WSL2-Linux-Kernel/fs/f2fs/segment.c

5328 строки
135 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/segment.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/sched/mm.h>
#include <linux/prefetch.h>
#include <linux/kthread.h>
#include <linux/swap.h>
#include <linux/timer.h>
#include <linux/freezer.h>
#include <linux/sched/signal.h>
#include <linux/random.h>
#include "f2fs.h"
#include "segment.h"
#include "node.h"
#include "gc.h"
#include "iostat.h"
#include <trace/events/f2fs.h>
#define __reverse_ffz(x) __reverse_ffs(~(x))
static struct kmem_cache *discard_entry_slab;
static struct kmem_cache *discard_cmd_slab;
static struct kmem_cache *sit_entry_set_slab;
static struct kmem_cache *revoke_entry_slab;
static unsigned long __reverse_ulong(unsigned char *str)
{
unsigned long tmp = 0;
int shift = 24, idx = 0;
#if BITS_PER_LONG == 64
shift = 56;
#endif
while (shift >= 0) {
tmp |= (unsigned long)str[idx++] << shift;
shift -= BITS_PER_BYTE;
}
return tmp;
}
/*
* __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
* MSB and LSB are reversed in a byte by f2fs_set_bit.
*/
static inline unsigned long __reverse_ffs(unsigned long word)
{
int num = 0;
#if BITS_PER_LONG == 64
if ((word & 0xffffffff00000000UL) == 0)
num += 32;
else
word >>= 32;
#endif
if ((word & 0xffff0000) == 0)
num += 16;
else
word >>= 16;
if ((word & 0xff00) == 0)
num += 8;
else
word >>= 8;
if ((word & 0xf0) == 0)
num += 4;
else
word >>= 4;
if ((word & 0xc) == 0)
num += 2;
else
word >>= 2;
if ((word & 0x2) == 0)
num += 1;
return num;
}
/*
* __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
* f2fs_set_bit makes MSB and LSB reversed in a byte.
* @size must be integral times of unsigned long.
* Example:
* MSB <--> LSB
* f2fs_set_bit(0, bitmap) => 1000 0000
* f2fs_set_bit(7, bitmap) => 0000 0001
*/
static unsigned long __find_rev_next_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + BIT_WORD(offset);
unsigned long result = size;
unsigned long tmp;
if (offset >= size)
return size;
size -= (offset & ~(BITS_PER_LONG - 1));
offset %= BITS_PER_LONG;
while (1) {
if (*p == 0)
goto pass;
tmp = __reverse_ulong((unsigned char *)p);
tmp &= ~0UL >> offset;
if (size < BITS_PER_LONG)
tmp &= (~0UL << (BITS_PER_LONG - size));
if (tmp)
goto found;
pass:
if (size <= BITS_PER_LONG)
break;
size -= BITS_PER_LONG;
offset = 0;
p++;
}
return result;
found:
return result - size + __reverse_ffs(tmp);
}
static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + BIT_WORD(offset);
unsigned long result = size;
unsigned long tmp;
if (offset >= size)
return size;
size -= (offset & ~(BITS_PER_LONG - 1));
offset %= BITS_PER_LONG;
while (1) {
if (*p == ~0UL)
goto pass;
tmp = __reverse_ulong((unsigned char *)p);
if (offset)
tmp |= ~0UL << (BITS_PER_LONG - offset);
if (size < BITS_PER_LONG)
tmp |= ~0UL >> size;
if (tmp != ~0UL)
goto found;
pass:
if (size <= BITS_PER_LONG)
break;
size -= BITS_PER_LONG;
offset = 0;
p++;
}
return result;
found:
return result - size + __reverse_ffz(tmp);
}
bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
{
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
if (f2fs_lfs_mode(sbi))
return false;
if (sbi->gc_mode == GC_URGENT_HIGH)
return true;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
return true;
return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
}
void f2fs_abort_atomic_write(struct inode *inode, bool clean)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
if (!f2fs_is_atomic_file(inode))
return;
clear_inode_flag(fi->cow_inode, FI_COW_FILE);
iput(fi->cow_inode);
fi->cow_inode = NULL;
release_atomic_write_cnt(inode);
clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
clear_inode_flag(inode, FI_ATOMIC_REPLACE);
clear_inode_flag(inode, FI_ATOMIC_FILE);
stat_dec_atomic_inode(inode);
if (clean) {
truncate_inode_pages_final(inode->i_mapping);
f2fs_i_size_write(inode, fi->original_i_size);
}
}
static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
block_t new_addr, block_t *old_addr, bool recover)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct dnode_of_data dn;
struct node_info ni;
int err;
retry:
set_new_dnode(&dn, inode, NULL, NULL, 0);
err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
if (err) {
if (err == -ENOMEM) {
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
goto retry;
}
return err;
}
err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
if (err) {
f2fs_put_dnode(&dn);
return err;
}
if (recover) {
/* dn.data_blkaddr is always valid */
if (!__is_valid_data_blkaddr(new_addr)) {
if (new_addr == NULL_ADDR)
dec_valid_block_count(sbi, inode, 1);
f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
f2fs_update_data_blkaddr(&dn, new_addr);
} else {
f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
new_addr, ni.version, true, true);
}
} else {
blkcnt_t count = 1;
*old_addr = dn.data_blkaddr;
f2fs_truncate_data_blocks_range(&dn, 1);
dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
inc_valid_block_count(sbi, inode, &count);
f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
ni.version, true, false);
}
f2fs_put_dnode(&dn);
return 0;
}
static void __complete_revoke_list(struct inode *inode, struct list_head *head,
bool revoke)
{
struct revoke_entry *cur, *tmp;
bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
list_for_each_entry_safe(cur, tmp, head, list) {
if (revoke)
__replace_atomic_write_block(inode, cur->index,
cur->old_addr, NULL, true);
list_del(&cur->list);
kmem_cache_free(revoke_entry_slab, cur);
}
if (!revoke && truncate)
f2fs_do_truncate_blocks(inode, 0, false);
}
static int __f2fs_commit_atomic_write(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct inode *cow_inode = fi->cow_inode;
struct revoke_entry *new;
struct list_head revoke_list;
block_t blkaddr;
struct dnode_of_data dn;
pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
pgoff_t off = 0, blen, index;
int ret = 0, i;
INIT_LIST_HEAD(&revoke_list);
while (len) {
blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
if (ret && ret != -ENOENT) {
goto out;
} else if (ret == -ENOENT) {
ret = 0;
if (dn.max_level == 0)
goto out;
goto next;
}
blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
len);
index = off;
for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
blkaddr = f2fs_data_blkaddr(&dn);
if (!__is_valid_data_blkaddr(blkaddr)) {
continue;
} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
DATA_GENERIC_ENHANCE)) {
f2fs_put_dnode(&dn);
ret = -EFSCORRUPTED;
f2fs_handle_error(sbi,
ERROR_INVALID_BLKADDR);
goto out;
}
new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
true, NULL);
ret = __replace_atomic_write_block(inode, index, blkaddr,
&new->old_addr, false);
if (ret) {
f2fs_put_dnode(&dn);
kmem_cache_free(revoke_entry_slab, new);
goto out;
}
f2fs_update_data_blkaddr(&dn, NULL_ADDR);
new->index = index;
list_add_tail(&new->list, &revoke_list);
}
f2fs_put_dnode(&dn);
next:
off += blen;
len -= blen;
}
out:
if (ret) {
sbi->revoked_atomic_block += fi->atomic_write_cnt;
} else {
sbi->committed_atomic_block += fi->atomic_write_cnt;
set_inode_flag(inode, FI_ATOMIC_COMMITTED);
}
__complete_revoke_list(inode, &revoke_list, ret ? true : false);
return ret;
}
int f2fs_commit_atomic_write(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
int err;
err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
if (err)
return err;
f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
f2fs_lock_op(sbi);
err = __f2fs_commit_atomic_write(inode);
f2fs_unlock_op(sbi);
f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
return err;
}
/*
* This function balances dirty node and dentry pages.
* In addition, it controls garbage collection.
*/
void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
{
if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
}
/* balance_fs_bg is able to be pending */
if (need && excess_cached_nats(sbi))
f2fs_balance_fs_bg(sbi, false);
if (!f2fs_is_checkpoint_ready(sbi))
return;
/*
* We should do GC or end up with checkpoint, if there are so many dirty
* dir/node pages without enough free segments.
*/
if (has_not_enough_free_secs(sbi, 0, 0)) {
if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
sbi->gc_thread->f2fs_gc_task) {
DEFINE_WAIT(wait);
prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
TASK_UNINTERRUPTIBLE);
wake_up(&sbi->gc_thread->gc_wait_queue_head);
io_schedule();
finish_wait(&sbi->gc_thread->fggc_wq, &wait);
} else {
struct f2fs_gc_control gc_control = {
.victim_segno = NULL_SEGNO,
.init_gc_type = BG_GC,
.no_bg_gc = true,
.should_migrate_blocks = false,
.err_gc_skipped = false,
.nr_free_secs = 1 };
f2fs_down_write(&sbi->gc_lock);
f2fs_gc(sbi, &gc_control);
}
}
}
static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
{
int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
unsigned int threshold = sbi->blocks_per_seg * factor *
DEFAULT_DIRTY_THRESHOLD;
unsigned int global_threshold = threshold * 3 / 2;
if (dents >= threshold || qdata >= threshold ||
nodes >= threshold || meta >= threshold ||
imeta >= threshold)
return true;
return dents + qdata + nodes + meta + imeta > global_threshold;
}
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
{
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
return;
/* try to shrink extent cache when there is no enough memory */
if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
f2fs_shrink_read_extent_tree(sbi,
READ_EXTENT_CACHE_SHRINK_NUMBER);
/* try to shrink age extent cache when there is no enough memory */
if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
f2fs_shrink_age_extent_tree(sbi,
AGE_EXTENT_CACHE_SHRINK_NUMBER);
/* check the # of cached NAT entries */
if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
if (!f2fs_available_free_memory(sbi, FREE_NIDS))
f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
else
f2fs_build_free_nids(sbi, false, false);
if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
goto do_sync;
/* there is background inflight IO or foreground operation recently */
if (is_inflight_io(sbi, REQ_TIME) ||
(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
return;
/* exceed periodical checkpoint timeout threshold */
if (f2fs_time_over(sbi, CP_TIME))
goto do_sync;
/* checkpoint is the only way to shrink partial cached entries */
if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
f2fs_available_free_memory(sbi, INO_ENTRIES))
return;
do_sync:
if (test_opt(sbi, DATA_FLUSH) && from_bg) {
struct blk_plug plug;
mutex_lock(&sbi->flush_lock);
blk_start_plug(&plug);
f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
blk_finish_plug(&plug);
mutex_unlock(&sbi->flush_lock);
}
f2fs_sync_fs(sbi->sb, 1);
stat_inc_bg_cp_count(sbi->stat_info);
}
static int __submit_flush_wait(struct f2fs_sb_info *sbi,
struct block_device *bdev)
{
int ret = blkdev_issue_flush(bdev);
trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
test_opt(sbi, FLUSH_MERGE), ret);
return ret;
}
static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
{
int ret = 0;
int i;
if (!f2fs_is_multi_device(sbi))
return __submit_flush_wait(sbi, sbi->sb->s_bdev);
for (i = 0; i < sbi->s_ndevs; i++) {
if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
continue;
ret = __submit_flush_wait(sbi, FDEV(i).bdev);
if (ret)
break;
}
return ret;
}
static int issue_flush_thread(void *data)
{
struct f2fs_sb_info *sbi = data;
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
wait_queue_head_t *q = &fcc->flush_wait_queue;
repeat:
if (kthread_should_stop())
return 0;
if (!llist_empty(&fcc->issue_list)) {
struct flush_cmd *cmd, *next;
int ret;
fcc->dispatch_list = llist_del_all(&fcc->issue_list);
fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
ret = submit_flush_wait(sbi, cmd->ino);
atomic_inc(&fcc->issued_flush);
llist_for_each_entry_safe(cmd, next,
fcc->dispatch_list, llnode) {
cmd->ret = ret;
complete(&cmd->wait);
}
fcc->dispatch_list = NULL;
}
wait_event_interruptible(*q,
kthread_should_stop() || !llist_empty(&fcc->issue_list));
goto repeat;
}
int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
{
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
struct flush_cmd cmd;
int ret;
if (test_opt(sbi, NOBARRIER))
return 0;
if (!test_opt(sbi, FLUSH_MERGE)) {
atomic_inc(&fcc->queued_flush);
ret = submit_flush_wait(sbi, ino);
atomic_dec(&fcc->queued_flush);
atomic_inc(&fcc->issued_flush);
return ret;
}
if (atomic_inc_return(&fcc->queued_flush) == 1 ||
f2fs_is_multi_device(sbi)) {
ret = submit_flush_wait(sbi, ino);
atomic_dec(&fcc->queued_flush);
atomic_inc(&fcc->issued_flush);
return ret;
}
cmd.ino = ino;
init_completion(&cmd.wait);
llist_add(&cmd.llnode, &fcc->issue_list);
/*
* update issue_list before we wake up issue_flush thread, this
* smp_mb() pairs with another barrier in ___wait_event(), see
* more details in comments of waitqueue_active().
*/
smp_mb();
if (waitqueue_active(&fcc->flush_wait_queue))
wake_up(&fcc->flush_wait_queue);
if (fcc->f2fs_issue_flush) {
wait_for_completion(&cmd.wait);
atomic_dec(&fcc->queued_flush);
} else {
struct llist_node *list;
list = llist_del_all(&fcc->issue_list);
if (!list) {
wait_for_completion(&cmd.wait);
atomic_dec(&fcc->queued_flush);
} else {
struct flush_cmd *tmp, *next;
ret = submit_flush_wait(sbi, ino);
llist_for_each_entry_safe(tmp, next, list, llnode) {
if (tmp == &cmd) {
cmd.ret = ret;
atomic_dec(&fcc->queued_flush);
continue;
}
tmp->ret = ret;
complete(&tmp->wait);
}
}
}
return cmd.ret;
}
int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
struct flush_cmd_control *fcc;
if (SM_I(sbi)->fcc_info) {
fcc = SM_I(sbi)->fcc_info;
if (fcc->f2fs_issue_flush)
return 0;
goto init_thread;
}
fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
if (!fcc)
return -ENOMEM;
atomic_set(&fcc->issued_flush, 0);
atomic_set(&fcc->queued_flush, 0);
init_waitqueue_head(&fcc->flush_wait_queue);
init_llist_head(&fcc->issue_list);
SM_I(sbi)->fcc_info = fcc;
if (!test_opt(sbi, FLUSH_MERGE))
return 0;
init_thread:
fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
if (IS_ERR(fcc->f2fs_issue_flush)) {
int err = PTR_ERR(fcc->f2fs_issue_flush);
kfree(fcc);
SM_I(sbi)->fcc_info = NULL;
return err;
}
return 0;
}
void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
{
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
if (fcc && fcc->f2fs_issue_flush) {
struct task_struct *flush_thread = fcc->f2fs_issue_flush;
fcc->f2fs_issue_flush = NULL;
kthread_stop(flush_thread);
}
if (free) {
kfree(fcc);
SM_I(sbi)->fcc_info = NULL;
}
}
int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
{
int ret = 0, i;
if (!f2fs_is_multi_device(sbi))
return 0;
if (test_opt(sbi, NOBARRIER))
return 0;
for (i = 1; i < sbi->s_ndevs; i++) {
int count = DEFAULT_RETRY_IO_COUNT;
if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
continue;
do {
ret = __submit_flush_wait(sbi, FDEV(i).bdev);
if (ret)
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
} while (ret && --count);
if (ret) {
f2fs_stop_checkpoint(sbi, false,
STOP_CP_REASON_FLUSH_FAIL);
break;
}
spin_lock(&sbi->dev_lock);
f2fs_clear_bit(i, (char *)&sbi->dirty_device);
spin_unlock(&sbi->dev_lock);
}
return ret;
}
static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
enum dirty_type dirty_type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
/* need not be added */
if (IS_CURSEG(sbi, segno))
return;
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
dirty_i->nr_dirty[dirty_type]++;
if (dirty_type == DIRTY) {
struct seg_entry *sentry = get_seg_entry(sbi, segno);
enum dirty_type t = sentry->type;
if (unlikely(t >= DIRTY)) {
f2fs_bug_on(sbi, 1);
return;
}
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
dirty_i->nr_dirty[t]++;
if (__is_large_section(sbi)) {
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
block_t valid_blocks =
get_valid_blocks(sbi, segno, true);
f2fs_bug_on(sbi, unlikely(!valid_blocks ||
valid_blocks == CAP_BLKS_PER_SEC(sbi)));
if (!IS_CURSEC(sbi, secno))
set_bit(secno, dirty_i->dirty_secmap);
}
}
}
static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
enum dirty_type dirty_type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
block_t valid_blocks;
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
dirty_i->nr_dirty[dirty_type]--;
if (dirty_type == DIRTY) {
struct seg_entry *sentry = get_seg_entry(sbi, segno);
enum dirty_type t = sentry->type;
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
dirty_i->nr_dirty[t]--;
valid_blocks = get_valid_blocks(sbi, segno, true);
if (valid_blocks == 0) {
clear_bit(GET_SEC_FROM_SEG(sbi, segno),
dirty_i->victim_secmap);
#ifdef CONFIG_F2FS_CHECK_FS
clear_bit(segno, SIT_I(sbi)->invalid_segmap);
#endif
}
if (__is_large_section(sbi)) {
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
if (!valid_blocks ||
valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
clear_bit(secno, dirty_i->dirty_secmap);
return;
}
if (!IS_CURSEC(sbi, secno))
set_bit(secno, dirty_i->dirty_secmap);
}
}
}
/*
* Should not occur error such as -ENOMEM.
* Adding dirty entry into seglist is not critical operation.
* If a given segment is one of current working segments, it won't be added.
*/
static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned short valid_blocks, ckpt_valid_blocks;
unsigned int usable_blocks;
if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
return;
usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
mutex_lock(&dirty_i->seglist_lock);
valid_blocks = get_valid_blocks(sbi, segno, false);
ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
ckpt_valid_blocks == usable_blocks)) {
__locate_dirty_segment(sbi, segno, PRE);
__remove_dirty_segment(sbi, segno, DIRTY);
} else if (valid_blocks < usable_blocks) {
__locate_dirty_segment(sbi, segno, DIRTY);
} else {
/* Recovery routine with SSR needs this */
__remove_dirty_segment(sbi, segno, DIRTY);
}
mutex_unlock(&dirty_i->seglist_lock);
}
/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned int segno;
mutex_lock(&dirty_i->seglist_lock);
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
if (get_valid_blocks(sbi, segno, false))
continue;
if (IS_CURSEG(sbi, segno))
continue;
__locate_dirty_segment(sbi, segno, PRE);
__remove_dirty_segment(sbi, segno, DIRTY);
}
mutex_unlock(&dirty_i->seglist_lock);
}
block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
{
int ovp_hole_segs =
(overprovision_segments(sbi) - reserved_segments(sbi));
block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
block_t holes[2] = {0, 0}; /* DATA and NODE */
block_t unusable;
struct seg_entry *se;
unsigned int segno;
mutex_lock(&dirty_i->seglist_lock);
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
se = get_seg_entry(sbi, segno);
if (IS_NODESEG(se->type))
holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
se->valid_blocks;
else
holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
se->valid_blocks;
}
mutex_unlock(&dirty_i->seglist_lock);
unusable = max(holes[DATA], holes[NODE]);
if (unusable > ovp_holes)
return unusable - ovp_holes;
return 0;
}
int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
{
int ovp_hole_segs =
(overprovision_segments(sbi) - reserved_segments(sbi));
if (unusable > F2FS_OPTION(sbi).unusable_cap)
return -EAGAIN;
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
dirty_segments(sbi) > ovp_hole_segs)
return -EAGAIN;
return 0;
}
/* This is only used by SBI_CP_DISABLED */
static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned int segno = 0;
mutex_lock(&dirty_i->seglist_lock);
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
if (get_valid_blocks(sbi, segno, false))
continue;
if (get_ckpt_valid_blocks(sbi, segno, false))
continue;
mutex_unlock(&dirty_i->seglist_lock);
return segno;
}
mutex_unlock(&dirty_i->seglist_lock);
return NULL_SEGNO;
}
static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t lstart,
block_t start, block_t len)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct list_head *pend_list;
struct discard_cmd *dc;
f2fs_bug_on(sbi, !len);
pend_list = &dcc->pend_list[plist_idx(len)];
dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
INIT_LIST_HEAD(&dc->list);
dc->bdev = bdev;
dc->lstart = lstart;
dc->start = start;
dc->len = len;
dc->ref = 0;
dc->state = D_PREP;
dc->queued = 0;
dc->error = 0;
init_completion(&dc->wait);
list_add_tail(&dc->list, pend_list);
spin_lock_init(&dc->lock);
dc->bio_ref = 0;
atomic_inc(&dcc->discard_cmd_cnt);
dcc->undiscard_blks += len;
return dc;
}
static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t lstart,
block_t start, block_t len,
struct rb_node *parent, struct rb_node **p,
bool leftmost)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_cmd *dc;
dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
rb_link_node(&dc->rb_node, parent, p);
rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
return dc;
}
static void __detach_discard_cmd(struct discard_cmd_control *dcc,
struct discard_cmd *dc)
{
if (dc->state == D_DONE)
atomic_sub(dc->queued, &dcc->queued_discard);
list_del(&dc->list);
rb_erase_cached(&dc->rb_node, &dcc->root);
dcc->undiscard_blks -= dc->len;
kmem_cache_free(discard_cmd_slab, dc);
atomic_dec(&dcc->discard_cmd_cnt);
}
static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
struct discard_cmd *dc)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
unsigned long flags;
trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
spin_lock_irqsave(&dc->lock, flags);
if (dc->bio_ref) {
spin_unlock_irqrestore(&dc->lock, flags);
return;
}
spin_unlock_irqrestore(&dc->lock, flags);
f2fs_bug_on(sbi, dc->ref);
if (dc->error == -EOPNOTSUPP)
dc->error = 0;
if (dc->error)
printk_ratelimited(
"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
KERN_INFO, sbi->sb->s_id,
dc->lstart, dc->start, dc->len, dc->error);
__detach_discard_cmd(dcc, dc);
}
static void f2fs_submit_discard_endio(struct bio *bio)
{
struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
unsigned long flags;
spin_lock_irqsave(&dc->lock, flags);
if (!dc->error)
dc->error = blk_status_to_errno(bio->bi_status);
dc->bio_ref--;
if (!dc->bio_ref && dc->state == D_SUBMIT) {
dc->state = D_DONE;
complete_all(&dc->wait);
}
spin_unlock_irqrestore(&dc->lock, flags);
bio_put(bio);
}
static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
block_t start, block_t end)
{
#ifdef CONFIG_F2FS_CHECK_FS
struct seg_entry *sentry;
unsigned int segno;
block_t blk = start;
unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
unsigned long *map;
while (blk < end) {
segno = GET_SEGNO(sbi, blk);
sentry = get_seg_entry(sbi, segno);
offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
if (end < START_BLOCK(sbi, segno + 1))
size = GET_BLKOFF_FROM_SEG0(sbi, end);
else
size = max_blocks;
map = (unsigned long *)(sentry->cur_valid_map);
offset = __find_rev_next_bit(map, size, offset);
f2fs_bug_on(sbi, offset != size);
blk = START_BLOCK(sbi, segno + 1);
}
#endif
}
static void __init_discard_policy(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy,
int discard_type, unsigned int granularity)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
/* common policy */
dpolicy->type = discard_type;
dpolicy->sync = true;
dpolicy->ordered = false;
dpolicy->granularity = granularity;
dpolicy->max_requests = dcc->max_discard_request;
dpolicy->io_aware_gran = MAX_PLIST_NUM;
dpolicy->timeout = false;
if (discard_type == DPOLICY_BG) {
dpolicy->min_interval = dcc->min_discard_issue_time;
dpolicy->mid_interval = dcc->mid_discard_issue_time;
dpolicy->max_interval = dcc->max_discard_issue_time;
dpolicy->io_aware = true;
dpolicy->sync = false;
dpolicy->ordered = true;
if (utilization(sbi) > dcc->discard_urgent_util) {
dpolicy->granularity = MIN_DISCARD_GRANULARITY;
if (atomic_read(&dcc->discard_cmd_cnt))
dpolicy->max_interval =
dcc->min_discard_issue_time;
}
} else if (discard_type == DPOLICY_FORCE) {
dpolicy->min_interval = dcc->min_discard_issue_time;
dpolicy->mid_interval = dcc->mid_discard_issue_time;
dpolicy->max_interval = dcc->max_discard_issue_time;
dpolicy->io_aware = false;
} else if (discard_type == DPOLICY_FSTRIM) {
dpolicy->io_aware = false;
} else if (discard_type == DPOLICY_UMOUNT) {
dpolicy->io_aware = false;
/* we need to issue all to keep CP_TRIMMED_FLAG */
dpolicy->granularity = MIN_DISCARD_GRANULARITY;
dpolicy->timeout = true;
}
}
static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t lstart,
block_t start, block_t len);
/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy,
struct discard_cmd *dc,
unsigned int *issued)
{
struct block_device *bdev = dc->bdev;
unsigned int max_discard_blocks =
SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
&(dcc->fstrim_list) : &(dcc->wait_list);
blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
block_t lstart, start, len, total_len;
int err = 0;
if (dc->state != D_PREP)
return 0;
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
return 0;
trace_f2fs_issue_discard(bdev, dc->start, dc->len);
lstart = dc->lstart;
start = dc->start;
len = dc->len;
total_len = len;
dc->len = 0;
while (total_len && *issued < dpolicy->max_requests && !err) {
struct bio *bio = NULL;
unsigned long flags;
bool last = true;
if (len > max_discard_blocks) {
len = max_discard_blocks;
last = false;
}
(*issued)++;
if (*issued == dpolicy->max_requests)
last = true;
dc->len += len;
if (time_to_inject(sbi, FAULT_DISCARD)) {
f2fs_show_injection_info(sbi, FAULT_DISCARD);
err = -EIO;
} else {
err = __blkdev_issue_discard(bdev,
SECTOR_FROM_BLOCK(start),
SECTOR_FROM_BLOCK(len),
GFP_NOFS, &bio);
}
if (err) {
spin_lock_irqsave(&dc->lock, flags);
if (dc->state == D_PARTIAL)
dc->state = D_SUBMIT;
spin_unlock_irqrestore(&dc->lock, flags);
break;
}
f2fs_bug_on(sbi, !bio);
/*
* should keep before submission to avoid D_DONE
* right away
*/
spin_lock_irqsave(&dc->lock, flags);
if (last)
dc->state = D_SUBMIT;
else
dc->state = D_PARTIAL;
dc->bio_ref++;
spin_unlock_irqrestore(&dc->lock, flags);
atomic_inc(&dcc->queued_discard);
dc->queued++;
list_move_tail(&dc->list, wait_list);
/* sanity check on discard range */
__check_sit_bitmap(sbi, lstart, lstart + len);
bio->bi_private = dc;
bio->bi_end_io = f2fs_submit_discard_endio;
bio->bi_opf |= flag;
submit_bio(bio);
atomic_inc(&dcc->issued_discard);
f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
lstart += len;
start += len;
total_len -= len;
len = total_len;
}
if (!err && len) {
dcc->undiscard_blks -= len;
__update_discard_tree_range(sbi, bdev, lstart, start, len);
}
return err;
}
static void __insert_discard_tree(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t lstart,
block_t start, block_t len,
struct rb_node **insert_p,
struct rb_node *insert_parent)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct rb_node **p;
struct rb_node *parent = NULL;
bool leftmost = true;
if (insert_p && insert_parent) {
parent = insert_parent;
p = insert_p;
goto do_insert;
}
p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
lstart, &leftmost);
do_insert:
__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
p, leftmost);
}
static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
struct discard_cmd *dc)
{
list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
}
static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
struct discard_cmd *dc, block_t blkaddr)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_info di = dc->di;
bool modified = false;
if (dc->state == D_DONE || dc->len == 1) {
__remove_discard_cmd(sbi, dc);
return;
}
dcc->undiscard_blks -= di.len;
if (blkaddr > di.lstart) {
dc->len = blkaddr - dc->lstart;
dcc->undiscard_blks += dc->len;
__relocate_discard_cmd(dcc, dc);
modified = true;
}
if (blkaddr < di.lstart + di.len - 1) {
if (modified) {
__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
di.start + blkaddr + 1 - di.lstart,
di.lstart + di.len - 1 - blkaddr,
NULL, NULL);
} else {
dc->lstart++;
dc->len--;
dc->start++;
dcc->undiscard_blks += dc->len;
__relocate_discard_cmd(dcc, dc);
}
}
}
static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t lstart,
block_t start, block_t len)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
struct discard_cmd *dc;
struct discard_info di = {0};
struct rb_node **insert_p = NULL, *insert_parent = NULL;
unsigned int max_discard_blocks =
SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
block_t end = lstart + len;
dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
NULL, lstart,
(struct rb_entry **)&prev_dc,
(struct rb_entry **)&next_dc,
&insert_p, &insert_parent, true, NULL);
if (dc)
prev_dc = dc;
if (!prev_dc) {
di.lstart = lstart;
di.len = next_dc ? next_dc->lstart - lstart : len;
di.len = min(di.len, len);
di.start = start;
}
while (1) {
struct rb_node *node;
bool merged = false;
struct discard_cmd *tdc = NULL;
if (prev_dc) {
di.lstart = prev_dc->lstart + prev_dc->len;
if (di.lstart < lstart)
di.lstart = lstart;
if (di.lstart >= end)
break;
if (!next_dc || next_dc->lstart > end)
di.len = end - di.lstart;
else
di.len = next_dc->lstart - di.lstart;
di.start = start + di.lstart - lstart;
}
if (!di.len)
goto next;
if (prev_dc && prev_dc->state == D_PREP &&
prev_dc->bdev == bdev &&
__is_discard_back_mergeable(&di, &prev_dc->di,
max_discard_blocks)) {
prev_dc->di.len += di.len;
dcc->undiscard_blks += di.len;
__relocate_discard_cmd(dcc, prev_dc);
di = prev_dc->di;
tdc = prev_dc;
merged = true;
}
if (next_dc && next_dc->state == D_PREP &&
next_dc->bdev == bdev &&
__is_discard_front_mergeable(&di, &next_dc->di,
max_discard_blocks)) {
next_dc->di.lstart = di.lstart;
next_dc->di.len += di.len;
next_dc->di.start = di.start;
dcc->undiscard_blks += di.len;
__relocate_discard_cmd(dcc, next_dc);
if (tdc)
__remove_discard_cmd(sbi, tdc);
merged = true;
}
if (!merged) {
__insert_discard_tree(sbi, bdev, di.lstart, di.start,
di.len, NULL, NULL);
}
next:
prev_dc = next_dc;
if (!prev_dc)
break;
node = rb_next(&prev_dc->rb_node);
next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
}
}
static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t blkstart, block_t blklen)
{
block_t lblkstart = blkstart;
if (!f2fs_bdev_support_discard(bdev))
return;
trace_f2fs_queue_discard(bdev, blkstart, blklen);
if (f2fs_is_multi_device(sbi)) {
int devi = f2fs_target_device_index(sbi, blkstart);
blkstart -= FDEV(devi).start_blk;
}
mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
}
static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
struct discard_cmd *dc;
struct blk_plug plug;
unsigned int pos = dcc->next_pos;
unsigned int issued = 0;
bool io_interrupted = false;
mutex_lock(&dcc->cmd_lock);
dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
NULL, pos,
(struct rb_entry **)&prev_dc,
(struct rb_entry **)&next_dc,
&insert_p, &insert_parent, true, NULL);
if (!dc)
dc = next_dc;
blk_start_plug(&plug);
while (dc) {
struct rb_node *node;
int err = 0;
if (dc->state != D_PREP)
goto next;
if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
io_interrupted = true;
break;
}
dcc->next_pos = dc->lstart + dc->len;
err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
if (issued >= dpolicy->max_requests)
break;
next:
node = rb_next(&dc->rb_node);
if (err)
__remove_discard_cmd(sbi, dc);
dc = rb_entry_safe(node, struct discard_cmd, rb_node);
}
blk_finish_plug(&plug);
if (!dc)
dcc->next_pos = 0;
mutex_unlock(&dcc->cmd_lock);
if (!issued && io_interrupted)
issued = -1;
return issued;
}
static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy);
static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct list_head *pend_list;
struct discard_cmd *dc, *tmp;
struct blk_plug plug;
int i, issued;
bool io_interrupted = false;
if (dpolicy->timeout)
f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
retry:
issued = 0;
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
if (dpolicy->timeout &&
f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
break;
if (i + 1 < dpolicy->granularity)
break;
if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
return __issue_discard_cmd_orderly(sbi, dpolicy);
pend_list = &dcc->pend_list[i];
mutex_lock(&dcc->cmd_lock);
if (list_empty(pend_list))
goto next;
if (unlikely(dcc->rbtree_check))
f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
&dcc->root, false));
blk_start_plug(&plug);
list_for_each_entry_safe(dc, tmp, pend_list, list) {
f2fs_bug_on(sbi, dc->state != D_PREP);
if (dpolicy->timeout &&
f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
break;
if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
!is_idle(sbi, DISCARD_TIME)) {
io_interrupted = true;
break;
}
__submit_discard_cmd(sbi, dpolicy, dc, &issued);
if (issued >= dpolicy->max_requests)
break;
}
blk_finish_plug(&plug);
next:
mutex_unlock(&dcc->cmd_lock);
if (issued >= dpolicy->max_requests || io_interrupted)
break;
}
if (dpolicy->type == DPOLICY_UMOUNT && issued) {
__wait_all_discard_cmd(sbi, dpolicy);
goto retry;
}
if (!issued && io_interrupted)
issued = -1;
return issued;
}
static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct list_head *pend_list;
struct discard_cmd *dc, *tmp;
int i;
bool dropped = false;
mutex_lock(&dcc->cmd_lock);
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
pend_list = &dcc->pend_list[i];
list_for_each_entry_safe(dc, tmp, pend_list, list) {
f2fs_bug_on(sbi, dc->state != D_PREP);
__remove_discard_cmd(sbi, dc);
dropped = true;
}
}
mutex_unlock(&dcc->cmd_lock);
return dropped;
}
void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
{
__drop_discard_cmd(sbi);
}
static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
struct discard_cmd *dc)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
unsigned int len = 0;
wait_for_completion_io(&dc->wait);
mutex_lock(&dcc->cmd_lock);
f2fs_bug_on(sbi, dc->state != D_DONE);
dc->ref--;
if (!dc->ref) {
if (!dc->error)
len = dc->len;
__remove_discard_cmd(sbi, dc);
}
mutex_unlock(&dcc->cmd_lock);
return len;
}
static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy,
block_t start, block_t end)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
&(dcc->fstrim_list) : &(dcc->wait_list);
struct discard_cmd *dc = NULL, *iter, *tmp;
unsigned int trimmed = 0;
next:
dc = NULL;
mutex_lock(&dcc->cmd_lock);
list_for_each_entry_safe(iter, tmp, wait_list, list) {
if (iter->lstart + iter->len <= start || end <= iter->lstart)
continue;
if (iter->len < dpolicy->granularity)
continue;
if (iter->state == D_DONE && !iter->ref) {
wait_for_completion_io(&iter->wait);
if (!iter->error)
trimmed += iter->len;
__remove_discard_cmd(sbi, iter);
} else {
iter->ref++;
dc = iter;
break;
}
}
mutex_unlock(&dcc->cmd_lock);
if (dc) {
trimmed += __wait_one_discard_bio(sbi, dc);
goto next;
}
return trimmed;
}
static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy)
{
struct discard_policy dp;
unsigned int discard_blks;
if (dpolicy)
return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
/* wait all */
__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
return discard_blks;
}
/* This should be covered by global mutex, &sit_i->sentry_lock */
static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_cmd *dc;
bool need_wait = false;
mutex_lock(&dcc->cmd_lock);
dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
NULL, blkaddr);
if (dc) {
if (dc->state == D_PREP) {
__punch_discard_cmd(sbi, dc, blkaddr);
} else {
dc->ref++;
need_wait = true;
}
}
mutex_unlock(&dcc->cmd_lock);
if (need_wait)
__wait_one_discard_bio(sbi, dc);
}
void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
if (dcc && dcc->f2fs_issue_discard) {
struct task_struct *discard_thread = dcc->f2fs_issue_discard;
dcc->f2fs_issue_discard = NULL;
kthread_stop(discard_thread);
}
}
/* This comes from f2fs_put_super */
bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_policy dpolicy;
bool dropped;
if (!atomic_read(&dcc->discard_cmd_cnt))
return false;
__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
dcc->discard_granularity);
__issue_discard_cmd(sbi, &dpolicy);
dropped = __drop_discard_cmd(sbi);
/* just to make sure there is no pending discard commands */
__wait_all_discard_cmd(sbi, NULL);
f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
return dropped;
}
static int issue_discard_thread(void *data)
{
struct f2fs_sb_info *sbi = data;
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
wait_queue_head_t *q = &dcc->discard_wait_queue;
struct discard_policy dpolicy;
unsigned int wait_ms = dcc->min_discard_issue_time;
int issued;
set_freezable();
do {
wait_event_interruptible_timeout(*q,
kthread_should_stop() || freezing(current) ||
dcc->discard_wake,
msecs_to_jiffies(wait_ms));
if (sbi->gc_mode == GC_URGENT_HIGH ||
!f2fs_available_free_memory(sbi, DISCARD_CACHE))
__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
else
__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
dcc->discard_granularity);
if (dcc->discard_wake)
dcc->discard_wake = 0;
/* clean up pending candidates before going to sleep */
if (atomic_read(&dcc->queued_discard))
__wait_all_discard_cmd(sbi, NULL);
if (try_to_freeze())
continue;
if (f2fs_readonly(sbi->sb))
continue;
if (kthread_should_stop())
return 0;
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
!atomic_read(&dcc->discard_cmd_cnt)) {
wait_ms = dpolicy.max_interval;
continue;
}
sb_start_intwrite(sbi->sb);
issued = __issue_discard_cmd(sbi, &dpolicy);
if (issued > 0) {
__wait_all_discard_cmd(sbi, &dpolicy);
wait_ms = dpolicy.min_interval;
} else if (issued == -1) {
wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
if (!wait_ms)
wait_ms = dpolicy.mid_interval;
} else {
wait_ms = dpolicy.max_interval;
}
if (!atomic_read(&dcc->discard_cmd_cnt))
wait_ms = dpolicy.max_interval;
sb_end_intwrite(sbi->sb);
} while (!kthread_should_stop());
return 0;
}
#ifdef CONFIG_BLK_DEV_ZONED
static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t blkstart, block_t blklen)
{
sector_t sector, nr_sects;
block_t lblkstart = blkstart;
int devi = 0;
if (f2fs_is_multi_device(sbi)) {
devi = f2fs_target_device_index(sbi, blkstart);
if (blkstart < FDEV(devi).start_blk ||
blkstart > FDEV(devi).end_blk) {
f2fs_err(sbi, "Invalid block %x", blkstart);
return -EIO;
}
blkstart -= FDEV(devi).start_blk;
}
/* For sequential zones, reset the zone write pointer */
if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
sector = SECTOR_FROM_BLOCK(blkstart);
nr_sects = SECTOR_FROM_BLOCK(blklen);
if (sector & (bdev_zone_sectors(bdev) - 1) ||
nr_sects != bdev_zone_sectors(bdev)) {
f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
devi, sbi->s_ndevs ? FDEV(devi).path : "",
blkstart, blklen);
return -EIO;
}
trace_f2fs_issue_reset_zone(bdev, blkstart);
return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
sector, nr_sects, GFP_NOFS);
}
/* For conventional zones, use regular discard if supported */
__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
return 0;
}
#endif
static int __issue_discard_async(struct f2fs_sb_info *sbi,
struct block_device *bdev, block_t blkstart, block_t blklen)
{
#ifdef CONFIG_BLK_DEV_ZONED
if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
#endif
__queue_discard_cmd(sbi, bdev, blkstart, blklen);
return 0;
}
static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
block_t blkstart, block_t blklen)
{
sector_t start = blkstart, len = 0;
struct block_device *bdev;
struct seg_entry *se;
unsigned int offset;
block_t i;
int err = 0;
bdev = f2fs_target_device(sbi, blkstart, NULL);
for (i = blkstart; i < blkstart + blklen; i++, len++) {
if (i != start) {
struct block_device *bdev2 =
f2fs_target_device(sbi, i, NULL);
if (bdev2 != bdev) {
err = __issue_discard_async(sbi, bdev,
start, len);
if (err)
return err;
bdev = bdev2;
start = i;
len = 0;
}
}
se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
offset = GET_BLKOFF_FROM_SEG0(sbi, i);
if (f2fs_block_unit_discard(sbi) &&
!f2fs_test_and_set_bit(offset, se->discard_map))
sbi->discard_blks--;
}
if (len)
err = __issue_discard_async(sbi, bdev, start, len);
return err;
}
static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
bool check_only)
{
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
int max_blocks = sbi->blocks_per_seg;
struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
unsigned long *discard_map = (unsigned long *)se->discard_map;
unsigned long *dmap = SIT_I(sbi)->tmp_map;
unsigned int start = 0, end = -1;
bool force = (cpc->reason & CP_DISCARD);
struct discard_entry *de = NULL;
struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
int i;
if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
!f2fs_block_unit_discard(sbi))
return false;
if (!force) {
if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
SM_I(sbi)->dcc_info->nr_discards >=
SM_I(sbi)->dcc_info->max_discards)
return false;
}
/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
for (i = 0; i < entries; i++)
dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
while (force || SM_I(sbi)->dcc_info->nr_discards <=
SM_I(sbi)->dcc_info->max_discards) {
start = __find_rev_next_bit(dmap, max_blocks, end + 1);
if (start >= max_blocks)
break;
end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
if (force && start && end != max_blocks
&& (end - start) < cpc->trim_minlen)
continue;
if (check_only)
return true;
if (!de) {
de = f2fs_kmem_cache_alloc(discard_entry_slab,
GFP_F2FS_ZERO, true, NULL);
de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
list_add_tail(&de->list, head);
}
for (i = start; i < end; i++)
__set_bit_le(i, (void *)de->discard_map);
SM_I(sbi)->dcc_info->nr_discards += end - start;
}
return false;
}
static void release_discard_addr(struct discard_entry *entry)
{
list_del(&entry->list);
kmem_cache_free(discard_entry_slab, entry);
}
void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
{
struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
struct discard_entry *entry, *this;
/* drop caches */
list_for_each_entry_safe(entry, this, head, list)
release_discard_addr(entry);
}
/*
* Should call f2fs_clear_prefree_segments after checkpoint is done.
*/
static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned int segno;
mutex_lock(&dirty_i->seglist_lock);
for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
__set_test_and_free(sbi, segno, false);
mutex_unlock(&dirty_i->seglist_lock);
}
void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
struct cp_control *cpc)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct list_head *head = &dcc->entry_list;
struct discard_entry *entry, *this;
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
unsigned int start = 0, end = -1;
unsigned int secno, start_segno;
bool force = (cpc->reason & CP_DISCARD);
bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
DISCARD_UNIT_SECTION;
if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
section_alignment = true;
mutex_lock(&dirty_i->seglist_lock);
while (1) {
int i;
if (section_alignment && end != -1)
end--;
start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
if (start >= MAIN_SEGS(sbi))
break;
end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
start + 1);
if (section_alignment) {
start = rounddown(start, sbi->segs_per_sec);
end = roundup(end, sbi->segs_per_sec);
}
for (i = start; i < end; i++) {
if (test_and_clear_bit(i, prefree_map))
dirty_i->nr_dirty[PRE]--;
}
if (!f2fs_realtime_discard_enable(sbi))
continue;
if (force && start >= cpc->trim_start &&
(end - 1) <= cpc->trim_end)
continue;
if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
(end - start) << sbi->log_blocks_per_seg);
continue;
}
next:
secno = GET_SEC_FROM_SEG(sbi, start);
start_segno = GET_SEG_FROM_SEC(sbi, secno);
if (!IS_CURSEC(sbi, secno) &&
!get_valid_blocks(sbi, start, true))
f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
sbi->segs_per_sec << sbi->log_blocks_per_seg);
start = start_segno + sbi->segs_per_sec;
if (start < end)
goto next;
else
end = start - 1;
}
mutex_unlock(&dirty_i->seglist_lock);
if (!f2fs_block_unit_discard(sbi))
goto wakeup;
/* send small discards */
list_for_each_entry_safe(entry, this, head, list) {
unsigned int cur_pos = 0, next_pos, len, total_len = 0;
bool is_valid = test_bit_le(0, entry->discard_map);
find_next:
if (is_valid) {
next_pos = find_next_zero_bit_le(entry->discard_map,
sbi->blocks_per_seg, cur_pos);
len = next_pos - cur_pos;
if (f2fs_sb_has_blkzoned(sbi) ||
(force && len < cpc->trim_minlen))
goto skip;
f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
len);
total_len += len;
} else {
next_pos = find_next_bit_le(entry->discard_map,
sbi->blocks_per_seg, cur_pos);
}
skip:
cur_pos = next_pos;
is_valid = !is_valid;
if (cur_pos < sbi->blocks_per_seg)
goto find_next;
release_discard_addr(entry);
dcc->nr_discards -= total_len;
}
wakeup:
wake_up_discard_thread(sbi, false);
}
int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
{
dev_t dev = sbi->sb->s_bdev->bd_dev;
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
int err = 0;
if (!f2fs_realtime_discard_enable(sbi))
return 0;
dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
if (IS_ERR(dcc->f2fs_issue_discard)) {
err = PTR_ERR(dcc->f2fs_issue_discard);
dcc->f2fs_issue_discard = NULL;
}
return err;
}
static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
{
struct discard_cmd_control *dcc;
int err = 0, i;
if (SM_I(sbi)->dcc_info) {
dcc = SM_I(sbi)->dcc_info;
goto init_thread;
}
dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
if (!dcc)
return -ENOMEM;
dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
dcc->discard_granularity = sbi->blocks_per_seg;
else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
dcc->discard_granularity = BLKS_PER_SEC(sbi);
INIT_LIST_HEAD(&dcc->entry_list);
for (i = 0; i < MAX_PLIST_NUM; i++)
INIT_LIST_HEAD(&dcc->pend_list[i]);
INIT_LIST_HEAD(&dcc->wait_list);
INIT_LIST_HEAD(&dcc->fstrim_list);
mutex_init(&dcc->cmd_lock);
atomic_set(&dcc->issued_discard, 0);
atomic_set(&dcc->queued_discard, 0);
atomic_set(&dcc->discard_cmd_cnt, 0);
dcc->nr_discards = 0;
dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
dcc->undiscard_blks = 0;
dcc->next_pos = 0;
dcc->root = RB_ROOT_CACHED;
dcc->rbtree_check = false;
init_waitqueue_head(&dcc->discard_wait_queue);
SM_I(sbi)->dcc_info = dcc;
init_thread:
err = f2fs_start_discard_thread(sbi);
if (err) {
kfree(dcc);
SM_I(sbi)->dcc_info = NULL;
}
return err;
}
static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
if (!dcc)
return;
f2fs_stop_discard_thread(sbi);
/*
* Recovery can cache discard commands, so in error path of
* fill_super(), it needs to give a chance to handle them.
*/
f2fs_issue_discard_timeout(sbi);
kfree(dcc);
SM_I(sbi)->dcc_info = NULL;
}
static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
{
struct sit_info *sit_i = SIT_I(sbi);
if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
sit_i->dirty_sentries++;
return false;
}
return true;
}
static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
unsigned int segno, int modified)
{
struct seg_entry *se = get_seg_entry(sbi, segno);
se->type = type;
if (modified)
__mark_sit_entry_dirty(sbi, segno);
}
static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
block_t blkaddr)
{
unsigned int segno = GET_SEGNO(sbi, blkaddr);
if (segno == NULL_SEGNO)
return 0;
return get_seg_entry(sbi, segno)->mtime;
}
static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
unsigned long long old_mtime)
{
struct seg_entry *se;
unsigned int segno = GET_SEGNO(sbi, blkaddr);
unsigned long long ctime = get_mtime(sbi, false);
unsigned long long mtime = old_mtime ? old_mtime : ctime;
if (segno == NULL_SEGNO)
return;
se = get_seg_entry(sbi, segno);
if (!se->mtime)
se->mtime = mtime;
else
se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
se->valid_blocks + 1);
if (ctime > SIT_I(sbi)->max_mtime)
SIT_I(sbi)->max_mtime = ctime;
}
static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
{
struct seg_entry *se;
unsigned int segno, offset;
long int new_vblocks;
bool exist;
#ifdef CONFIG_F2FS_CHECK_FS
bool mir_exist;
#endif
segno = GET_SEGNO(sbi, blkaddr);
se = get_seg_entry(sbi, segno);
new_vblocks = se->valid_blocks + del;
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
f2fs_bug_on(sbi, (new_vblocks < 0 ||
(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
se->valid_blocks = new_vblocks;
/* Update valid block bitmap */
if (del > 0) {
exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
#ifdef CONFIG_F2FS_CHECK_FS
mir_exist = f2fs_test_and_set_bit(offset,
se->cur_valid_map_mir);
if (unlikely(exist != mir_exist)) {
f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
blkaddr, exist);
f2fs_bug_on(sbi, 1);
}
#endif
if (unlikely(exist)) {
f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
blkaddr);
f2fs_bug_on(sbi, 1);
se->valid_blocks--;
del = 0;
}
if (f2fs_block_unit_discard(sbi) &&
!f2fs_test_and_set_bit(offset, se->discard_map))
sbi->discard_blks--;
/*
* SSR should never reuse block which is checkpointed
* or newly invalidated.
*/
if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
se->ckpt_valid_blocks++;
}
} else {
exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
#ifdef CONFIG_F2FS_CHECK_FS
mir_exist = f2fs_test_and_clear_bit(offset,
se->cur_valid_map_mir);
if (unlikely(exist != mir_exist)) {
f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
blkaddr, exist);
f2fs_bug_on(sbi, 1);
}
#endif
if (unlikely(!exist)) {
f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
blkaddr);
f2fs_bug_on(sbi, 1);
se->valid_blocks++;
del = 0;
} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
/*
* If checkpoints are off, we must not reuse data that
* was used in the previous checkpoint. If it was used
* before, we must track that to know how much space we
* really have.
*/
if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
spin_lock(&sbi->stat_lock);
sbi->unusable_block_count++;
spin_unlock(&sbi->stat_lock);
}
}
if (f2fs_block_unit_discard(sbi) &&
f2fs_test_and_clear_bit(offset, se->discard_map))
sbi->discard_blks++;
}
if (!f2fs_test_bit(offset, se->ckpt_valid_map))
se->ckpt_valid_blocks += del;
__mark_sit_entry_dirty(sbi, segno);
/* update total number of valid blocks to be written in ckpt area */
SIT_I(sbi)->written_valid_blocks += del;
if (__is_large_section(sbi))
get_sec_entry(sbi, segno)->valid_blocks += del;
}
void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
{
unsigned int segno = GET_SEGNO(sbi, addr);
struct sit_info *sit_i = SIT_I(sbi);
f2fs_bug_on(sbi, addr == NULL_ADDR);
if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
return;
invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
f2fs_invalidate_compress_page(sbi, addr);
/* add it into sit main buffer */
down_write(&sit_i->sentry_lock);
update_segment_mtime(sbi, addr, 0);
update_sit_entry(sbi, addr, -1);
/* add it into dirty seglist */
locate_dirty_segment(sbi, segno);
up_write(&sit_i->sentry_lock);
}
bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int segno, offset;
struct seg_entry *se;
bool is_cp = false;
if (!__is_valid_data_blkaddr(blkaddr))
return true;
down_read(&sit_i->sentry_lock);
segno = GET_SEGNO(sbi, blkaddr);
se = get_seg_entry(sbi, segno);
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
if (f2fs_test_bit(offset, se->ckpt_valid_map))
is_cp = true;
up_read(&sit_i->sentry_lock);
return is_cp;
}
/*
* This function should be resided under the curseg_mutex lock
*/
static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
struct f2fs_summary *sum)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
void *addr = curseg->sum_blk;
addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
memcpy(addr, sum, sizeof(struct f2fs_summary));
}
/*
* Calculate the number of current summary pages for writing
*/
int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
{
int valid_sum_count = 0;
int i, sum_in_page;
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
if (sbi->ckpt->alloc_type[i] == SSR)
valid_sum_count += sbi->blocks_per_seg;
else {
if (for_ra)
valid_sum_count += le16_to_cpu(
F2FS_CKPT(sbi)->cur_data_blkoff[i]);
else
valid_sum_count += curseg_blkoff(sbi, i);
}
}
sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
SUM_FOOTER_SIZE) / SUMMARY_SIZE;
if (valid_sum_count <= sum_in_page)
return 1;
else if ((valid_sum_count - sum_in_page) <=
(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
return 2;
return 3;
}
/*
* Caller should put this summary page
*/
struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
{
if (unlikely(f2fs_cp_error(sbi)))
return ERR_PTR(-EIO);
return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
}
void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
void *src, block_t blk_addr)
{
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
memcpy(page_address(page), src, PAGE_SIZE);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
static void write_sum_page(struct f2fs_sb_info *sbi,
struct f2fs_summary_block *sum_blk, block_t blk_addr)
{
f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
}
static void write_current_sum_page(struct f2fs_sb_info *sbi,
int type, block_t blk_addr)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
struct f2fs_summary_block *src = curseg->sum_blk;
struct f2fs_summary_block *dst;
dst = (struct f2fs_summary_block *)page_address(page);
memset(dst, 0, PAGE_SIZE);
mutex_lock(&curseg->curseg_mutex);
down_read(&curseg->journal_rwsem);
memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
up_read(&curseg->journal_rwsem);
memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
mutex_unlock(&curseg->curseg_mutex);
set_page_dirty(page);
f2fs_put_page(page, 1);
}
static int is_next_segment_free(struct f2fs_sb_info *sbi,
struct curseg_info *curseg, int type)
{
unsigned int segno = curseg->segno + 1;
struct free_segmap_info *free_i = FREE_I(sbi);
if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
return !test_bit(segno, free_i->free_segmap);
return 0;
}
/*
* Find a new segment from the free segments bitmap to right order
* This function should be returned with success, otherwise BUG
*/
static void get_new_segment(struct f2fs_sb_info *sbi,
unsigned int *newseg, bool new_sec, int dir)
{
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int segno, secno, zoneno;
unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
unsigned int left_start = hint;
bool init = true;
int go_left = 0;
int i;
spin_lock(&free_i->segmap_lock);
if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
segno = find_next_zero_bit(free_i->free_segmap,
GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
goto got_it;
}
find_other_zone:
secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
if (secno >= MAIN_SECS(sbi)) {
if (dir == ALLOC_RIGHT) {
secno = find_first_zero_bit(free_i->free_secmap,
MAIN_SECS(sbi));
f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
} else {
go_left = 1;
left_start = hint - 1;
}
}
if (go_left == 0)
goto skip_left;
while (test_bit(left_start, free_i->free_secmap)) {
if (left_start > 0) {
left_start--;
continue;
}
left_start = find_first_zero_bit(free_i->free_secmap,
MAIN_SECS(sbi));
f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
break;
}
secno = left_start;
skip_left:
segno = GET_SEG_FROM_SEC(sbi, secno);
zoneno = GET_ZONE_FROM_SEC(sbi, secno);
/* give up on finding another zone */
if (!init)
goto got_it;
if (sbi->secs_per_zone == 1)
goto got_it;
if (zoneno == old_zoneno)
goto got_it;
if (dir == ALLOC_LEFT) {
if (!go_left && zoneno + 1 >= total_zones)
goto got_it;
if (go_left && zoneno == 0)
goto got_it;
}
for (i = 0; i < NR_CURSEG_TYPE; i++)
if (CURSEG_I(sbi, i)->zone == zoneno)
break;
if (i < NR_CURSEG_TYPE) {
/* zone is in user, try another */
if (go_left)
hint = zoneno * sbi->secs_per_zone - 1;
else if (zoneno + 1 >= total_zones)
hint = 0;
else
hint = (zoneno + 1) * sbi->secs_per_zone;
init = false;
goto find_other_zone;
}
got_it:
/* set it as dirty segment in free segmap */
f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
__set_inuse(sbi, segno);
*newseg = segno;
spin_unlock(&free_i->segmap_lock);
}
static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
struct summary_footer *sum_footer;
unsigned short seg_type = curseg->seg_type;
curseg->inited = true;
curseg->segno = curseg->next_segno;
curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
curseg->next_blkoff = 0;
curseg->next_segno = NULL_SEGNO;
sum_footer = &(curseg->sum_blk->footer);
memset(sum_footer, 0, sizeof(struct summary_footer));
sanity_check_seg_type(sbi, seg_type);
if (IS_DATASEG(seg_type))
SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
if (IS_NODESEG(seg_type))
SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
}
static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned short seg_type = curseg->seg_type;
sanity_check_seg_type(sbi, seg_type);
if (f2fs_need_rand_seg(sbi))
return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
/* if segs_per_sec is large than 1, we need to keep original policy. */
if (__is_large_section(sbi))
return curseg->segno;
/* inmem log may not locate on any segment after mount */
if (!curseg->inited)
return 0;
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
return 0;
if (test_opt(sbi, NOHEAP) &&
(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
return 0;
if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
return SIT_I(sbi)->last_victim[ALLOC_NEXT];
/* find segments from 0 to reuse freed segments */
if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
return 0;
return curseg->segno;
}
/*
* Allocate a current working segment.
* This function always allocates a free segment in LFS manner.
*/
static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned short seg_type = curseg->seg_type;
unsigned int segno = curseg->segno;
int dir = ALLOC_LEFT;
if (curseg->inited)
write_sum_page(sbi, curseg->sum_blk,
GET_SUM_BLOCK(sbi, segno));
if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
dir = ALLOC_RIGHT;
if (test_opt(sbi, NOHEAP))
dir = ALLOC_RIGHT;
segno = __get_next_segno(sbi, type);
get_new_segment(sbi, &segno, new_sec, dir);
curseg->next_segno = segno;
reset_curseg(sbi, type, 1);
curseg->alloc_type = LFS;
if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
curseg->fragment_remained_chunk =
get_random_u32_inclusive(1, sbi->max_fragment_chunk);
}
static int __next_free_blkoff(struct f2fs_sb_info *sbi,
int segno, block_t start)
{
struct seg_entry *se = get_seg_entry(sbi, segno);
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
unsigned long *target_map = SIT_I(sbi)->tmp_map;
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
int i;
for (i = 0; i < entries; i++)
target_map[i] = ckpt_map[i] | cur_map[i];
return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
}
/*
* If a segment is written by LFS manner, next block offset is just obtained
* by increasing the current block offset. However, if a segment is written by
* SSR manner, next block offset obtained by calling __next_free_blkoff
*/
static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
struct curseg_info *seg)
{
if (seg->alloc_type == SSR) {
seg->next_blkoff =
__next_free_blkoff(sbi, seg->segno,
seg->next_blkoff + 1);
} else {
seg->next_blkoff++;
if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
/* To allocate block chunks in different sizes, use random number */
if (--seg->fragment_remained_chunk <= 0) {
seg->fragment_remained_chunk =
get_random_u32_inclusive(1, sbi->max_fragment_chunk);
seg->next_blkoff +=
get_random_u32_inclusive(1, sbi->max_fragment_hole);
}
}
}
}
bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
{
return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
}
/*
* This function always allocates a used segment(from dirty seglist) by SSR
* manner, so it should recover the existing segment information of valid blocks
*/
static void change_curseg(struct f2fs_sb_info *sbi, int type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int new_segno = curseg->next_segno;
struct f2fs_summary_block *sum_node;
struct page *sum_page;
write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
__set_test_and_inuse(sbi, new_segno);
mutex_lock(&dirty_i->seglist_lock);
__remove_dirty_segment(sbi, new_segno, PRE);
__remove_dirty_segment(sbi, new_segno, DIRTY);
mutex_unlock(&dirty_i->seglist_lock);
reset_curseg(sbi, type, 1);
curseg->alloc_type = SSR;
curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
sum_page = f2fs_get_sum_page(sbi, new_segno);
if (IS_ERR(sum_page)) {
/* GC won't be able to use stale summary pages by cp_error */
memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
return;
}
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
f2fs_put_page(sum_page, 1);
}
static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
int alloc_mode, unsigned long long age);
static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
int target_type, int alloc_mode,
unsigned long long age)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
curseg->seg_type = target_type;
if (get_ssr_segment(sbi, type, alloc_mode, age)) {
struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
curseg->seg_type = se->type;
change_curseg(sbi, type);
} else {
/* allocate cold segment by default */
curseg->seg_type = CURSEG_COLD_DATA;
new_curseg(sbi, type, true);
}
stat_inc_seg_type(sbi, curseg);
}
static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
if (!sbi->am.atgc_enabled)
return;
f2fs_down_read(&SM_I(sbi)->curseg_lock);
mutex_lock(&curseg->curseg_mutex);
down_write(&SIT_I(sbi)->sentry_lock);
get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
up_write(&SIT_I(sbi)->sentry_lock);
mutex_unlock(&curseg->curseg_mutex);
f2fs_up_read(&SM_I(sbi)->curseg_lock);
}
void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
{
__f2fs_init_atgc_curseg(sbi);
}
static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
if (!curseg->inited)
goto out;
if (get_valid_blocks(sbi, curseg->segno, false)) {
write_sum_page(sbi, curseg->sum_blk,
GET_SUM_BLOCK(sbi, curseg->segno));
} else {
mutex_lock(&DIRTY_I(sbi)->seglist_lock);
__set_test_and_free(sbi, curseg->segno, true);
mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
}
out:
mutex_unlock(&curseg->curseg_mutex);
}
void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
{
__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
if (sbi->am.atgc_enabled)
__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
}
static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
if (!curseg->inited)
goto out;
if (get_valid_blocks(sbi, curseg->segno, false))
goto out;
mutex_lock(&DIRTY_I(sbi)->seglist_lock);
__set_test_and_inuse(sbi, curseg->segno);
mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
out:
mutex_unlock(&curseg->curseg_mutex);
}
void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
{
__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
if (sbi->am.atgc_enabled)
__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
}
static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
int alloc_mode, unsigned long long age)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
unsigned segno = NULL_SEGNO;
unsigned short seg_type = curseg->seg_type;
int i, cnt;
bool reversed = false;
sanity_check_seg_type(sbi, seg_type);
/* f2fs_need_SSR() already forces to do this */
if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
curseg->next_segno = segno;
return 1;
}
/* For node segments, let's do SSR more intensively */
if (IS_NODESEG(seg_type)) {
if (seg_type >= CURSEG_WARM_NODE) {
reversed = true;
i = CURSEG_COLD_NODE;
} else {
i = CURSEG_HOT_NODE;
}
cnt = NR_CURSEG_NODE_TYPE;
} else {
if (seg_type >= CURSEG_WARM_DATA) {
reversed = true;
i = CURSEG_COLD_DATA;
} else {
i = CURSEG_HOT_DATA;
}
cnt = NR_CURSEG_DATA_TYPE;
}
for (; cnt-- > 0; reversed ? i-- : i++) {
if (i == seg_type)
continue;
if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
curseg->next_segno = segno;
return 1;
}
}
/* find valid_blocks=0 in dirty list */
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
segno = get_free_segment(sbi);
if (segno != NULL_SEGNO) {
curseg->next_segno = segno;
return 1;
}
}
return 0;
}
static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
curseg->seg_type == CURSEG_WARM_NODE)
return true;
if (curseg->alloc_type == LFS &&
is_next_segment_free(sbi, curseg, type) &&
likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
return true;
if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
return true;
return false;
}
void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
unsigned int start, unsigned int end)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int segno;
f2fs_down_read(&SM_I(sbi)->curseg_lock);
mutex_lock(&curseg->curseg_mutex);
down_write(&SIT_I(sbi)->sentry_lock);
segno = CURSEG_I(sbi, type)->segno;
if (segno < start || segno > end)
goto unlock;
if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
change_curseg(sbi, type);
else
new_curseg(sbi, type, true);
stat_inc_seg_type(sbi, curseg);
locate_dirty_segment(sbi, segno);
unlock:
up_write(&SIT_I(sbi)->sentry_lock);
if (segno != curseg->segno)
f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
type, segno, curseg->segno);
mutex_unlock(&curseg->curseg_mutex);
f2fs_up_read(&SM_I(sbi)->curseg_lock);
}
static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
bool new_sec, bool force)
{
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned int old_segno;
if (!curseg->inited)
goto alloc;
if (force || curseg->next_blkoff ||
get_valid_blocks(sbi, curseg->segno, new_sec))
goto alloc;
if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
return;
alloc:
old_segno = curseg->segno;
new_curseg(sbi, type, true);
stat_inc_seg_type(sbi, curseg);
locate_dirty_segment(sbi, old_segno);
}
static void __allocate_new_section(struct f2fs_sb_info *sbi,
int type, bool force)
{
__allocate_new_segment(sbi, type, true, force);
}
void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
{
f2fs_down_read(&SM_I(sbi)->curseg_lock);
down_write(&SIT_I(sbi)->sentry_lock);
__allocate_new_section(sbi, type, force);
up_write(&SIT_I(sbi)->sentry_lock);
f2fs_up_read(&SM_I(sbi)->curseg_lock);
}
void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
{
int i;
f2fs_down_read(&SM_I(sbi)->curseg_lock);
down_write(&SIT_I(sbi)->sentry_lock);
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
__allocate_new_segment(sbi, i, false, false);
up_write(&SIT_I(sbi)->sentry_lock);
f2fs_up_read(&SM_I(sbi)->curseg_lock);
}
bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
struct cp_control *cpc)
{
__u64 trim_start = cpc->trim_start;
bool has_candidate = false;
down_write(&SIT_I(sbi)->sentry_lock);
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
if (add_discard_addrs(sbi, cpc, true)) {
has_candidate = true;
break;
}
}
up_write(&SIT_I(sbi)->sentry_lock);
cpc->trim_start = trim_start;
return has_candidate;
}
static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
struct discard_policy *dpolicy,
unsigned int start, unsigned int end)
{
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
struct discard_cmd *dc;
struct blk_plug plug;
int issued;
unsigned int trimmed = 0;
next:
issued = 0;
mutex_lock(&dcc->cmd_lock);
if (unlikely(dcc->rbtree_check))
f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
&dcc->root, false));
dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
NULL, start,
(struct rb_entry **)&prev_dc,
(struct rb_entry **)&next_dc,
&insert_p, &insert_parent, true, NULL);
if (!dc)
dc = next_dc;
blk_start_plug(&plug);
while (dc && dc->lstart <= end) {
struct rb_node *node;
int err = 0;
if (dc->len < dpolicy->granularity)
goto skip;
if (dc->state != D_PREP) {
list_move_tail(&dc->list, &dcc->fstrim_list);
goto skip;
}
err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
if (issued >= dpolicy->max_requests) {
start = dc->lstart + dc->len;
if (err)
__remove_discard_cmd(sbi, dc);
blk_finish_plug(&plug);
mutex_unlock(&dcc->cmd_lock);
trimmed += __wait_all_discard_cmd(sbi, NULL);
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
goto next;
}
skip:
node = rb_next(&dc->rb_node);
if (err)
__remove_discard_cmd(sbi, dc);
dc = rb_entry_safe(node, struct discard_cmd, rb_node);
if (fatal_signal_pending(current))
break;
}
blk_finish_plug(&plug);
mutex_unlock(&dcc->cmd_lock);
return trimmed;
}
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
{
__u64 start = F2FS_BYTES_TO_BLK(range->start);
__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
unsigned int start_segno, end_segno;
block_t start_block, end_block;
struct cp_control cpc;
struct discard_policy dpolicy;
unsigned long long trimmed = 0;
int err = 0;
bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
return -EINVAL;
if (end < MAIN_BLKADDR(sbi))
goto out;
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
return -EFSCORRUPTED;
}
/* start/end segment number in main_area */
start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
GET_SEGNO(sbi, end);
if (need_align) {
start_segno = rounddown(start_segno, sbi->segs_per_sec);
end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
}
cpc.reason = CP_DISCARD;
cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
cpc.trim_start = start_segno;
cpc.trim_end = end_segno;
if (sbi->discard_blks == 0)
goto out;
f2fs_down_write(&sbi->gc_lock);
err = f2fs_write_checkpoint(sbi, &cpc);
f2fs_up_write(&sbi->gc_lock);
if (err)
goto out;
/*
* We filed discard candidates, but actually we don't need to wait for
* all of them, since they'll be issued in idle time along with runtime
* discard option. User configuration looks like using runtime discard
* or periodic fstrim instead of it.
*/
if (f2fs_realtime_discard_enable(sbi))
goto out;
start_block = START_BLOCK(sbi, start_segno);
end_block = START_BLOCK(sbi, end_segno + 1);
__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
start_block, end_block);
trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
start_block, end_block);
out:
if (!err)
range->len = F2FS_BLK_TO_BYTES(trimmed);
return err;
}
static bool __has_curseg_space(struct f2fs_sb_info *sbi,
struct curseg_info *curseg)
{
return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
curseg->segno);
}
int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
{
switch (hint) {
case WRITE_LIFE_SHORT:
return CURSEG_HOT_DATA;
case WRITE_LIFE_EXTREME:
return CURSEG_COLD_DATA;
default:
return CURSEG_WARM_DATA;
}
}
static int __get_segment_type_2(struct f2fs_io_info *fio)
{
if (fio->type == DATA)
return CURSEG_HOT_DATA;
else
return CURSEG_HOT_NODE;
}
static int __get_segment_type_4(struct f2fs_io_info *fio)
{
if (fio->type == DATA) {
struct inode *inode = fio->page->mapping->host;
if (S_ISDIR(inode->i_mode))
return CURSEG_HOT_DATA;
else
return CURSEG_COLD_DATA;
} else {
if (IS_DNODE(fio->page) && is_cold_node(fio->page))
return CURSEG_WARM_NODE;
else
return CURSEG_COLD_NODE;
}
}
static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_info ei;
if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
if (!ei.age)
return NO_CHECK_TYPE;
if (ei.age <= sbi->hot_data_age_threshold)
return CURSEG_HOT_DATA;
if (ei.age <= sbi->warm_data_age_threshold)
return CURSEG_WARM_DATA;
return CURSEG_COLD_DATA;
}
return NO_CHECK_TYPE;
}
static int __get_segment_type_6(struct f2fs_io_info *fio)
{
if (fio->type == DATA) {
struct inode *inode = fio->page->mapping->host;
int type;
if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
return CURSEG_COLD_DATA_PINNED;
if (page_private_gcing(fio->page)) {
if (fio->sbi->am.atgc_enabled &&
(fio->io_type == FS_DATA_IO) &&
(fio->sbi->gc_mode != GC_URGENT_HIGH))
return CURSEG_ALL_DATA_ATGC;
else
return CURSEG_COLD_DATA;
}
if (file_is_cold(inode) || f2fs_need_compress_data(inode))
return CURSEG_COLD_DATA;
type = __get_age_segment_type(inode, fio->page->index);
if (type != NO_CHECK_TYPE)
return type;
if (file_is_hot(inode) ||
is_inode_flag_set(inode, FI_HOT_DATA) ||
f2fs_is_cow_file(inode))
return CURSEG_HOT_DATA;
return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
} else {
if (IS_DNODE(fio->page))
return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
CURSEG_HOT_NODE;
return CURSEG_COLD_NODE;
}
}
static int __get_segment_type(struct f2fs_io_info *fio)
{
int type = 0;
switch (F2FS_OPTION(fio->sbi).active_logs) {
case 2:
type = __get_segment_type_2(fio);
break;
case 4:
type = __get_segment_type_4(fio);
break;
case 6:
type = __get_segment_type_6(fio);
break;
default:
f2fs_bug_on(fio->sbi, true);
}
if (IS_HOT(type))
fio->temp = HOT;
else if (IS_WARM(type))
fio->temp = WARM;
else
fio->temp = COLD;
return type;
}
void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
block_t old_blkaddr, block_t *new_blkaddr,
struct f2fs_summary *sum, int type,
struct f2fs_io_info *fio)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, type);
unsigned long long old_mtime;
bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
struct seg_entry *se = NULL;
f2fs_down_read(&SM_I(sbi)->curseg_lock);
mutex_lock(&curseg->curseg_mutex);
down_write(&sit_i->sentry_lock);
if (from_gc) {
f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
sanity_check_seg_type(sbi, se->type);
f2fs_bug_on(sbi, IS_NODESEG(se->type));
}
*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
f2fs_wait_discard_bio(sbi, *new_blkaddr);
/*
* __add_sum_entry should be resided under the curseg_mutex
* because, this function updates a summary entry in the
* current summary block.
*/
__add_sum_entry(sbi, type, sum);
__refresh_next_blkoff(sbi, curseg);
stat_inc_block_count(sbi, curseg);
if (from_gc) {
old_mtime = get_segment_mtime(sbi, old_blkaddr);
} else {
update_segment_mtime(sbi, old_blkaddr, 0);
old_mtime = 0;
}
update_segment_mtime(sbi, *new_blkaddr, old_mtime);
/*
* SIT information should be updated before segment allocation,
* since SSR needs latest valid block information.
*/
update_sit_entry(sbi, *new_blkaddr, 1);
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
update_sit_entry(sbi, old_blkaddr, -1);
if (!__has_curseg_space(sbi, curseg)) {
/*
* Flush out current segment and replace it with new segment.
*/
if (from_gc) {
get_atssr_segment(sbi, type, se->type,
AT_SSR, se->mtime);
} else {
if (need_new_seg(sbi, type))
new_curseg(sbi, type, false);
else
change_curseg(sbi, type);
stat_inc_seg_type(sbi, curseg);
}
}
/*
* segment dirty status should be updated after segment allocation,
* so we just need to update status only one time after previous
* segment being closed.
*/
locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
if (IS_DATASEG(type))
atomic64_inc(&sbi->allocated_data_blocks);
up_write(&sit_i->sentry_lock);
if (page && IS_NODESEG(type)) {
fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
f2fs_inode_chksum_set(sbi, page);
}
if (fio) {
struct f2fs_bio_info *io;
if (F2FS_IO_ALIGNED(sbi))
fio->retry = false;
INIT_LIST_HEAD(&fio->list);
fio->in_list = true;
io = sbi->write_io[fio->type] + fio->temp;
spin_lock(&io->io_lock);
list_add_tail(&fio->list, &io->io_list);
spin_unlock(&io->io_lock);
}
mutex_unlock(&curseg->curseg_mutex);
f2fs_up_read(&SM_I(sbi)->curseg_lock);
}
void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
block_t blkaddr, unsigned int blkcnt)
{
if (!f2fs_is_multi_device(sbi))
return;
while (1) {
unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
/* update device state for fsync */
f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
/* update device state for checkpoint */
if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
spin_lock(&sbi->dev_lock);
f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
spin_unlock(&sbi->dev_lock);
}
if (blkcnt <= blks)
break;
blkcnt -= blks;
blkaddr += blks;
}
}
static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
{
int type = __get_segment_type(fio);
bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
if (keep_order)
f2fs_down_read(&fio->sbi->io_order_lock);
reallocate:
f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
&fio->new_blkaddr, sum, type, fio);
if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
invalidate_mapping_pages(META_MAPPING(fio->sbi),
fio->old_blkaddr, fio->old_blkaddr);
f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
}
/* writeout dirty page into bdev */
f2fs_submit_page_write(fio);
if (fio->retry) {
fio->old_blkaddr = fio->new_blkaddr;
goto reallocate;
}
f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
if (keep_order)
f2fs_up_read(&fio->sbi->io_order_lock);
}
void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
enum iostat_type io_type)
{
struct f2fs_io_info fio = {
.sbi = sbi,
.type = META,
.temp = HOT,
.op = REQ_OP_WRITE,
.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
.old_blkaddr = page->index,
.new_blkaddr = page->index,
.page = page,
.encrypted_page = NULL,
.in_list = false,
};
if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
fio.op_flags &= ~REQ_META;
set_page_writeback(page);
ClearPageError(page);
f2fs_submit_page_write(&fio);
stat_inc_meta_count(sbi, page->index);
f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
}
void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
{
struct f2fs_summary sum;
set_summary(&sum, nid, 0, 0);
do_write_page(&sum, fio);
f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
}
void f2fs_outplace_write_data(struct dnode_of_data *dn,
struct f2fs_io_info *fio)
{
struct f2fs_sb_info *sbi = fio->sbi;
struct f2fs_summary sum;
f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
f2fs_update_age_extent_cache(dn);
set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
do_write_page(&sum, fio);
f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
}
int f2fs_inplace_write_data(struct f2fs_io_info *fio)
{
int err;
struct f2fs_sb_info *sbi = fio->sbi;
unsigned int segno;
fio->new_blkaddr = fio->old_blkaddr;
/* i/o temperature is needed for passing down write hints */
__get_segment_type(fio);
segno = GET_SEGNO(sbi, fio->new_blkaddr);
if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
__func__, segno);
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
goto drop_bio;
}
if (f2fs_cp_error(sbi)) {
err = -EIO;
goto drop_bio;
}
if (fio->post_read)
invalidate_mapping_pages(META_MAPPING(sbi),
fio->new_blkaddr, fio->new_blkaddr);
stat_inc_inplace_blocks(fio->sbi);
if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
err = f2fs_merge_page_bio(fio);
else
err = f2fs_submit_page_bio(fio);
if (!err) {
f2fs_update_device_state(fio->sbi, fio->ino,
fio->new_blkaddr, 1);
f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
fio->io_type, F2FS_BLKSIZE);
}
return err;
drop_bio:
if (fio->bio && *(fio->bio)) {
struct bio *bio = *(fio->bio);
bio->bi_status = BLK_STS_IOERR;
bio_endio(bio);
*(fio->bio) = NULL;
}
return err;
}
static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
unsigned int segno)
{
int i;
for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
if (CURSEG_I(sbi, i)->segno == segno)
break;
}
return i;
}
void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
block_t old_blkaddr, block_t new_blkaddr,
bool recover_curseg, bool recover_newaddr,
bool from_gc)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg;
unsigned int segno, old_cursegno;
struct seg_entry *se;
int type;
unsigned short old_blkoff;
unsigned char old_alloc_type;
segno = GET_SEGNO(sbi, new_blkaddr);
se = get_seg_entry(sbi, segno);
type = se->type;
f2fs_down_write(&SM_I(sbi)->curseg_lock);
if (!recover_curseg) {
/* for recovery flow */
if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
if (old_blkaddr == NULL_ADDR)
type = CURSEG_COLD_DATA;
else
type = CURSEG_WARM_DATA;
}
} else {
if (IS_CURSEG(sbi, segno)) {
/* se->type is volatile as SSR allocation */
type = __f2fs_get_curseg(sbi, segno);
f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
} else {
type = CURSEG_WARM_DATA;
}
}
f2fs_bug_on(sbi, !IS_DATASEG(type));
curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
down_write(&sit_i->sentry_lock);
old_cursegno = curseg->segno;
old_blkoff = curseg->next_blkoff;
old_alloc_type = curseg->alloc_type;
/* change the current segment */
if (segno != curseg->segno) {
curseg->next_segno = segno;
change_curseg(sbi, type);
}
curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
__add_sum_entry(sbi, type, sum);
if (!recover_curseg || recover_newaddr) {
if (!from_gc)
update_segment_mtime(sbi, new_blkaddr, 0);
update_sit_entry(sbi, new_blkaddr, 1);
}
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
invalidate_mapping_pages(META_MAPPING(sbi),
old_blkaddr, old_blkaddr);
f2fs_invalidate_compress_page(sbi, old_blkaddr);
if (!from_gc)
update_segment_mtime(sbi, old_blkaddr, 0);
update_sit_entry(sbi, old_blkaddr, -1);
}
locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
locate_dirty_segment(sbi, old_cursegno);
if (recover_curseg) {
if (old_cursegno != curseg->segno) {
curseg->next_segno = old_cursegno;
change_curseg(sbi, type);
}
curseg->next_blkoff = old_blkoff;
curseg->alloc_type = old_alloc_type;
}
up_write(&sit_i->sentry_lock);
mutex_unlock(&curseg->curseg_mutex);
f2fs_up_write(&SM_I(sbi)->curseg_lock);
}
void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
block_t old_addr, block_t new_addr,
unsigned char version, bool recover_curseg,
bool recover_newaddr)
{
struct f2fs_summary sum;
set_summary(&sum, dn->nid, dn->ofs_in_node, version);
f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
recover_curseg, recover_newaddr, false);
f2fs_update_data_blkaddr(dn, new_addr);
}
void f2fs_wait_on_page_writeback(struct page *page,
enum page_type type, bool ordered, bool locked)
{
if (PageWriteback(page)) {
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
/* submit cached LFS IO */
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
/* sbumit cached IPU IO */
f2fs_submit_merged_ipu_write(sbi, NULL, page);
if (ordered) {
wait_on_page_writeback(page);
f2fs_bug_on(sbi, locked && PageWriteback(page));
} else {
wait_for_stable_page(page);
}
}
}
void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *cpage;
if (!f2fs_post_read_required(inode))
return;
if (!__is_valid_data_blkaddr(blkaddr))
return;
cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
if (cpage) {
f2fs_wait_on_page_writeback(cpage, DATA, true, true);
f2fs_put_page(cpage, 1);
}
}
void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
block_t len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
block_t i;
if (!f2fs_post_read_required(inode))
return;
for (i = 0; i < len; i++)
f2fs_wait_on_block_writeback(inode, blkaddr + i);
invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
}
static int read_compacted_summaries(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct curseg_info *seg_i;
unsigned char *kaddr;
struct page *page;
block_t start;
int i, j, offset;
start = start_sum_block(sbi);
page = f2fs_get_meta_page(sbi, start++);
if (IS_ERR(page))
return PTR_ERR(page);
kaddr = (unsigned char *)page_address(page);
/* Step 1: restore nat cache */
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
/* Step 2: restore sit cache */
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
offset = 2 * SUM_JOURNAL_SIZE;
/* Step 3: restore summary entries */
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
unsigned short blk_off;
unsigned int segno;
seg_i = CURSEG_I(sbi, i);
segno = le32_to_cpu(ckpt->cur_data_segno[i]);
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
seg_i->next_segno = segno;
reset_curseg(sbi, i, 0);
seg_i->alloc_type = ckpt->alloc_type[i];
seg_i->next_blkoff = blk_off;
if (seg_i->alloc_type == SSR)
blk_off = sbi->blocks_per_seg;
for (j = 0; j < blk_off; j++) {
struct f2fs_summary *s;
s = (struct f2fs_summary *)(kaddr + offset);
seg_i->sum_blk->entries[j] = *s;
offset += SUMMARY_SIZE;
if (offset + SUMMARY_SIZE <= PAGE_SIZE -
SUM_FOOTER_SIZE)
continue;
f2fs_put_page(page, 1);
page = NULL;
page = f2fs_get_meta_page(sbi, start++);
if (IS_ERR(page))
return PTR_ERR(page);
kaddr = (unsigned char *)page_address(page);
offset = 0;
}
}
f2fs_put_page(page, 1);
return 0;
}
static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_summary_block *sum;
struct curseg_info *curseg;
struct page *new;
unsigned short blk_off;
unsigned int segno = 0;
block_t blk_addr = 0;
int err = 0;
/* get segment number and block addr */
if (IS_DATASEG(type)) {
segno = le32_to_cpu(ckpt->cur_data_segno[type]);
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
CURSEG_HOT_DATA]);
if (__exist_node_summaries(sbi))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
else
blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
} else {
segno = le32_to_cpu(ckpt->cur_node_segno[type -
CURSEG_HOT_NODE]);
blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
CURSEG_HOT_NODE]);
if (__exist_node_summaries(sbi))
blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
type - CURSEG_HOT_NODE);
else
blk_addr = GET_SUM_BLOCK(sbi, segno);
}
new = f2fs_get_meta_page(sbi, blk_addr);
if (IS_ERR(new))
return PTR_ERR(new);
sum = (struct f2fs_summary_block *)page_address(new);
if (IS_NODESEG(type)) {
if (__exist_node_summaries(sbi)) {
struct f2fs_summary *ns = &sum->entries[0];
int i;
for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
ns->version = 0;
ns->ofs_in_node = 0;
}
} else {
err = f2fs_restore_node_summary(sbi, segno, sum);
if (err)
goto out;
}
}
/* set uncompleted segment to curseg */
curseg = CURSEG_I(sbi, type);
mutex_lock(&curseg->curseg_mutex);
/* update journal info */
down_write(&curseg->journal_rwsem);
memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
up_write(&curseg->journal_rwsem);
memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
curseg->next_segno = segno;
reset_curseg(sbi, type, 0);
curseg->alloc_type = ckpt->alloc_type[type];
curseg->next_blkoff = blk_off;
mutex_unlock(&curseg->curseg_mutex);
out:
f2fs_put_page(new, 1);
return err;
}
static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
{
struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
int type = CURSEG_HOT_DATA;
int err;
if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
int npages = f2fs_npages_for_summary_flush(sbi, true);
if (npages >= 2)
f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
META_CP, true);
/* restore for compacted data summary */
err = read_compacted_summaries(sbi);
if (err)
return err;
type = CURSEG_HOT_NODE;
}
if (__exist_node_summaries(sbi))
f2fs_ra_meta_pages(sbi,
sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
for (; type <= CURSEG_COLD_NODE; type++) {
err = read_normal_summaries(sbi, type);
if (err)
return err;
}
/* sanity check for summary blocks */
if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
f2fs_err(sbi, "invalid journal entries nats %u sits %u",
nats_in_cursum(nat_j), sits_in_cursum(sit_j));
return -EINVAL;
}
return 0;
}
static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
{
struct page *page;
unsigned char *kaddr;
struct f2fs_summary *summary;
struct curseg_info *seg_i;
int written_size = 0;
int i, j;
page = f2fs_grab_meta_page(sbi, blkaddr++);
kaddr = (unsigned char *)page_address(page);
memset(kaddr, 0, PAGE_SIZE);
/* Step 1: write nat cache */
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
written_size += SUM_JOURNAL_SIZE;
/* Step 2: write sit cache */
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
written_size += SUM_JOURNAL_SIZE;
/* Step 3: write summary entries */
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
unsigned short blkoff;
seg_i = CURSEG_I(sbi, i);
if (sbi->ckpt->alloc_type[i] == SSR)
blkoff = sbi->blocks_per_seg;
else
blkoff = curseg_blkoff(sbi, i);
for (j = 0; j < blkoff; j++) {
if (!page) {
page = f2fs_grab_meta_page(sbi, blkaddr++);
kaddr = (unsigned char *)page_address(page);
memset(kaddr, 0, PAGE_SIZE);
written_size = 0;
}
summary = (struct f2fs_summary *)(kaddr + written_size);
*summary = seg_i->sum_blk->entries[j];
written_size += SUMMARY_SIZE;
if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
SUM_FOOTER_SIZE)
continue;
set_page_dirty(page);
f2fs_put_page(page, 1);
page = NULL;
}
}
if (page) {
set_page_dirty(page);
f2fs_put_page(page, 1);
}
}
static void write_normal_summaries(struct f2fs_sb_info *sbi,
block_t blkaddr, int type)
{
int i, end;
if (IS_DATASEG(type))
end = type + NR_CURSEG_DATA_TYPE;
else
end = type + NR_CURSEG_NODE_TYPE;
for (i = type; i < end; i++)
write_current_sum_page(sbi, i, blkaddr + (i - type));
}
void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
{
if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
write_compacted_summaries(sbi, start_blk);
else
write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
}
void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
{
write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
}
int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
unsigned int val, int alloc)
{
int i;
if (type == NAT_JOURNAL) {
for (i = 0; i < nats_in_cursum(journal); i++) {
if (le32_to_cpu(nid_in_journal(journal, i)) == val)
return i;
}
if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
return update_nats_in_cursum(journal, 1);
} else if (type == SIT_JOURNAL) {
for (i = 0; i < sits_in_cursum(journal); i++)
if (le32_to_cpu(segno_in_journal(journal, i)) == val)
return i;
if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
return update_sits_in_cursum(journal, 1);
}
return -1;
}
static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
unsigned int segno)
{
return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
}
static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
unsigned int start)
{
struct sit_info *sit_i = SIT_I(sbi);
struct page *page;
pgoff_t src_off, dst_off;
src_off = current_sit_addr(sbi, start);
dst_off = next_sit_addr(sbi, src_off);
page = f2fs_grab_meta_page(sbi, dst_off);
seg_info_to_sit_page(sbi, page, start);
set_page_dirty(page);
set_to_next_sit(sit_i, start);
return page;
}
static struct sit_entry_set *grab_sit_entry_set(void)
{
struct sit_entry_set *ses =
f2fs_kmem_cache_alloc(sit_entry_set_slab,
GFP_NOFS, true, NULL);
ses->entry_cnt = 0;
INIT_LIST_HEAD(&ses->set_list);
return ses;
}
static void release_sit_entry_set(struct sit_entry_set *ses)
{
list_del(&ses->set_list);
kmem_cache_free(sit_entry_set_slab, ses);
}
static void adjust_sit_entry_set(struct sit_entry_set *ses,
struct list_head *head)
{
struct sit_entry_set *next = ses;
if (list_is_last(&ses->set_list, head))
return;
list_for_each_entry_continue(next, head, set_list)
if (ses->entry_cnt <= next->entry_cnt) {
list_move_tail(&ses->set_list, &next->set_list);
return;
}
list_move_tail(&ses->set_list, head);
}
static void add_sit_entry(unsigned int segno, struct list_head *head)
{
struct sit_entry_set *ses;
unsigned int start_segno = START_SEGNO(segno);
list_for_each_entry(ses, head, set_list) {
if (ses->start_segno == start_segno) {
ses->entry_cnt++;
adjust_sit_entry_set(ses, head);
return;
}
}
ses = grab_sit_entry_set();
ses->start_segno = start_segno;
ses->entry_cnt++;
list_add(&ses->set_list, head);
}
static void add_sits_in_set(struct f2fs_sb_info *sbi)
{
struct f2fs_sm_info *sm_info = SM_I(sbi);
struct list_head *set_list = &sm_info->sit_entry_set;
unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
unsigned int segno;
for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
add_sit_entry(segno, set_list);
}
static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_journal *journal = curseg->journal;
int i;
down_write(&curseg->journal_rwsem);
for (i = 0; i < sits_in_cursum(journal); i++) {
unsigned int segno;
bool dirtied;
segno = le32_to_cpu(segno_in_journal(journal, i));
dirtied = __mark_sit_entry_dirty(sbi, segno);
if (!dirtied)
add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
}
update_sits_in_cursum(journal, -i);
up_write(&curseg->journal_rwsem);
}
/*
* CP calls this function, which flushes SIT entries including sit_journal,
* and moves prefree segs to free segs.
*/
void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_journal *journal = curseg->journal;
struct sit_entry_set *ses, *tmp;
struct list_head *head = &SM_I(sbi)->sit_entry_set;
bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
struct seg_entry *se;
down_write(&sit_i->sentry_lock);
if (!sit_i->dirty_sentries)
goto out;
/*
* add and account sit entries of dirty bitmap in sit entry
* set temporarily
*/
add_sits_in_set(sbi);
/*
* if there are no enough space in journal to store dirty sit
* entries, remove all entries from journal and add and account
* them in sit entry set.
*/
if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
!to_journal)
remove_sits_in_journal(sbi);
/*
* there are two steps to flush sit entries:
* #1, flush sit entries to journal in current cold data summary block.
* #2, flush sit entries to sit page.
*/
list_for_each_entry_safe(ses, tmp, head, set_list) {
struct page *page = NULL;
struct f2fs_sit_block *raw_sit = NULL;
unsigned int start_segno = ses->start_segno;
unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
(unsigned long)MAIN_SEGS(sbi));
unsigned int segno = start_segno;
if (to_journal &&
!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
to_journal = false;
if (to_journal) {
down_write(&curseg->journal_rwsem);
} else {
page = get_next_sit_page(sbi, start_segno);
raw_sit = page_address(page);
}
/* flush dirty sit entries in region of current sit set */
for_each_set_bit_from(segno, bitmap, end) {
int offset, sit_offset;
se = get_seg_entry(sbi, segno);
#ifdef CONFIG_F2FS_CHECK_FS
if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
SIT_VBLOCK_MAP_SIZE))
f2fs_bug_on(sbi, 1);
#endif
/* add discard candidates */
if (!(cpc->reason & CP_DISCARD)) {
cpc->trim_start = segno;
add_discard_addrs(sbi, cpc, false);
}
if (to_journal) {
offset = f2fs_lookup_journal_in_cursum(journal,
SIT_JOURNAL, segno, 1);
f2fs_bug_on(sbi, offset < 0);
segno_in_journal(journal, offset) =
cpu_to_le32(segno);
seg_info_to_raw_sit(se,
&sit_in_journal(journal, offset));
check_block_count(sbi, segno,
&sit_in_journal(journal, offset));
} else {
sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
seg_info_to_raw_sit(se,
&raw_sit->entries[sit_offset]);
check_block_count(sbi, segno,
&raw_sit->entries[sit_offset]);
}
__clear_bit(segno, bitmap);
sit_i->dirty_sentries--;
ses->entry_cnt--;
}
if (to_journal)
up_write(&curseg->journal_rwsem);
else
f2fs_put_page(page, 1);
f2fs_bug_on(sbi, ses->entry_cnt);
release_sit_entry_set(ses);
}
f2fs_bug_on(sbi, !list_empty(head));
f2fs_bug_on(sbi, sit_i->dirty_sentries);
out:
if (cpc->reason & CP_DISCARD) {
__u64 trim_start = cpc->trim_start;
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
add_discard_addrs(sbi, cpc, false);
cpc->trim_start = trim_start;
}
up_write(&sit_i->sentry_lock);
set_prefree_as_free_segments(sbi);
}
static int build_sit_info(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct sit_info *sit_i;
unsigned int sit_segs, start;
char *src_bitmap, *bitmap;
unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
/* allocate memory for SIT information */
sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
if (!sit_i)
return -ENOMEM;
SM_I(sbi)->sit_info = sit_i;
sit_i->sentries =
f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
MAIN_SEGS(sbi)),
GFP_KERNEL);
if (!sit_i->sentries)
return -ENOMEM;
main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
GFP_KERNEL);
if (!sit_i->dirty_sentries_bitmap)
return -ENOMEM;
#ifdef CONFIG_F2FS_CHECK_FS
bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
#else
bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
#endif
sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
if (!sit_i->bitmap)
return -ENOMEM;
bitmap = sit_i->bitmap;
for (start = 0; start < MAIN_SEGS(sbi); start++) {
sit_i->sentries[start].cur_valid_map = bitmap;
bitmap += SIT_VBLOCK_MAP_SIZE;
sit_i->sentries[start].ckpt_valid_map = bitmap;
bitmap += SIT_VBLOCK_MAP_SIZE;
#ifdef CONFIG_F2FS_CHECK_FS
sit_i->sentries[start].cur_valid_map_mir = bitmap;
bitmap += SIT_VBLOCK_MAP_SIZE;
#endif
if (discard_map) {
sit_i->sentries[start].discard_map = bitmap;
bitmap += SIT_VBLOCK_MAP_SIZE;
}
}
sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
if (!sit_i->tmp_map)
return -ENOMEM;
if (__is_large_section(sbi)) {
sit_i->sec_entries =
f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
MAIN_SECS(sbi)),
GFP_KERNEL);
if (!sit_i->sec_entries)
return -ENOMEM;
}
/* get information related with SIT */
sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
/* setup SIT bitmap from ckeckpoint pack */
sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
if (!sit_i->sit_bitmap)
return -ENOMEM;
#ifdef CONFIG_F2FS_CHECK_FS
sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
sit_bitmap_size, GFP_KERNEL);
if (!sit_i->sit_bitmap_mir)
return -ENOMEM;
sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
main_bitmap_size, GFP_KERNEL);
if (!sit_i->invalid_segmap)
return -ENOMEM;
#endif
sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
sit_i->written_valid_blocks = 0;
sit_i->bitmap_size = sit_bitmap_size;
sit_i->dirty_sentries = 0;
sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
sit_i->mounted_time = ktime_get_boottime_seconds();
init_rwsem(&sit_i->sentry_lock);
return 0;
}
static int build_free_segmap(struct f2fs_sb_info *sbi)
{
struct free_segmap_info *free_i;
unsigned int bitmap_size, sec_bitmap_size;
/* allocate memory for free segmap information */
free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
if (!free_i)
return -ENOMEM;
SM_I(sbi)->free_info = free_i;
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
if (!free_i->free_segmap)
return -ENOMEM;
sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
if (!free_i->free_secmap)
return -ENOMEM;
/* set all segments as dirty temporarily */
memset(free_i->free_segmap, 0xff, bitmap_size);
memset(free_i->free_secmap, 0xff, sec_bitmap_size);
/* init free segmap information */
free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
free_i->free_segments = 0;
free_i->free_sections = 0;
spin_lock_init(&free_i->segmap_lock);
return 0;
}
static int build_curseg(struct f2fs_sb_info *sbi)
{
struct curseg_info *array;
int i;
array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
sizeof(*array)), GFP_KERNEL);
if (!array)
return -ENOMEM;
SM_I(sbi)->curseg_array = array;
for (i = 0; i < NO_CHECK_TYPE; i++) {
mutex_init(&array[i].curseg_mutex);
array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
if (!array[i].sum_blk)
return -ENOMEM;
init_rwsem(&array[i].journal_rwsem);
array[i].journal = f2fs_kzalloc(sbi,
sizeof(struct f2fs_journal), GFP_KERNEL);
if (!array[i].journal)
return -ENOMEM;
if (i < NR_PERSISTENT_LOG)
array[i].seg_type = CURSEG_HOT_DATA + i;
else if (i == CURSEG_COLD_DATA_PINNED)
array[i].seg_type = CURSEG_COLD_DATA;
else if (i == CURSEG_ALL_DATA_ATGC)
array[i].seg_type = CURSEG_COLD_DATA;
array[i].segno = NULL_SEGNO;
array[i].next_blkoff = 0;
array[i].inited = false;
}
return restore_curseg_summaries(sbi);
}
static int build_sit_entries(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
struct f2fs_journal *journal = curseg->journal;
struct seg_entry *se;
struct f2fs_sit_entry sit;
int sit_blk_cnt = SIT_BLK_CNT(sbi);
unsigned int i, start, end;
unsigned int readed, start_blk = 0;
int err = 0;
block_t sit_valid_blocks[2] = {0, 0};
do {
readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
META_SIT, true);
start = start_blk * sit_i->sents_per_block;
end = (start_blk + readed) * sit_i->sents_per_block;
for (; start < end && start < MAIN_SEGS(sbi); start++) {
struct f2fs_sit_block *sit_blk;
struct page *page;
se = &sit_i->sentries[start];
page = get_current_sit_page(sbi, start);
if (IS_ERR(page))
return PTR_ERR(page);
sit_blk = (struct f2fs_sit_block *)page_address(page);
sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
f2fs_put_page(page, 1);
err = check_block_count(sbi, start, &sit);
if (err)
return err;
seg_info_from_raw_sit(se, &sit);
if (se->type >= NR_PERSISTENT_LOG) {
f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
se->type, start);
f2fs_handle_error(sbi,
ERROR_INCONSISTENT_SUM_TYPE);
return -EFSCORRUPTED;
}
sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
if (f2fs_block_unit_discard(sbi)) {
/* build discard map only one time */
if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
memset(se->discard_map, 0xff,
SIT_VBLOCK_MAP_SIZE);
} else {
memcpy(se->discard_map,
se->cur_valid_map,
SIT_VBLOCK_MAP_SIZE);
sbi->discard_blks +=
sbi->blocks_per_seg -
se->valid_blocks;
}
}
if (__is_large_section(sbi))
get_sec_entry(sbi, start)->valid_blocks +=
se->valid_blocks;
}
start_blk += readed;
} while (start_blk < sit_blk_cnt);
down_read(&curseg->journal_rwsem);
for (i = 0; i < sits_in_cursum(journal); i++) {
unsigned int old_valid_blocks;
start = le32_to_cpu(segno_in_journal(journal, i));
if (start >= MAIN_SEGS(sbi)) {
f2fs_err(sbi, "Wrong journal entry on segno %u",
start);
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
break;
}
se = &sit_i->sentries[start];
sit = sit_in_journal(journal, i);
old_valid_blocks = se->valid_blocks;
sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
err = check_block_count(sbi, start, &sit);
if (err)
break;
seg_info_from_raw_sit(se, &sit);
if (se->type >= NR_PERSISTENT_LOG) {
f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
se->type, start);
err = -EFSCORRUPTED;
f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
break;
}
sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
if (f2fs_block_unit_discard(sbi)) {
if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
} else {
memcpy(se->discard_map, se->cur_valid_map,
SIT_VBLOCK_MAP_SIZE);
sbi->discard_blks += old_valid_blocks;
sbi->discard_blks -= se->valid_blocks;
}
}
if (__is_large_section(sbi)) {
get_sec_entry(sbi, start)->valid_blocks +=
se->valid_blocks;
get_sec_entry(sbi, start)->valid_blocks -=
old_valid_blocks;
}
}
up_read(&curseg->journal_rwsem);
if (err)
return err;
if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
sit_valid_blocks[NODE], valid_node_count(sbi));
f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
return -EFSCORRUPTED;
}
if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
valid_user_blocks(sbi)) {
f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
sit_valid_blocks[DATA], sit_valid_blocks[NODE],
valid_user_blocks(sbi));
f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
return -EFSCORRUPTED;
}
return 0;
}
static void init_free_segmap(struct f2fs_sb_info *sbi)
{
unsigned int start;
int type;
struct seg_entry *sentry;
for (start = 0; start < MAIN_SEGS(sbi); start++) {
if (f2fs_usable_blks_in_seg(sbi, start) == 0)
continue;
sentry = get_seg_entry(sbi, start);
if (!sentry->valid_blocks)
__set_free(sbi, start);
else
SIT_I(sbi)->written_valid_blocks +=
sentry->valid_blocks;
}
/* set use the current segments */
for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
struct curseg_info *curseg_t = CURSEG_I(sbi, type);
__set_test_and_inuse(sbi, curseg_t->segno);
}
}
static void init_dirty_segmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
struct free_segmap_info *free_i = FREE_I(sbi);
unsigned int segno = 0, offset = 0, secno;
block_t valid_blocks, usable_blks_in_seg;
while (1) {
/* find dirty segment based on free segmap */
segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
if (segno >= MAIN_SEGS(sbi))
break;
offset = segno + 1;
valid_blocks = get_valid_blocks(sbi, segno, false);
usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
if (valid_blocks == usable_blks_in_seg || !valid_blocks)
continue;
if (valid_blocks > usable_blks_in_seg) {
f2fs_bug_on(sbi, 1);
continue;
}
mutex_lock(&dirty_i->seglist_lock);
__locate_dirty_segment(sbi, segno, DIRTY);
mutex_unlock(&dirty_i->seglist_lock);
}
if (!__is_large_section(sbi))
return;
mutex_lock(&dirty_i->seglist_lock);
for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
valid_blocks = get_valid_blocks(sbi, segno, true);
secno = GET_SEC_FROM_SEG(sbi, segno);
if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
continue;
if (IS_CURSEC(sbi, secno))
continue;
set_bit(secno, dirty_i->dirty_secmap);
}
mutex_unlock(&dirty_i->seglist_lock);
}
static int init_victim_secmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
if (!dirty_i->victim_secmap)
return -ENOMEM;
dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
if (!dirty_i->pinned_secmap)
return -ENOMEM;
dirty_i->pinned_secmap_cnt = 0;
dirty_i->enable_pin_section = true;
return 0;
}
static int build_dirty_segmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i;
unsigned int bitmap_size, i;
/* allocate memory for dirty segments list information */
dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
GFP_KERNEL);
if (!dirty_i)
return -ENOMEM;
SM_I(sbi)->dirty_info = dirty_i;
mutex_init(&dirty_i->seglist_lock);
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
for (i = 0; i < NR_DIRTY_TYPE; i++) {
dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
GFP_KERNEL);
if (!dirty_i->dirty_segmap[i])
return -ENOMEM;
}
if (__is_large_section(sbi)) {
bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
bitmap_size, GFP_KERNEL);
if (!dirty_i->dirty_secmap)
return -ENOMEM;
}
init_dirty_segmap(sbi);
return init_victim_secmap(sbi);
}
static int sanity_check_curseg(struct f2fs_sb_info *sbi)
{
int i;
/*
* In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
* In LFS curseg, all blkaddr after .next_blkoff should be unused.
*/
for (i = 0; i < NR_PERSISTENT_LOG; i++) {
struct curseg_info *curseg = CURSEG_I(sbi, i);
struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
unsigned int blkofs = curseg->next_blkoff;
if (f2fs_sb_has_readonly(sbi) &&
i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
continue;
sanity_check_seg_type(sbi, curseg->seg_type);
if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
f2fs_err(sbi,
"Current segment has invalid alloc_type:%d",
curseg->alloc_type);
f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
return -EFSCORRUPTED;
}
if (f2fs_test_bit(blkofs, se->cur_valid_map))
goto out;
if (curseg->alloc_type == SSR)
continue;
for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
if (!f2fs_test_bit(blkofs, se->cur_valid_map))
continue;
out:
f2fs_err(sbi,
"Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
i, curseg->segno, curseg->alloc_type,
curseg->next_blkoff, blkofs);
f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
return -EFSCORRUPTED;
}
}
return 0;
}
#ifdef CONFIG_BLK_DEV_ZONED
static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
struct f2fs_dev_info *fdev,
struct blk_zone *zone)
{
unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
block_t zone_block, wp_block, last_valid_block;
unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
int i, s, b, ret;
struct seg_entry *se;
if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
return 0;
wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
wp_segno = GET_SEGNO(sbi, wp_block);
wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
zone_segno = GET_SEGNO(sbi, zone_block);
zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
if (zone_segno >= MAIN_SEGS(sbi))
return 0;
/*
* Skip check of zones cursegs point to, since
* fix_curseg_write_pointer() checks them.
*/
for (i = 0; i < NO_CHECK_TYPE; i++)
if (zone_secno == GET_SEC_FROM_SEG(sbi,
CURSEG_I(sbi, i)->segno))
return 0;
/*
* Get last valid block of the zone.
*/
last_valid_block = zone_block - 1;
for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
segno = zone_segno + s;
se = get_seg_entry(sbi, segno);
for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
if (f2fs_test_bit(b, se->cur_valid_map)) {
last_valid_block = START_BLOCK(sbi, segno) + b;
break;
}
if (last_valid_block >= zone_block)
break;
}
/*
* If last valid block is beyond the write pointer, report the
* inconsistency. This inconsistency does not cause write error
* because the zone will not be selected for write operation until
* it get discarded. Just report it.
*/
if (last_valid_block >= wp_block) {
f2fs_notice(sbi, "Valid block beyond write pointer: "
"valid block[0x%x,0x%x] wp[0x%x,0x%x]",
GET_SEGNO(sbi, last_valid_block),
GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
wp_segno, wp_blkoff);
return 0;
}
/*
* If there is no valid block in the zone and if write pointer is
* not at zone start, reset the write pointer.
*/
if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
f2fs_notice(sbi,
"Zone without valid block has non-zero write "
"pointer. Reset the write pointer: wp[0x%x,0x%x]",
wp_segno, wp_blkoff);
ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
zone->len >> log_sectors_per_block);
if (ret) {
f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
fdev->path, ret);
return ret;
}
}
return 0;
}
static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
block_t zone_blkaddr)
{
int i;
for (i = 0; i < sbi->s_ndevs; i++) {
if (!bdev_is_zoned(FDEV(i).bdev))
continue;
if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
zone_blkaddr <= FDEV(i).end_blk))
return &FDEV(i);
}
return NULL;
}
static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
memcpy(data, zone, sizeof(struct blk_zone));
return 0;
}
static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
{
struct curseg_info *cs = CURSEG_I(sbi, type);
struct f2fs_dev_info *zbd;
struct blk_zone zone;
unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
block_t cs_zone_block, wp_block;
unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
sector_t zone_sector;
int err;
cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
zbd = get_target_zoned_dev(sbi, cs_zone_block);
if (!zbd)
return 0;
/* report zone for the sector the curseg points to */
zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
<< log_sectors_per_block;
err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
report_one_zone_cb, &zone);
if (err != 1) {
f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
zbd->path, err);
return err;
}
if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
return 0;
wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
wp_segno = GET_SEGNO(sbi, wp_block);
wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
wp_sector_off == 0)
return 0;
f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
"curseg[0x%x,0x%x] wp[0x%x,0x%x]",
type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
f2fs_notice(sbi, "Assign new section to curseg[%d]: "
"curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
f2fs_allocate_new_section(sbi, type, true);
/* check consistency of the zone curseg pointed to */
if (check_zone_write_pointer(sbi, zbd, &zone))
return -EIO;
/* check newly assigned zone */
cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
zbd = get_target_zoned_dev(sbi, cs_zone_block);
if (!zbd)
return 0;
zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
<< log_sectors_per_block;
err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
report_one_zone_cb, &zone);
if (err != 1) {
f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
zbd->path, err);
return err;
}
if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
return 0;
if (zone.wp != zone.start) {
f2fs_notice(sbi,
"New zone for curseg[%d] is not yet discarded. "
"Reset the zone: curseg[0x%x,0x%x]",
type, cs->segno, cs->next_blkoff);
err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
zone_sector >> log_sectors_per_block,
zone.len >> log_sectors_per_block);
if (err) {
f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
zbd->path, err);
return err;
}
}
return 0;
}
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
{
int i, ret;
for (i = 0; i < NR_PERSISTENT_LOG; i++) {
ret = fix_curseg_write_pointer(sbi, i);
if (ret)
return ret;
}
return 0;
}
struct check_zone_write_pointer_args {
struct f2fs_sb_info *sbi;
struct f2fs_dev_info *fdev;
};
static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
struct check_zone_write_pointer_args *args;
args = (struct check_zone_write_pointer_args *)data;
return check_zone_write_pointer(args->sbi, args->fdev, zone);
}
int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
{
int i, ret;
struct check_zone_write_pointer_args args;
for (i = 0; i < sbi->s_ndevs; i++) {
if (!bdev_is_zoned(FDEV(i).bdev))
continue;
args.sbi = sbi;
args.fdev = &FDEV(i);
ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
check_zone_write_pointer_cb, &args);
if (ret < 0)
return ret;
}
return 0;
}
static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
unsigned int dev_idx)
{
if (!bdev_is_zoned(FDEV(dev_idx).bdev))
return true;
return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
}
/* Return the zone index in the given device */
static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
int dev_idx)
{
block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
sbi->log_blocks_per_blkz;
}
/*
* Return the usable segments in a section based on the zone's
* corresponding zone capacity. Zone is equal to a section.
*/
static inline unsigned int f2fs_usable_zone_segs_in_sec(
struct f2fs_sb_info *sbi, unsigned int segno)
{
unsigned int dev_idx, zone_idx;
dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
/* Conventional zone's capacity is always equal to zone size */
if (is_conv_zone(sbi, zone_idx, dev_idx))
return sbi->segs_per_sec;
if (!sbi->unusable_blocks_per_sec)
return sbi->segs_per_sec;
/* Get the segment count beyond zone capacity block */
return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
sbi->log_blocks_per_seg);
}
/*
* Return the number of usable blocks in a segment. The number of blocks
* returned is always equal to the number of blocks in a segment for
* segments fully contained within a sequential zone capacity or a
* conventional zone. For segments partially contained in a sequential
* zone capacity, the number of usable blocks up to the zone capacity
* is returned. 0 is returned in all other cases.
*/
static inline unsigned int f2fs_usable_zone_blks_in_seg(
struct f2fs_sb_info *sbi, unsigned int segno)
{
block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
unsigned int zone_idx, dev_idx, secno;
secno = GET_SEC_FROM_SEG(sbi, segno);
seg_start = START_BLOCK(sbi, segno);
dev_idx = f2fs_target_device_index(sbi, seg_start);
zone_idx = get_zone_idx(sbi, secno, dev_idx);
/*
* Conventional zone's capacity is always equal to zone size,
* so, blocks per segment is unchanged.
*/
if (is_conv_zone(sbi, zone_idx, dev_idx))
return sbi->blocks_per_seg;
if (!sbi->unusable_blocks_per_sec)
return sbi->blocks_per_seg;
sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
/*
* If segment starts before zone capacity and spans beyond
* zone capacity, then usable blocks are from seg start to
* zone capacity. If the segment starts after the zone capacity,
* then there are no usable blocks.
*/
if (seg_start >= sec_cap_blkaddr)
return 0;
if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
return sec_cap_blkaddr - seg_start;
return sbi->blocks_per_seg;
}
#else
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
{
return 0;
}
int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
{
return 0;
}
static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
unsigned int segno)
{
return 0;
}
static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
unsigned int segno)
{
return 0;
}
#endif
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
unsigned int segno)
{
if (f2fs_sb_has_blkzoned(sbi))
return f2fs_usable_zone_blks_in_seg(sbi, segno);
return sbi->blocks_per_seg;
}
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
unsigned int segno)
{
if (f2fs_sb_has_blkzoned(sbi))
return f2fs_usable_zone_segs_in_sec(sbi, segno);
return sbi->segs_per_sec;
}
/*
* Update min, max modified time for cost-benefit GC algorithm
*/
static void init_min_max_mtime(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
unsigned int segno;
down_write(&sit_i->sentry_lock);
sit_i->min_mtime = ULLONG_MAX;
for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
unsigned int i;
unsigned long long mtime = 0;
for (i = 0; i < sbi->segs_per_sec; i++)
mtime += get_seg_entry(sbi, segno + i)->mtime;
mtime = div_u64(mtime, sbi->segs_per_sec);
if (sit_i->min_mtime > mtime)
sit_i->min_mtime = mtime;
}
sit_i->max_mtime = get_mtime(sbi, false);
sit_i->dirty_max_mtime = 0;
up_write(&sit_i->sentry_lock);
}
int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_sm_info *sm_info;
int err;
sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
if (!sm_info)
return -ENOMEM;
/* init sm info */
sbi->sm_info = sm_info;
sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
sm_info->rec_prefree_segments = sm_info->main_segments *
DEF_RECLAIM_PREFREE_SEGMENTS / 100;
if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
if (!f2fs_lfs_mode(sbi))
sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
sm_info->min_seq_blocks = sbi->blocks_per_seg;
sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
sm_info->min_ssr_sections = reserved_sections(sbi);
INIT_LIST_HEAD(&sm_info->sit_entry_set);
init_f2fs_rwsem(&sm_info->curseg_lock);
if (!f2fs_readonly(sbi->sb)) {
err = f2fs_create_flush_cmd_control(sbi);
if (err)
return err;
}
err = create_discard_cmd_control(sbi);
if (err)
return err;
err = build_sit_info(sbi);
if (err)
return err;
err = build_free_segmap(sbi);
if (err)
return err;
err = build_curseg(sbi);
if (err)
return err;
/* reinit free segmap based on SIT */
err = build_sit_entries(sbi);
if (err)
return err;
init_free_segmap(sbi);
err = build_dirty_segmap(sbi);
if (err)
return err;
err = sanity_check_curseg(sbi);
if (err)
return err;
init_min_max_mtime(sbi);
return 0;
}
static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
enum dirty_type dirty_type)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
mutex_lock(&dirty_i->seglist_lock);
kvfree(dirty_i->dirty_segmap[dirty_type]);
dirty_i->nr_dirty[dirty_type] = 0;
mutex_unlock(&dirty_i->seglist_lock);
}
static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
kvfree(dirty_i->pinned_secmap);
kvfree(dirty_i->victim_secmap);
}
static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
{
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
int i;
if (!dirty_i)
return;
/* discard pre-free/dirty segments list */
for (i = 0; i < NR_DIRTY_TYPE; i++)
discard_dirty_segmap(sbi, i);
if (__is_large_section(sbi)) {
mutex_lock(&dirty_i->seglist_lock);
kvfree(dirty_i->dirty_secmap);
mutex_unlock(&dirty_i->seglist_lock);
}
destroy_victim_secmap(sbi);
SM_I(sbi)->dirty_info = NULL;
kfree(dirty_i);
}
static void destroy_curseg(struct f2fs_sb_info *sbi)
{
struct curseg_info *array = SM_I(sbi)->curseg_array;
int i;
if (!array)
return;
SM_I(sbi)->curseg_array = NULL;
for (i = 0; i < NR_CURSEG_TYPE; i++) {
kfree(array[i].sum_blk);
kfree(array[i].journal);
}
kfree(array);
}
static void destroy_free_segmap(struct f2fs_sb_info *sbi)
{
struct free_segmap_info *free_i = SM_I(sbi)->free_info;
if (!free_i)
return;
SM_I(sbi)->free_info = NULL;
kvfree(free_i->free_segmap);
kvfree(free_i->free_secmap);
kfree(free_i);
}
static void destroy_sit_info(struct f2fs_sb_info *sbi)
{
struct sit_info *sit_i = SIT_I(sbi);
if (!sit_i)
return;
if (sit_i->sentries)
kvfree(sit_i->bitmap);
kfree(sit_i->tmp_map);
kvfree(sit_i->sentries);
kvfree(sit_i->sec_entries);
kvfree(sit_i->dirty_sentries_bitmap);
SM_I(sbi)->sit_info = NULL;
kvfree(sit_i->sit_bitmap);
#ifdef CONFIG_F2FS_CHECK_FS
kvfree(sit_i->sit_bitmap_mir);
kvfree(sit_i->invalid_segmap);
#endif
kfree(sit_i);
}
void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_sm_info *sm_info = SM_I(sbi);
if (!sm_info)
return;
f2fs_destroy_flush_cmd_control(sbi, true);
destroy_discard_cmd_control(sbi);
destroy_dirty_segmap(sbi);
destroy_curseg(sbi);
destroy_free_segmap(sbi);
destroy_sit_info(sbi);
sbi->sm_info = NULL;
kfree(sm_info);
}
int __init f2fs_create_segment_manager_caches(void)
{
discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
sizeof(struct discard_entry));
if (!discard_entry_slab)
goto fail;
discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
sizeof(struct discard_cmd));
if (!discard_cmd_slab)
goto destroy_discard_entry;
sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
sizeof(struct sit_entry_set));
if (!sit_entry_set_slab)
goto destroy_discard_cmd;
revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
sizeof(struct revoke_entry));
if (!revoke_entry_slab)
goto destroy_sit_entry_set;
return 0;
destroy_sit_entry_set:
kmem_cache_destroy(sit_entry_set_slab);
destroy_discard_cmd:
kmem_cache_destroy(discard_cmd_slab);
destroy_discard_entry:
kmem_cache_destroy(discard_entry_slab);
fail:
return -ENOMEM;
}
void f2fs_destroy_segment_manager_caches(void)
{
kmem_cache_destroy(sit_entry_set_slab);
kmem_cache_destroy(discard_cmd_slab);
kmem_cache_destroy(discard_entry_slab);
kmem_cache_destroy(revoke_entry_slab);
}