720 строки
18 KiB
C
720 строки
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Windfarm PowerMac thermal control.
|
|
* Control loops for machines with SMU and PPC970MP processors.
|
|
*
|
|
* Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
|
|
* Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/smu.h>
|
|
|
|
#include "windfarm.h"
|
|
#include "windfarm_pid.h"
|
|
|
|
#define VERSION "0.2"
|
|
|
|
#define DEBUG
|
|
#undef LOTSA_DEBUG
|
|
|
|
#ifdef DEBUG
|
|
#define DBG(args...) printk(args)
|
|
#else
|
|
#define DBG(args...) do { } while(0)
|
|
#endif
|
|
|
|
#ifdef LOTSA_DEBUG
|
|
#define DBG_LOTS(args...) printk(args)
|
|
#else
|
|
#define DBG_LOTS(args...) do { } while(0)
|
|
#endif
|
|
|
|
/* define this to force CPU overtemp to 60 degree, useful for testing
|
|
* the overtemp code
|
|
*/
|
|
#undef HACKED_OVERTEMP
|
|
|
|
/* We currently only handle 2 chips, 4 cores... */
|
|
#define NR_CHIPS 2
|
|
#define NR_CORES 4
|
|
#define NR_CPU_FANS 3 * NR_CHIPS
|
|
|
|
/* Controls and sensors */
|
|
static struct wf_sensor *sens_cpu_temp[NR_CORES];
|
|
static struct wf_sensor *sens_cpu_power[NR_CORES];
|
|
static struct wf_sensor *hd_temp;
|
|
static struct wf_sensor *slots_power;
|
|
static struct wf_sensor *u4_temp;
|
|
|
|
static struct wf_control *cpu_fans[NR_CPU_FANS];
|
|
static char *cpu_fan_names[NR_CPU_FANS] = {
|
|
"cpu-rear-fan-0",
|
|
"cpu-rear-fan-1",
|
|
"cpu-front-fan-0",
|
|
"cpu-front-fan-1",
|
|
"cpu-pump-0",
|
|
"cpu-pump-1",
|
|
};
|
|
static struct wf_control *cpufreq_clamp;
|
|
|
|
/* Second pump isn't required (and isn't actually present) */
|
|
#define CPU_FANS_REQD (NR_CPU_FANS - 2)
|
|
#define FIRST_PUMP 4
|
|
#define LAST_PUMP 5
|
|
|
|
/* We keep a temperature history for average calculation of 180s */
|
|
#define CPU_TEMP_HIST_SIZE 180
|
|
|
|
/* Scale factor for fan speed, *100 */
|
|
static int cpu_fan_scale[NR_CPU_FANS] = {
|
|
100,
|
|
100,
|
|
97, /* inlet fans run at 97% of exhaust fan */
|
|
97,
|
|
100, /* updated later */
|
|
100, /* updated later */
|
|
};
|
|
|
|
static struct wf_control *backside_fan;
|
|
static struct wf_control *slots_fan;
|
|
static struct wf_control *drive_bay_fan;
|
|
|
|
/* PID loop state */
|
|
static struct wf_cpu_pid_state cpu_pid[NR_CORES];
|
|
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
|
|
static int cpu_thist_pt;
|
|
static s64 cpu_thist_total;
|
|
static s32 cpu_all_tmax = 100 << 16;
|
|
static int cpu_last_target;
|
|
static struct wf_pid_state backside_pid;
|
|
static int backside_tick;
|
|
static struct wf_pid_state slots_pid;
|
|
static bool slots_started;
|
|
static struct wf_pid_state drive_bay_pid;
|
|
static int drive_bay_tick;
|
|
|
|
static int nr_cores;
|
|
static int have_all_controls;
|
|
static int have_all_sensors;
|
|
static bool started;
|
|
|
|
static int failure_state;
|
|
#define FAILURE_SENSOR 1
|
|
#define FAILURE_FAN 2
|
|
#define FAILURE_PERM 4
|
|
#define FAILURE_LOW_OVERTEMP 8
|
|
#define FAILURE_HIGH_OVERTEMP 16
|
|
|
|
/* Overtemp values */
|
|
#define LOW_OVER_AVERAGE 0
|
|
#define LOW_OVER_IMMEDIATE (10 << 16)
|
|
#define LOW_OVER_CLEAR ((-10) << 16)
|
|
#define HIGH_OVER_IMMEDIATE (14 << 16)
|
|
#define HIGH_OVER_AVERAGE (10 << 16)
|
|
#define HIGH_OVER_IMMEDIATE (14 << 16)
|
|
|
|
|
|
/* Implementation... */
|
|
static int create_cpu_loop(int cpu)
|
|
{
|
|
int chip = cpu / 2;
|
|
int core = cpu & 1;
|
|
struct smu_sdbp_header *hdr;
|
|
struct smu_sdbp_cpupiddata *piddata;
|
|
struct wf_cpu_pid_param pid;
|
|
struct wf_control *main_fan = cpu_fans[0];
|
|
s32 tmax;
|
|
int fmin;
|
|
|
|
/* Get FVT params to get Tmax; if not found, assume default */
|
|
hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
|
|
if (hdr) {
|
|
struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
|
|
tmax = fvt->maxtemp << 16;
|
|
} else
|
|
tmax = 95 << 16; /* default to 95 degrees C */
|
|
|
|
/* We keep a global tmax for overtemp calculations */
|
|
if (tmax < cpu_all_tmax)
|
|
cpu_all_tmax = tmax;
|
|
|
|
kfree(hdr);
|
|
|
|
/* Get PID params from the appropriate SAT */
|
|
hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
|
|
if (hdr == NULL) {
|
|
printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
|
|
return -EINVAL;
|
|
}
|
|
piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
|
|
|
|
/*
|
|
* Darwin has a minimum fan speed of 1000 rpm for the 4-way and
|
|
* 515 for the 2-way. That appears to be overkill, so for now,
|
|
* impose a minimum of 750 or 515.
|
|
*/
|
|
fmin = (nr_cores > 2) ? 750 : 515;
|
|
|
|
/* Initialize PID loop */
|
|
pid.interval = 1; /* seconds */
|
|
pid.history_len = piddata->history_len;
|
|
pid.gd = piddata->gd;
|
|
pid.gp = piddata->gp;
|
|
pid.gr = piddata->gr / piddata->history_len;
|
|
pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
|
|
pid.ttarget = tmax - (piddata->target_temp_delta << 16);
|
|
pid.tmax = tmax;
|
|
pid.min = main_fan->ops->get_min(main_fan);
|
|
pid.max = main_fan->ops->get_max(main_fan);
|
|
if (pid.min < fmin)
|
|
pid.min = fmin;
|
|
|
|
wf_cpu_pid_init(&cpu_pid[cpu], &pid);
|
|
|
|
kfree(hdr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_max_all_fans(void)
|
|
{
|
|
int i;
|
|
|
|
/* We max all CPU fans in case of a sensor error. We also do the
|
|
* cpufreq clamping now, even if it's supposedly done later by the
|
|
* generic code anyway, we do it earlier here to react faster
|
|
*/
|
|
if (cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
for (i = 0; i < NR_CPU_FANS; ++i)
|
|
if (cpu_fans[i])
|
|
wf_control_set_max(cpu_fans[i]);
|
|
}
|
|
|
|
static int cpu_check_overtemp(s32 temp)
|
|
{
|
|
int new_state = 0;
|
|
s32 t_avg, t_old;
|
|
|
|
/* First check for immediate overtemps */
|
|
if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
|
|
new_state |= FAILURE_LOW_OVERTEMP;
|
|
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
|
|
" temperature !\n");
|
|
}
|
|
if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
|
|
new_state |= FAILURE_HIGH_OVERTEMP;
|
|
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Critical overtemp due to"
|
|
" immediate CPU temperature !\n");
|
|
}
|
|
|
|
/* We calculate a history of max temperatures and use that for the
|
|
* overtemp management
|
|
*/
|
|
t_old = cpu_thist[cpu_thist_pt];
|
|
cpu_thist[cpu_thist_pt] = temp;
|
|
cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
|
|
cpu_thist_total -= t_old;
|
|
cpu_thist_total += temp;
|
|
t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
|
|
|
|
DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
|
|
FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
|
|
|
|
/* Now check for average overtemps */
|
|
if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
|
|
new_state |= FAILURE_LOW_OVERTEMP;
|
|
if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Overtemp due to average CPU"
|
|
" temperature !\n");
|
|
}
|
|
if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
|
|
new_state |= FAILURE_HIGH_OVERTEMP;
|
|
if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
|
|
printk(KERN_ERR "windfarm: Critical overtemp due to"
|
|
" average CPU temperature !\n");
|
|
}
|
|
|
|
/* Now handle overtemp conditions. We don't currently use the windfarm
|
|
* overtemp handling core as it's not fully suited to the needs of those
|
|
* new machine. This will be fixed later.
|
|
*/
|
|
if (new_state) {
|
|
/* High overtemp -> immediate shutdown */
|
|
if (new_state & FAILURE_HIGH_OVERTEMP)
|
|
machine_power_off();
|
|
if ((failure_state & new_state) != new_state)
|
|
cpu_max_all_fans();
|
|
failure_state |= new_state;
|
|
} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
|
|
(temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
|
|
printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
|
|
failure_state &= ~FAILURE_LOW_OVERTEMP;
|
|
}
|
|
|
|
return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
|
|
}
|
|
|
|
static void cpu_fans_tick(void)
|
|
{
|
|
int err, cpu;
|
|
s32 greatest_delta = 0;
|
|
s32 temp, power, t_max = 0;
|
|
int i, t, target = 0;
|
|
struct wf_sensor *sr;
|
|
struct wf_control *ct;
|
|
struct wf_cpu_pid_state *sp;
|
|
|
|
DBG_LOTS(KERN_DEBUG);
|
|
for (cpu = 0; cpu < nr_cores; ++cpu) {
|
|
/* Get CPU core temperature */
|
|
sr = sens_cpu_temp[cpu];
|
|
err = sr->ops->get_value(sr, &temp);
|
|
if (err) {
|
|
DBG("\n");
|
|
printk(KERN_WARNING "windfarm: CPU %d temperature "
|
|
"sensor error %d\n", cpu, err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
|
|
/* Keep track of highest temp */
|
|
t_max = max(t_max, temp);
|
|
|
|
/* Get CPU power */
|
|
sr = sens_cpu_power[cpu];
|
|
err = sr->ops->get_value(sr, &power);
|
|
if (err) {
|
|
DBG("\n");
|
|
printk(KERN_WARNING "windfarm: CPU %d power "
|
|
"sensor error %d\n", cpu, err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
cpu_max_all_fans();
|
|
return;
|
|
}
|
|
|
|
/* Run PID */
|
|
sp = &cpu_pid[cpu];
|
|
t = wf_cpu_pid_run(sp, power, temp);
|
|
|
|
if (cpu == 0 || sp->last_delta > greatest_delta) {
|
|
greatest_delta = sp->last_delta;
|
|
target = t;
|
|
}
|
|
DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
|
|
cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
|
|
}
|
|
DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
|
|
|
|
/* Darwin limits decrease to 20 per iteration */
|
|
if (target < (cpu_last_target - 20))
|
|
target = cpu_last_target - 20;
|
|
cpu_last_target = target;
|
|
for (cpu = 0; cpu < nr_cores; ++cpu)
|
|
cpu_pid[cpu].target = target;
|
|
|
|
/* Handle possible overtemps */
|
|
if (cpu_check_overtemp(t_max))
|
|
return;
|
|
|
|
/* Set fans */
|
|
for (i = 0; i < NR_CPU_FANS; ++i) {
|
|
ct = cpu_fans[i];
|
|
if (ct == NULL)
|
|
continue;
|
|
err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: fan %s reports "
|
|
"error %d\n", ct->name, err);
|
|
failure_state |= FAILURE_FAN;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Backside/U4 fan */
|
|
static struct wf_pid_param backside_param = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 48 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 64 << 16,
|
|
.additive = 1,
|
|
};
|
|
|
|
static void backside_fan_tick(void)
|
|
{
|
|
s32 temp;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!backside_fan || !u4_temp)
|
|
return;
|
|
if (!backside_tick) {
|
|
/* first time; initialize things */
|
|
printk(KERN_INFO "windfarm: Backside control loop started.\n");
|
|
backside_param.min = backside_fan->ops->get_min(backside_fan);
|
|
backside_param.max = backside_fan->ops->get_max(backside_fan);
|
|
wf_pid_init(&backside_pid, &backside_param);
|
|
backside_tick = 1;
|
|
}
|
|
if (--backside_tick > 0)
|
|
return;
|
|
backside_tick = backside_pid.param.interval;
|
|
|
|
err = u4_temp->ops->get_value(u4_temp, &temp);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
|
|
err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(backside_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&backside_pid, temp);
|
|
DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(temp), speed);
|
|
|
|
err = backside_fan->ops->set_value(backside_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
/* Drive bay fan */
|
|
static struct wf_pid_param drive_bay_prm = {
|
|
.interval = 5,
|
|
.history_len = 2,
|
|
.gd = 30 << 20,
|
|
.gp = 5 << 20,
|
|
.gr = 0,
|
|
.itarget = 40 << 16,
|
|
.additive = 1,
|
|
};
|
|
|
|
static void drive_bay_fan_tick(void)
|
|
{
|
|
s32 temp;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!drive_bay_fan || !hd_temp)
|
|
return;
|
|
if (!drive_bay_tick) {
|
|
/* first time; initialize things */
|
|
printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
|
|
drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
|
|
drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
|
|
wf_pid_init(&drive_bay_pid, &drive_bay_prm);
|
|
drive_bay_tick = 1;
|
|
}
|
|
if (--drive_bay_tick > 0)
|
|
return;
|
|
drive_bay_tick = drive_bay_pid.param.interval;
|
|
|
|
err = hd_temp->ops->get_value(hd_temp, &temp);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: drive bay temp sensor "
|
|
"error %d\n", err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(drive_bay_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&drive_bay_pid, temp);
|
|
DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(temp), speed);
|
|
|
|
err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
/* PCI slots area fan */
|
|
/* This makes the fan speed proportional to the power consumed */
|
|
static struct wf_pid_param slots_param = {
|
|
.interval = 1,
|
|
.history_len = 2,
|
|
.gd = 0,
|
|
.gp = 0,
|
|
.gr = 0x1277952,
|
|
.itarget = 0,
|
|
.min = 1560,
|
|
.max = 3510,
|
|
};
|
|
|
|
static void slots_fan_tick(void)
|
|
{
|
|
s32 power;
|
|
int speed;
|
|
int err;
|
|
|
|
if (!slots_fan || !slots_power)
|
|
return;
|
|
if (!slots_started) {
|
|
/* first time; initialize things */
|
|
printk(KERN_INFO "windfarm: Slots control loop started.\n");
|
|
wf_pid_init(&slots_pid, &slots_param);
|
|
slots_started = true;
|
|
}
|
|
|
|
err = slots_power->ops->get_value(slots_power, &power);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
|
|
err);
|
|
failure_state |= FAILURE_SENSOR;
|
|
wf_control_set_max(slots_fan);
|
|
return;
|
|
}
|
|
speed = wf_pid_run(&slots_pid, power);
|
|
DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
|
|
FIX32TOPRINT(power), speed);
|
|
|
|
err = slots_fan->ops->set_value(slots_fan, speed);
|
|
if (err) {
|
|
printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
|
|
failure_state |= FAILURE_FAN;
|
|
}
|
|
}
|
|
|
|
static void set_fail_state(void)
|
|
{
|
|
int i;
|
|
|
|
if (cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
for (i = 0; i < NR_CPU_FANS; ++i)
|
|
if (cpu_fans[i])
|
|
wf_control_set_max(cpu_fans[i]);
|
|
if (backside_fan)
|
|
wf_control_set_max(backside_fan);
|
|
if (slots_fan)
|
|
wf_control_set_max(slots_fan);
|
|
if (drive_bay_fan)
|
|
wf_control_set_max(drive_bay_fan);
|
|
}
|
|
|
|
static void pm112_tick(void)
|
|
{
|
|
int i, last_failure;
|
|
|
|
if (!started) {
|
|
started = true;
|
|
printk(KERN_INFO "windfarm: CPUs control loops started.\n");
|
|
for (i = 0; i < nr_cores; ++i) {
|
|
if (create_cpu_loop(i) < 0) {
|
|
failure_state = FAILURE_PERM;
|
|
set_fail_state();
|
|
break;
|
|
}
|
|
}
|
|
DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
|
|
|
|
#ifdef HACKED_OVERTEMP
|
|
cpu_all_tmax = 60 << 16;
|
|
#endif
|
|
}
|
|
|
|
/* Permanent failure, bail out */
|
|
if (failure_state & FAILURE_PERM)
|
|
return;
|
|
/* Clear all failure bits except low overtemp which will be eventually
|
|
* cleared by the control loop itself
|
|
*/
|
|
last_failure = failure_state;
|
|
failure_state &= FAILURE_LOW_OVERTEMP;
|
|
cpu_fans_tick();
|
|
backside_fan_tick();
|
|
slots_fan_tick();
|
|
drive_bay_fan_tick();
|
|
|
|
DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
|
|
last_failure, failure_state);
|
|
|
|
/* Check for failures. Any failure causes cpufreq clamping */
|
|
if (failure_state && last_failure == 0 && cpufreq_clamp)
|
|
wf_control_set_max(cpufreq_clamp);
|
|
if (failure_state == 0 && last_failure && cpufreq_clamp)
|
|
wf_control_set_min(cpufreq_clamp);
|
|
|
|
/* That's it for now, we might want to deal with other failures
|
|
* differently in the future though
|
|
*/
|
|
}
|
|
|
|
static void pm112_new_control(struct wf_control *ct)
|
|
{
|
|
int i, max_exhaust;
|
|
|
|
if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
|
|
if (wf_get_control(ct) == 0)
|
|
cpufreq_clamp = ct;
|
|
}
|
|
|
|
for (i = 0; i < NR_CPU_FANS; ++i) {
|
|
if (!strcmp(ct->name, cpu_fan_names[i])) {
|
|
if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
|
|
cpu_fans[i] = ct;
|
|
break;
|
|
}
|
|
}
|
|
if (i >= NR_CPU_FANS) {
|
|
/* not a CPU fan, try the others */
|
|
if (!strcmp(ct->name, "backside-fan")) {
|
|
if (backside_fan == NULL && wf_get_control(ct) == 0)
|
|
backside_fan = ct;
|
|
} else if (!strcmp(ct->name, "slots-fan")) {
|
|
if (slots_fan == NULL && wf_get_control(ct) == 0)
|
|
slots_fan = ct;
|
|
} else if (!strcmp(ct->name, "drive-bay-fan")) {
|
|
if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
|
|
drive_bay_fan = ct;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < CPU_FANS_REQD; ++i)
|
|
if (cpu_fans[i] == NULL)
|
|
return;
|
|
|
|
/* work out pump scaling factors */
|
|
max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
|
|
for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
|
|
if ((ct = cpu_fans[i]) != NULL)
|
|
cpu_fan_scale[i] =
|
|
ct->ops->get_max(ct) * 100 / max_exhaust;
|
|
|
|
have_all_controls = 1;
|
|
}
|
|
|
|
static void pm112_new_sensor(struct wf_sensor *sr)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!strncmp(sr->name, "cpu-temp-", 9)) {
|
|
i = sr->name[9] - '0';
|
|
if (sr->name[10] == 0 && i < NR_CORES &&
|
|
sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
|
|
sens_cpu_temp[i] = sr;
|
|
|
|
} else if (!strncmp(sr->name, "cpu-power-", 10)) {
|
|
i = sr->name[10] - '0';
|
|
if (sr->name[11] == 0 && i < NR_CORES &&
|
|
sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
|
|
sens_cpu_power[i] = sr;
|
|
} else if (!strcmp(sr->name, "hd-temp")) {
|
|
if (hd_temp == NULL && wf_get_sensor(sr) == 0)
|
|
hd_temp = sr;
|
|
} else if (!strcmp(sr->name, "slots-power")) {
|
|
if (slots_power == NULL && wf_get_sensor(sr) == 0)
|
|
slots_power = sr;
|
|
} else if (!strcmp(sr->name, "backside-temp")) {
|
|
if (u4_temp == NULL && wf_get_sensor(sr) == 0)
|
|
u4_temp = sr;
|
|
} else
|
|
return;
|
|
|
|
/* check if we have all the sensors we need */
|
|
for (i = 0; i < nr_cores; ++i)
|
|
if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
|
|
return;
|
|
|
|
have_all_sensors = 1;
|
|
}
|
|
|
|
static int pm112_wf_notify(struct notifier_block *self,
|
|
unsigned long event, void *data)
|
|
{
|
|
switch (event) {
|
|
case WF_EVENT_NEW_SENSOR:
|
|
pm112_new_sensor(data);
|
|
break;
|
|
case WF_EVENT_NEW_CONTROL:
|
|
pm112_new_control(data);
|
|
break;
|
|
case WF_EVENT_TICK:
|
|
if (have_all_controls && have_all_sensors)
|
|
pm112_tick();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block pm112_events = {
|
|
.notifier_call = pm112_wf_notify,
|
|
};
|
|
|
|
static int wf_pm112_probe(struct platform_device *dev)
|
|
{
|
|
wf_register_client(&pm112_events);
|
|
return 0;
|
|
}
|
|
|
|
static int wf_pm112_remove(struct platform_device *dev)
|
|
{
|
|
wf_unregister_client(&pm112_events);
|
|
/* should release all sensors and controls */
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver wf_pm112_driver = {
|
|
.probe = wf_pm112_probe,
|
|
.remove = wf_pm112_remove,
|
|
.driver = {
|
|
.name = "windfarm",
|
|
},
|
|
};
|
|
|
|
static int __init wf_pm112_init(void)
|
|
{
|
|
struct device_node *cpu;
|
|
|
|
if (!of_machine_is_compatible("PowerMac11,2"))
|
|
return -ENODEV;
|
|
|
|
/* Count the number of CPU cores */
|
|
nr_cores = 0;
|
|
for_each_node_by_type(cpu, "cpu")
|
|
++nr_cores;
|
|
|
|
printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
|
|
|
|
#ifdef MODULE
|
|
request_module("windfarm_smu_controls");
|
|
request_module("windfarm_smu_sensors");
|
|
request_module("windfarm_smu_sat");
|
|
request_module("windfarm_lm75_sensor");
|
|
request_module("windfarm_max6690_sensor");
|
|
request_module("windfarm_cpufreq_clamp");
|
|
|
|
#endif /* MODULE */
|
|
|
|
platform_driver_register(&wf_pm112_driver);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit wf_pm112_exit(void)
|
|
{
|
|
platform_driver_unregister(&wf_pm112_driver);
|
|
}
|
|
|
|
module_init(wf_pm112_init);
|
|
module_exit(wf_pm112_exit);
|
|
|
|
MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
|
|
MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_ALIAS("platform:windfarm");
|