151 строка
3.4 KiB
C
151 строка
3.4 KiB
C
/*
|
|
* intc.c -- support for the old ColdFire interrupt controller
|
|
*
|
|
* (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file COPYING in the main directory of this archive
|
|
* for more details.
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/io.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/coldfire.h>
|
|
#include <asm/mcfsim.h>
|
|
|
|
/*
|
|
* The mapping of irq number to a mask register bit is not one-to-one.
|
|
* The irq numbers are either based on "level" of interrupt or fixed
|
|
* for an autovector-able interrupt. So we keep a local data structure
|
|
* that maps from irq to mask register. Not all interrupts will have
|
|
* an IMR bit.
|
|
*/
|
|
unsigned char mcf_irq2imr[NR_IRQS];
|
|
|
|
/*
|
|
* Define the miniumun and maximum external interrupt numbers.
|
|
* This is also used as the "level" interrupt numbers.
|
|
*/
|
|
#define EIRQ1 25
|
|
#define EIRQ7 31
|
|
|
|
/*
|
|
* In the early version 2 core ColdFire parts the IMR register was 16 bits
|
|
* in size. Version 3 (and later version 2) core parts have a 32 bit
|
|
* sized IMR register. Provide some size independent methods to access the
|
|
* IMR register.
|
|
*/
|
|
#ifdef MCFSIM_IMR_IS_16BITS
|
|
|
|
void mcf_setimr(int index)
|
|
{
|
|
u16 imr;
|
|
imr = __raw_readw(MCFSIM_IMR);
|
|
__raw_writew(imr | (0x1 << index), MCFSIM_IMR);
|
|
}
|
|
|
|
void mcf_clrimr(int index)
|
|
{
|
|
u16 imr;
|
|
imr = __raw_readw(MCFSIM_IMR);
|
|
__raw_writew(imr & ~(0x1 << index), MCFSIM_IMR);
|
|
}
|
|
|
|
void mcf_maskimr(unsigned int mask)
|
|
{
|
|
u16 imr;
|
|
imr = __raw_readw(MCFSIM_IMR);
|
|
imr |= mask;
|
|
__raw_writew(imr, MCFSIM_IMR);
|
|
}
|
|
|
|
#else
|
|
|
|
void mcf_setimr(int index)
|
|
{
|
|
u32 imr;
|
|
imr = __raw_readl(MCFSIM_IMR);
|
|
__raw_writel(imr | (0x1 << index), MCFSIM_IMR);
|
|
}
|
|
|
|
void mcf_clrimr(int index)
|
|
{
|
|
u32 imr;
|
|
imr = __raw_readl(MCFSIM_IMR);
|
|
__raw_writel(imr & ~(0x1 << index), MCFSIM_IMR);
|
|
}
|
|
|
|
void mcf_maskimr(unsigned int mask)
|
|
{
|
|
u32 imr;
|
|
imr = __raw_readl(MCFSIM_IMR);
|
|
imr |= mask;
|
|
__raw_writel(imr, MCFSIM_IMR);
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Interrupts can be "vectored" on the ColdFire cores that support this old
|
|
* interrupt controller. That is, the device raising the interrupt can also
|
|
* supply the vector number to interrupt through. The AVR register of the
|
|
* interrupt controller enables or disables this for each external interrupt,
|
|
* so provide generic support for this. Setting this up is out-of-band for
|
|
* the interrupt system API's, and needs to be done by the driver that
|
|
* supports this device. Very few devices actually use this.
|
|
*/
|
|
void mcf_autovector(int irq)
|
|
{
|
|
#ifdef MCFSIM_AVR
|
|
if ((irq >= EIRQ1) && (irq <= EIRQ7)) {
|
|
u8 avec;
|
|
avec = __raw_readb(MCFSIM_AVR);
|
|
avec |= (0x1 << (irq - EIRQ1 + 1));
|
|
__raw_writeb(avec, MCFSIM_AVR);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void intc_irq_mask(struct irq_data *d)
|
|
{
|
|
if (mcf_irq2imr[d->irq])
|
|
mcf_setimr(mcf_irq2imr[d->irq]);
|
|
}
|
|
|
|
static void intc_irq_unmask(struct irq_data *d)
|
|
{
|
|
if (mcf_irq2imr[d->irq])
|
|
mcf_clrimr(mcf_irq2imr[d->irq]);
|
|
}
|
|
|
|
static int intc_irq_set_type(struct irq_data *d, unsigned int type)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct irq_chip intc_irq_chip = {
|
|
.name = "CF-INTC",
|
|
.irq_mask = intc_irq_mask,
|
|
.irq_unmask = intc_irq_unmask,
|
|
.irq_set_type = intc_irq_set_type,
|
|
};
|
|
|
|
void __init init_IRQ(void)
|
|
{
|
|
int irq;
|
|
|
|
mcf_maskimr(0xffffffff);
|
|
|
|
for (irq = 0; (irq < NR_IRQS); irq++) {
|
|
irq_set_chip(irq, &intc_irq_chip);
|
|
irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH);
|
|
irq_set_handler(irq, handle_level_irq);
|
|
}
|
|
}
|
|
|