x611200, 0x00003300);
if (!(info->ramcfg[2] & 0x10))
nv_wr32(device, 0x111100, 0x4c020000); /*XXX*/
nouveau_mem_exec(&exec, info->perflvl);
nv_wr32(device, 0x611200, 0x00003330);
if (info->rammap && (info->rammap[4] & 0x02))
nv_mask(device, 0x100200, 0x00000800, 0x00000800);
if (info->ramcfg) {
if (info->ramcfg[2] & 0x10) {
nv_mask(device, 0x111104, 0x00000180, 0x00000180);
nv_mask(device, 0x111100, 0x40000000, 0x00000000);
} else {
nv_mask(device, 0x111104, 0x00000600, 0x00000600);
}
}
if (info->mclk.pll) {
nv_mask(device, 0x004168, 0x00000001, 0x00000000);
nv_mask(device, 0x004168, 0x00000100, 0x00000000);
} else {
nv_mask(device, 0x004000, 0x00000001, 0x00000000);
nv_mask(device, 0x004128, 0x00000001, 0x00000000);
nv_mask(device, 0x004128, 0x00000100, 0x00000000);
}
}
int
nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
{
struct nouveau_device *device = nouveau_dev(dev);
struct nouveau_drm *drm = nouveau_drm(dev);
struct nva3_pm_state *info = pre_state;
int ret = -EAGAIN;
/* prevent any new grctx switches from starting */
nv_wr32(device, 0x400324, 0x00000000);
nv_wr32(device, 0x400328, 0x0050001c); /* wait flag 0x1c */
/* wait for any pending grctx switches to complete */
if (!nv_wait_cb(device, nva3_pm_grcp_idle, dev)) {
NV_ERROR(drm, "pm: ctxprog didn't go idle\n");
goto cleanup;
}
/* freeze PFIFO */
nv_mask(device, 0x002504, 0x00000001, 0x00000001);
if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) {
NV_ERROR(drm, "pm: fifo didn't go idle\n");
goto cleanup;
}
prog_pll(dev, 0x00, 0x004200, &info->nclk);
prog_pll(dev, 0x01, 0x004220, &info->sclk);
prog_clk(dev, 0x20, &info->unka0);
prog_clk(dev, 0x21, &info->vdec);
if (info->mclk.clk || info->mclk.pll)
prog_mem(dev, info);
ret = 0;
cleanup:
/* unfreeze PFIFO */
nv_mask(device, 0x002504, 0x00000001, 0x00000000);
/* restore ctxprog to normal */
nv_wr32(device, 0x400324, 0x00000000);
nv_wr32(device, 0x400328, 0x0070009c); /* set flag 0x1c */
/* unblock it if necessary */
if (nv_rd32(device, 0x400308) == 0x0050001c)
nv_mask(device, 0x400824, 0x10000000, 0x10000000);
kfree(info);
return ret;
}