1078 строки
27 KiB
C
1078 строки
27 KiB
C
#include <linux/export.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/random.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/pci-direct.h>
|
|
#include <asm/delay.h>
|
|
|
|
#ifdef CONFIG_X86_64
|
|
# include <asm/mmconfig.h>
|
|
# include <asm/set_memory.h>
|
|
#endif
|
|
|
|
#include "cpu.h"
|
|
|
|
static const int amd_erratum_383[];
|
|
static const int amd_erratum_400[];
|
|
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum);
|
|
|
|
/*
|
|
* nodes_per_socket: Stores the number of nodes per socket.
|
|
* Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
|
|
* Node Identifiers[10:8]
|
|
*/
|
|
static u32 nodes_per_socket = 1;
|
|
|
|
static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
|
|
{
|
|
u32 gprs[8] = { 0 };
|
|
int err;
|
|
|
|
WARN_ONCE((boot_cpu_data.x86 != 0xf),
|
|
"%s should only be used on K8!\n", __func__);
|
|
|
|
gprs[1] = msr;
|
|
gprs[7] = 0x9c5a203a;
|
|
|
|
err = rdmsr_safe_regs(gprs);
|
|
|
|
*p = gprs[0] | ((u64)gprs[2] << 32);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
|
|
{
|
|
u32 gprs[8] = { 0 };
|
|
|
|
WARN_ONCE((boot_cpu_data.x86 != 0xf),
|
|
"%s should only be used on K8!\n", __func__);
|
|
|
|
gprs[0] = (u32)val;
|
|
gprs[1] = msr;
|
|
gprs[2] = val >> 32;
|
|
gprs[7] = 0x9c5a203a;
|
|
|
|
return wrmsr_safe_regs(gprs);
|
|
}
|
|
|
|
/*
|
|
* B step AMD K6 before B 9730xxxx have hardware bugs that can cause
|
|
* misexecution of code under Linux. Owners of such processors should
|
|
* contact AMD for precise details and a CPU swap.
|
|
*
|
|
* See http://www.multimania.com/poulot/k6bug.html
|
|
* and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
|
|
* (Publication # 21266 Issue Date: August 1998)
|
|
*
|
|
* The following test is erm.. interesting. AMD neglected to up
|
|
* the chip setting when fixing the bug but they also tweaked some
|
|
* performance at the same time..
|
|
*/
|
|
|
|
extern __visible void vide(void);
|
|
__asm__(".globl vide\n"
|
|
".type vide, @function\n"
|
|
".align 4\n"
|
|
"vide: ret\n");
|
|
|
|
static void init_amd_k5(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* General Systems BIOSen alias the cpu frequency registers
|
|
* of the Elan at 0x000df000. Unfortunately, one of the Linux
|
|
* drivers subsequently pokes it, and changes the CPU speed.
|
|
* Workaround : Remove the unneeded alias.
|
|
*/
|
|
#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
|
|
#define CBAR_ENB (0x80000000)
|
|
#define CBAR_KEY (0X000000CB)
|
|
if (c->x86_model == 9 || c->x86_model == 10) {
|
|
if (inl(CBAR) & CBAR_ENB)
|
|
outl(0 | CBAR_KEY, CBAR);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void init_amd_k6(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
u32 l, h;
|
|
int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
|
|
|
|
if (c->x86_model < 6) {
|
|
/* Based on AMD doc 20734R - June 2000 */
|
|
if (c->x86_model == 0) {
|
|
clear_cpu_cap(c, X86_FEATURE_APIC);
|
|
set_cpu_cap(c, X86_FEATURE_PGE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (c->x86_model == 6 && c->x86_mask == 1) {
|
|
const int K6_BUG_LOOP = 1000000;
|
|
int n;
|
|
void (*f_vide)(void);
|
|
u64 d, d2;
|
|
|
|
pr_info("AMD K6 stepping B detected - ");
|
|
|
|
/*
|
|
* It looks like AMD fixed the 2.6.2 bug and improved indirect
|
|
* calls at the same time.
|
|
*/
|
|
|
|
n = K6_BUG_LOOP;
|
|
f_vide = vide;
|
|
OPTIMIZER_HIDE_VAR(f_vide);
|
|
d = rdtsc();
|
|
while (n--)
|
|
f_vide();
|
|
d2 = rdtsc();
|
|
d = d2-d;
|
|
|
|
if (d > 20*K6_BUG_LOOP)
|
|
pr_cont("system stability may be impaired when more than 32 MB are used.\n");
|
|
else
|
|
pr_cont("probably OK (after B9730xxxx).\n");
|
|
}
|
|
|
|
/* K6 with old style WHCR */
|
|
if (c->x86_model < 8 ||
|
|
(c->x86_model == 8 && c->x86_mask < 8)) {
|
|
/* We can only write allocate on the low 508Mb */
|
|
if (mbytes > 508)
|
|
mbytes = 508;
|
|
|
|
rdmsr(MSR_K6_WHCR, l, h);
|
|
if ((l&0x0000FFFF) == 0) {
|
|
unsigned long flags;
|
|
l = (1<<0)|((mbytes/4)<<1);
|
|
local_irq_save(flags);
|
|
wbinvd();
|
|
wrmsr(MSR_K6_WHCR, l, h);
|
|
local_irq_restore(flags);
|
|
pr_info("Enabling old style K6 write allocation for %d Mb\n",
|
|
mbytes);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if ((c->x86_model == 8 && c->x86_mask > 7) ||
|
|
c->x86_model == 9 || c->x86_model == 13) {
|
|
/* The more serious chips .. */
|
|
|
|
if (mbytes > 4092)
|
|
mbytes = 4092;
|
|
|
|
rdmsr(MSR_K6_WHCR, l, h);
|
|
if ((l&0xFFFF0000) == 0) {
|
|
unsigned long flags;
|
|
l = ((mbytes>>2)<<22)|(1<<16);
|
|
local_irq_save(flags);
|
|
wbinvd();
|
|
wrmsr(MSR_K6_WHCR, l, h);
|
|
local_irq_restore(flags);
|
|
pr_info("Enabling new style K6 write allocation for %d Mb\n",
|
|
mbytes);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (c->x86_model == 10) {
|
|
/* AMD Geode LX is model 10 */
|
|
/* placeholder for any needed mods */
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void init_amd_k7(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
u32 l, h;
|
|
|
|
/*
|
|
* Bit 15 of Athlon specific MSR 15, needs to be 0
|
|
* to enable SSE on Palomino/Morgan/Barton CPU's.
|
|
* If the BIOS didn't enable it already, enable it here.
|
|
*/
|
|
if (c->x86_model >= 6 && c->x86_model <= 10) {
|
|
if (!cpu_has(c, X86_FEATURE_XMM)) {
|
|
pr_info("Enabling disabled K7/SSE Support.\n");
|
|
msr_clear_bit(MSR_K7_HWCR, 15);
|
|
set_cpu_cap(c, X86_FEATURE_XMM);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It's been determined by AMD that Athlons since model 8 stepping 1
|
|
* are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
|
|
* As per AMD technical note 27212 0.2
|
|
*/
|
|
if ((c->x86_model == 8 && c->x86_mask >= 1) || (c->x86_model > 8)) {
|
|
rdmsr(MSR_K7_CLK_CTL, l, h);
|
|
if ((l & 0xfff00000) != 0x20000000) {
|
|
pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
|
|
l, ((l & 0x000fffff)|0x20000000));
|
|
wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
|
|
}
|
|
}
|
|
|
|
set_cpu_cap(c, X86_FEATURE_K7);
|
|
|
|
/* calling is from identify_secondary_cpu() ? */
|
|
if (!c->cpu_index)
|
|
return;
|
|
|
|
/*
|
|
* Certain Athlons might work (for various values of 'work') in SMP
|
|
* but they are not certified as MP capable.
|
|
*/
|
|
/* Athlon 660/661 is valid. */
|
|
if ((c->x86_model == 6) && ((c->x86_mask == 0) ||
|
|
(c->x86_mask == 1)))
|
|
return;
|
|
|
|
/* Duron 670 is valid */
|
|
if ((c->x86_model == 7) && (c->x86_mask == 0))
|
|
return;
|
|
|
|
/*
|
|
* Athlon 662, Duron 671, and Athlon >model 7 have capability
|
|
* bit. It's worth noting that the A5 stepping (662) of some
|
|
* Athlon XP's have the MP bit set.
|
|
* See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
|
|
* more.
|
|
*/
|
|
if (((c->x86_model == 6) && (c->x86_mask >= 2)) ||
|
|
((c->x86_model == 7) && (c->x86_mask >= 1)) ||
|
|
(c->x86_model > 7))
|
|
if (cpu_has(c, X86_FEATURE_MP))
|
|
return;
|
|
|
|
/* If we get here, not a certified SMP capable AMD system. */
|
|
|
|
/*
|
|
* Don't taint if we are running SMP kernel on a single non-MP
|
|
* approved Athlon
|
|
*/
|
|
WARN_ONCE(1, "WARNING: This combination of AMD"
|
|
" processors is not suitable for SMP.\n");
|
|
add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* To workaround broken NUMA config. Read the comment in
|
|
* srat_detect_node().
|
|
*/
|
|
static int nearby_node(int apicid)
|
|
{
|
|
int i, node;
|
|
|
|
for (i = apicid - 1; i >= 0; i--) {
|
|
node = __apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
|
|
node = __apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
return first_node(node_online_map); /* Shouldn't happen */
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Fix up cpu_core_id for pre-F17h systems to be in the
|
|
* [0 .. cores_per_node - 1] range. Not really needed but
|
|
* kept so as not to break existing setups.
|
|
*/
|
|
static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 cus_per_node;
|
|
|
|
if (c->x86 >= 0x17)
|
|
return;
|
|
|
|
cus_per_node = c->x86_max_cores / nodes_per_socket;
|
|
c->cpu_core_id %= cus_per_node;
|
|
}
|
|
|
|
/*
|
|
* Fixup core topology information for
|
|
* (1) AMD multi-node processors
|
|
* Assumption: Number of cores in each internal node is the same.
|
|
* (2) AMD processors supporting compute units
|
|
*/
|
|
static void amd_get_topology(struct cpuinfo_x86 *c)
|
|
{
|
|
u8 node_id;
|
|
int cpu = smp_processor_id();
|
|
|
|
/* get information required for multi-node processors */
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
u32 eax, ebx, ecx, edx;
|
|
|
|
cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
|
|
|
|
node_id = ecx & 0xff;
|
|
smp_num_siblings = ((ebx >> 8) & 0xff) + 1;
|
|
|
|
if (c->x86 == 0x15)
|
|
c->cu_id = ebx & 0xff;
|
|
|
|
if (c->x86 >= 0x17) {
|
|
c->cpu_core_id = ebx & 0xff;
|
|
|
|
if (smp_num_siblings > 1)
|
|
c->x86_max_cores /= smp_num_siblings;
|
|
}
|
|
|
|
/*
|
|
* We may have multiple LLCs if L3 caches exist, so check if we
|
|
* have an L3 cache by looking at the L3 cache CPUID leaf.
|
|
*/
|
|
if (cpuid_edx(0x80000006)) {
|
|
if (c->x86 == 0x17) {
|
|
/*
|
|
* LLC is at the core complex level.
|
|
* Core complex id is ApicId[3].
|
|
*/
|
|
per_cpu(cpu_llc_id, cpu) = c->apicid >> 3;
|
|
} else {
|
|
/* LLC is at the node level. */
|
|
per_cpu(cpu_llc_id, cpu) = node_id;
|
|
}
|
|
}
|
|
} else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
|
|
u64 value;
|
|
|
|
rdmsrl(MSR_FAM10H_NODE_ID, value);
|
|
node_id = value & 7;
|
|
|
|
per_cpu(cpu_llc_id, cpu) = node_id;
|
|
} else
|
|
return;
|
|
|
|
if (nodes_per_socket > 1) {
|
|
set_cpu_cap(c, X86_FEATURE_AMD_DCM);
|
|
legacy_fixup_core_id(c);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
|
|
* Assumes number of cores is a power of two.
|
|
*/
|
|
static void amd_detect_cmp(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned bits;
|
|
int cpu = smp_processor_id();
|
|
|
|
bits = c->x86_coreid_bits;
|
|
/* Low order bits define the core id (index of core in socket) */
|
|
c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
|
|
/* Convert the initial APIC ID into the socket ID */
|
|
c->phys_proc_id = c->initial_apicid >> bits;
|
|
/* use socket ID also for last level cache */
|
|
per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
|
|
amd_get_topology(c);
|
|
#endif
|
|
}
|
|
|
|
u16 amd_get_nb_id(int cpu)
|
|
{
|
|
u16 id = 0;
|
|
#ifdef CONFIG_SMP
|
|
id = per_cpu(cpu_llc_id, cpu);
|
|
#endif
|
|
return id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_get_nb_id);
|
|
|
|
u32 amd_get_nodes_per_socket(void)
|
|
{
|
|
return nodes_per_socket;
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
|
|
|
|
static void srat_detect_node(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
int cpu = smp_processor_id();
|
|
int node;
|
|
unsigned apicid = c->apicid;
|
|
|
|
node = numa_cpu_node(cpu);
|
|
if (node == NUMA_NO_NODE)
|
|
node = per_cpu(cpu_llc_id, cpu);
|
|
|
|
/*
|
|
* On multi-fabric platform (e.g. Numascale NumaChip) a
|
|
* platform-specific handler needs to be called to fixup some
|
|
* IDs of the CPU.
|
|
*/
|
|
if (x86_cpuinit.fixup_cpu_id)
|
|
x86_cpuinit.fixup_cpu_id(c, node);
|
|
|
|
if (!node_online(node)) {
|
|
/*
|
|
* Two possibilities here:
|
|
*
|
|
* - The CPU is missing memory and no node was created. In
|
|
* that case try picking one from a nearby CPU.
|
|
*
|
|
* - The APIC IDs differ from the HyperTransport node IDs
|
|
* which the K8 northbridge parsing fills in. Assume
|
|
* they are all increased by a constant offset, but in
|
|
* the same order as the HT nodeids. If that doesn't
|
|
* result in a usable node fall back to the path for the
|
|
* previous case.
|
|
*
|
|
* This workaround operates directly on the mapping between
|
|
* APIC ID and NUMA node, assuming certain relationship
|
|
* between APIC ID, HT node ID and NUMA topology. As going
|
|
* through CPU mapping may alter the outcome, directly
|
|
* access __apicid_to_node[].
|
|
*/
|
|
int ht_nodeid = c->initial_apicid;
|
|
|
|
if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
|
|
node = __apicid_to_node[ht_nodeid];
|
|
/* Pick a nearby node */
|
|
if (!node_online(node))
|
|
node = nearby_node(apicid);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
#endif
|
|
}
|
|
|
|
static void early_init_amd_mc(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned bits, ecx;
|
|
|
|
/* Multi core CPU? */
|
|
if (c->extended_cpuid_level < 0x80000008)
|
|
return;
|
|
|
|
ecx = cpuid_ecx(0x80000008);
|
|
|
|
c->x86_max_cores = (ecx & 0xff) + 1;
|
|
|
|
/* CPU telling us the core id bits shift? */
|
|
bits = (ecx >> 12) & 0xF;
|
|
|
|
/* Otherwise recompute */
|
|
if (bits == 0) {
|
|
while ((1 << bits) < c->x86_max_cores)
|
|
bits++;
|
|
}
|
|
|
|
c->x86_coreid_bits = bits;
|
|
#endif
|
|
}
|
|
|
|
static void bsp_init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (c->x86 >= 0xf) {
|
|
unsigned long long tseg;
|
|
|
|
/*
|
|
* Split up direct mapping around the TSEG SMM area.
|
|
* Don't do it for gbpages because there seems very little
|
|
* benefit in doing so.
|
|
*/
|
|
if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
|
|
unsigned long pfn = tseg >> PAGE_SHIFT;
|
|
|
|
pr_debug("tseg: %010llx\n", tseg);
|
|
if (pfn_range_is_mapped(pfn, pfn + 1))
|
|
set_memory_4k((unsigned long)__va(tseg), 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
|
|
|
|
if (c->x86 > 0x10 ||
|
|
(c->x86 == 0x10 && c->x86_model >= 0x2)) {
|
|
u64 val;
|
|
|
|
rdmsrl(MSR_K7_HWCR, val);
|
|
if (!(val & BIT(24)))
|
|
pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
|
|
}
|
|
}
|
|
|
|
if (c->x86 == 0x15) {
|
|
unsigned long upperbit;
|
|
u32 cpuid, assoc;
|
|
|
|
cpuid = cpuid_edx(0x80000005);
|
|
assoc = cpuid >> 16 & 0xff;
|
|
upperbit = ((cpuid >> 24) << 10) / assoc;
|
|
|
|
va_align.mask = (upperbit - 1) & PAGE_MASK;
|
|
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
|
|
|
|
/* A random value per boot for bit slice [12:upper_bit) */
|
|
va_align.bits = get_random_int() & va_align.mask;
|
|
}
|
|
|
|
if (cpu_has(c, X86_FEATURE_MWAITX))
|
|
use_mwaitx_delay();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
|
|
u32 ecx;
|
|
|
|
ecx = cpuid_ecx(0x8000001e);
|
|
nodes_per_socket = ((ecx >> 8) & 7) + 1;
|
|
} else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
|
|
u64 value;
|
|
|
|
rdmsrl(MSR_FAM10H_NODE_ID, value);
|
|
nodes_per_socket = ((value >> 3) & 7) + 1;
|
|
}
|
|
}
|
|
|
|
static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 msr;
|
|
|
|
/*
|
|
* BIOS support is required for SME and SEV.
|
|
* For SME: If BIOS has enabled SME then adjust x86_phys_bits by
|
|
* the SME physical address space reduction value.
|
|
* If BIOS has not enabled SME then don't advertise the
|
|
* SME feature (set in scattered.c).
|
|
* For SEV: If BIOS has not enabled SEV then don't advertise the
|
|
* SEV feature (set in scattered.c).
|
|
*
|
|
* In all cases, since support for SME and SEV requires long mode,
|
|
* don't advertise the feature under CONFIG_X86_32.
|
|
*/
|
|
if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
|
|
/* Check if memory encryption is enabled */
|
|
rdmsrl(MSR_K8_SYSCFG, msr);
|
|
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
|
|
goto clear_all;
|
|
|
|
/*
|
|
* Always adjust physical address bits. Even though this
|
|
* will be a value above 32-bits this is still done for
|
|
* CONFIG_X86_32 so that accurate values are reported.
|
|
*/
|
|
c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32))
|
|
goto clear_all;
|
|
|
|
rdmsrl(MSR_K7_HWCR, msr);
|
|
if (!(msr & MSR_K7_HWCR_SMMLOCK))
|
|
goto clear_sev;
|
|
|
|
return;
|
|
|
|
clear_all:
|
|
clear_cpu_cap(c, X86_FEATURE_SME);
|
|
clear_sev:
|
|
clear_cpu_cap(c, X86_FEATURE_SEV);
|
|
}
|
|
}
|
|
|
|
static void early_init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 dummy;
|
|
|
|
early_init_amd_mc(c);
|
|
|
|
rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
|
|
|
|
/*
|
|
* c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
|
|
* with P/T states and does not stop in deep C-states
|
|
*/
|
|
if (c->x86_power & (1 << 8)) {
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
|
|
}
|
|
|
|
/* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
|
|
if (c->x86_power & BIT(12))
|
|
set_cpu_cap(c, X86_FEATURE_ACC_POWER);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
set_cpu_cap(c, X86_FEATURE_SYSCALL32);
|
|
#else
|
|
/* Set MTRR capability flag if appropriate */
|
|
if (c->x86 == 5)
|
|
if (c->x86_model == 13 || c->x86_model == 9 ||
|
|
(c->x86_model == 8 && c->x86_mask >= 8))
|
|
set_cpu_cap(c, X86_FEATURE_K6_MTRR);
|
|
#endif
|
|
#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
|
|
/*
|
|
* ApicID can always be treated as an 8-bit value for AMD APIC versions
|
|
* >= 0x10, but even old K8s came out of reset with version 0x10. So, we
|
|
* can safely set X86_FEATURE_EXTD_APICID unconditionally for families
|
|
* after 16h.
|
|
*/
|
|
if (boot_cpu_has(X86_FEATURE_APIC)) {
|
|
if (c->x86 > 0x16)
|
|
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
|
|
else if (c->x86 >= 0xf) {
|
|
/* check CPU config space for extended APIC ID */
|
|
unsigned int val;
|
|
|
|
val = read_pci_config(0, 24, 0, 0x68);
|
|
if ((val >> 17 & 0x3) == 0x3)
|
|
set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is only needed to tell the kernel whether to use VMCALL
|
|
* and VMMCALL. VMMCALL is never executed except under virt, so
|
|
* we can set it unconditionally.
|
|
*/
|
|
set_cpu_cap(c, X86_FEATURE_VMMCALL);
|
|
|
|
/* F16h erratum 793, CVE-2013-6885 */
|
|
if (c->x86 == 0x16 && c->x86_model <= 0xf)
|
|
msr_set_bit(MSR_AMD64_LS_CFG, 15);
|
|
|
|
/*
|
|
* Check whether the machine is affected by erratum 400. This is
|
|
* used to select the proper idle routine and to enable the check
|
|
* whether the machine is affected in arch_post_acpi_init(), which
|
|
* sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
|
|
*/
|
|
if (cpu_has_amd_erratum(c, amd_erratum_400))
|
|
set_cpu_bug(c, X86_BUG_AMD_E400);
|
|
|
|
early_detect_mem_encrypt(c);
|
|
}
|
|
|
|
static void init_amd_k8(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 level;
|
|
u64 value;
|
|
|
|
/* On C+ stepping K8 rep microcode works well for copy/memset */
|
|
level = cpuid_eax(1);
|
|
if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
|
|
/*
|
|
* Some BIOSes incorrectly force this feature, but only K8 revision D
|
|
* (model = 0x14) and later actually support it.
|
|
* (AMD Erratum #110, docId: 25759).
|
|
*/
|
|
if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
|
|
clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
|
|
if (!rdmsrl_amd_safe(0xc001100d, &value)) {
|
|
value &= ~BIT_64(32);
|
|
wrmsrl_amd_safe(0xc001100d, value);
|
|
}
|
|
}
|
|
|
|
if (!c->x86_model_id[0])
|
|
strcpy(c->x86_model_id, "Hammer");
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Disable TLB flush filter by setting HWCR.FFDIS on K8
|
|
* bit 6 of msr C001_0015
|
|
*
|
|
* Errata 63 for SH-B3 steppings
|
|
* Errata 122 for all steppings (F+ have it disabled by default)
|
|
*/
|
|
msr_set_bit(MSR_K7_HWCR, 6);
|
|
#endif
|
|
set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
|
|
}
|
|
|
|
static void init_amd_gh(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
/* do this for boot cpu */
|
|
if (c == &boot_cpu_data)
|
|
check_enable_amd_mmconf_dmi();
|
|
|
|
fam10h_check_enable_mmcfg();
|
|
#endif
|
|
|
|
/*
|
|
* Disable GART TLB Walk Errors on Fam10h. We do this here because this
|
|
* is always needed when GART is enabled, even in a kernel which has no
|
|
* MCE support built in. BIOS should disable GartTlbWlk Errors already.
|
|
* If it doesn't, we do it here as suggested by the BKDG.
|
|
*
|
|
* Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
|
|
*/
|
|
msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
|
|
|
|
/*
|
|
* On family 10h BIOS may not have properly enabled WC+ support, causing
|
|
* it to be converted to CD memtype. This may result in performance
|
|
* degradation for certain nested-paging guests. Prevent this conversion
|
|
* by clearing bit 24 in MSR_AMD64_BU_CFG2.
|
|
*
|
|
* NOTE: we want to use the _safe accessors so as not to #GP kvm
|
|
* guests on older kvm hosts.
|
|
*/
|
|
msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
|
|
|
|
if (cpu_has_amd_erratum(c, amd_erratum_383))
|
|
set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
|
|
}
|
|
|
|
#define MSR_AMD64_DE_CFG 0xC0011029
|
|
|
|
static void init_amd_ln(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Apply erratum 665 fix unconditionally so machines without a BIOS
|
|
* fix work.
|
|
*/
|
|
msr_set_bit(MSR_AMD64_DE_CFG, 31);
|
|
}
|
|
|
|
static void init_amd_bd(struct cpuinfo_x86 *c)
|
|
{
|
|
u64 value;
|
|
|
|
/* re-enable TopologyExtensions if switched off by BIOS */
|
|
if ((c->x86_model >= 0x10) && (c->x86_model <= 0x6f) &&
|
|
!cpu_has(c, X86_FEATURE_TOPOEXT)) {
|
|
|
|
if (msr_set_bit(0xc0011005, 54) > 0) {
|
|
rdmsrl(0xc0011005, value);
|
|
if (value & BIT_64(54)) {
|
|
set_cpu_cap(c, X86_FEATURE_TOPOEXT);
|
|
pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The way access filter has a performance penalty on some workloads.
|
|
* Disable it on the affected CPUs.
|
|
*/
|
|
if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
|
|
if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
|
|
value |= 0x1E;
|
|
wrmsrl_safe(MSR_F15H_IC_CFG, value);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_amd_zn(struct cpuinfo_x86 *c)
|
|
{
|
|
/*
|
|
* Fix erratum 1076: CPB feature bit not being set in CPUID. It affects
|
|
* all up to and including B1.
|
|
*/
|
|
if (c->x86_model <= 1 && c->x86_mask <= 1)
|
|
set_cpu_cap(c, X86_FEATURE_CPB);
|
|
}
|
|
|
|
static void init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
early_init_amd(c);
|
|
|
|
/*
|
|
* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
|
|
* 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
|
|
*/
|
|
clear_cpu_cap(c, 0*32+31);
|
|
|
|
if (c->x86 >= 0x10)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
|
|
/* get apicid instead of initial apic id from cpuid */
|
|
c->apicid = hard_smp_processor_id();
|
|
|
|
/* K6s reports MCEs but don't actually have all the MSRs */
|
|
if (c->x86 < 6)
|
|
clear_cpu_cap(c, X86_FEATURE_MCE);
|
|
|
|
switch (c->x86) {
|
|
case 4: init_amd_k5(c); break;
|
|
case 5: init_amd_k6(c); break;
|
|
case 6: init_amd_k7(c); break;
|
|
case 0xf: init_amd_k8(c); break;
|
|
case 0x10: init_amd_gh(c); break;
|
|
case 0x12: init_amd_ln(c); break;
|
|
case 0x15: init_amd_bd(c); break;
|
|
case 0x17: init_amd_zn(c); break;
|
|
}
|
|
|
|
/*
|
|
* Enable workaround for FXSAVE leak on CPUs
|
|
* without a XSaveErPtr feature
|
|
*/
|
|
if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
|
|
set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
|
|
|
|
cpu_detect_cache_sizes(c);
|
|
|
|
/* Multi core CPU? */
|
|
if (c->extended_cpuid_level >= 0x80000008) {
|
|
amd_detect_cmp(c);
|
|
srat_detect_node(c);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
detect_ht(c);
|
|
#endif
|
|
|
|
init_amd_cacheinfo(c);
|
|
|
|
if (c->x86 >= 0xf)
|
|
set_cpu_cap(c, X86_FEATURE_K8);
|
|
|
|
if (cpu_has(c, X86_FEATURE_XMM2)) {
|
|
unsigned long long val;
|
|
int ret;
|
|
|
|
/*
|
|
* A serializing LFENCE has less overhead than MFENCE, so
|
|
* use it for execution serialization. On families which
|
|
* don't have that MSR, LFENCE is already serializing.
|
|
* msr_set_bit() uses the safe accessors, too, even if the MSR
|
|
* is not present.
|
|
*/
|
|
msr_set_bit(MSR_F10H_DECFG,
|
|
MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT);
|
|
|
|
/*
|
|
* Verify that the MSR write was successful (could be running
|
|
* under a hypervisor) and only then assume that LFENCE is
|
|
* serializing.
|
|
*/
|
|
ret = rdmsrl_safe(MSR_F10H_DECFG, &val);
|
|
if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) {
|
|
/* A serializing LFENCE stops RDTSC speculation */
|
|
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
|
} else {
|
|
/* MFENCE stops RDTSC speculation */
|
|
set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Family 0x12 and above processors have APIC timer
|
|
* running in deep C states.
|
|
*/
|
|
if (c->x86 > 0x11)
|
|
set_cpu_cap(c, X86_FEATURE_ARAT);
|
|
|
|
/* 3DNow or LM implies PREFETCHW */
|
|
if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
|
|
if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
|
|
set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
|
|
|
|
/* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
|
|
if (!cpu_has(c, X86_FEATURE_XENPV))
|
|
set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
|
|
{
|
|
/* AMD errata T13 (order #21922) */
|
|
if ((c->x86 == 6)) {
|
|
/* Duron Rev A0 */
|
|
if (c->x86_model == 3 && c->x86_mask == 0)
|
|
size = 64;
|
|
/* Tbird rev A1/A2 */
|
|
if (c->x86_model == 4 &&
|
|
(c->x86_mask == 0 || c->x86_mask == 1))
|
|
size = 256;
|
|
}
|
|
return size;
|
|
}
|
|
#endif
|
|
|
|
static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 ebx, eax, ecx, edx;
|
|
u16 mask = 0xfff;
|
|
|
|
if (c->x86 < 0xf)
|
|
return;
|
|
|
|
if (c->extended_cpuid_level < 0x80000006)
|
|
return;
|
|
|
|
cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
|
|
|
|
tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
|
|
tlb_lli_4k[ENTRIES] = ebx & mask;
|
|
|
|
/*
|
|
* K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
|
|
* characteristics from the CPUID function 0x80000005 instead.
|
|
*/
|
|
if (c->x86 == 0xf) {
|
|
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
|
|
mask = 0xff;
|
|
}
|
|
|
|
/* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
|
|
if (!((eax >> 16) & mask))
|
|
tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
|
|
else
|
|
tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
|
|
|
|
/* a 4M entry uses two 2M entries */
|
|
tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
|
|
|
|
/* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
|
|
if (!(eax & mask)) {
|
|
/* Erratum 658 */
|
|
if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
|
|
tlb_lli_2m[ENTRIES] = 1024;
|
|
} else {
|
|
cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
|
|
tlb_lli_2m[ENTRIES] = eax & 0xff;
|
|
}
|
|
} else
|
|
tlb_lli_2m[ENTRIES] = eax & mask;
|
|
|
|
tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
|
|
}
|
|
|
|
static const struct cpu_dev amd_cpu_dev = {
|
|
.c_vendor = "AMD",
|
|
.c_ident = { "AuthenticAMD" },
|
|
#ifdef CONFIG_X86_32
|
|
.legacy_models = {
|
|
{ .family = 4, .model_names =
|
|
{
|
|
[3] = "486 DX/2",
|
|
[7] = "486 DX/2-WB",
|
|
[8] = "486 DX/4",
|
|
[9] = "486 DX/4-WB",
|
|
[14] = "Am5x86-WT",
|
|
[15] = "Am5x86-WB"
|
|
}
|
|
},
|
|
},
|
|
.legacy_cache_size = amd_size_cache,
|
|
#endif
|
|
.c_early_init = early_init_amd,
|
|
.c_detect_tlb = cpu_detect_tlb_amd,
|
|
.c_bsp_init = bsp_init_amd,
|
|
.c_init = init_amd,
|
|
.c_x86_vendor = X86_VENDOR_AMD,
|
|
};
|
|
|
|
cpu_dev_register(amd_cpu_dev);
|
|
|
|
/*
|
|
* AMD errata checking
|
|
*
|
|
* Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
|
|
* AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
|
|
* have an OSVW id assigned, which it takes as first argument. Both take a
|
|
* variable number of family-specific model-stepping ranges created by
|
|
* AMD_MODEL_RANGE().
|
|
*
|
|
* Example:
|
|
*
|
|
* const int amd_erratum_319[] =
|
|
* AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
|
|
* AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
|
|
* AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
|
|
*/
|
|
|
|
#define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 }
|
|
#define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 }
|
|
#define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
|
|
((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
|
|
#define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff)
|
|
#define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff)
|
|
#define AMD_MODEL_RANGE_END(range) ((range) & 0xfff)
|
|
|
|
static const int amd_erratum_400[] =
|
|
AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
|
|
AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
|
|
|
|
static const int amd_erratum_383[] =
|
|
AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
|
|
|
|
|
|
static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
|
|
{
|
|
int osvw_id = *erratum++;
|
|
u32 range;
|
|
u32 ms;
|
|
|
|
if (osvw_id >= 0 && osvw_id < 65536 &&
|
|
cpu_has(cpu, X86_FEATURE_OSVW)) {
|
|
u64 osvw_len;
|
|
|
|
rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
|
|
if (osvw_id < osvw_len) {
|
|
u64 osvw_bits;
|
|
|
|
rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
|
|
osvw_bits);
|
|
return osvw_bits & (1ULL << (osvw_id & 0x3f));
|
|
}
|
|
}
|
|
|
|
/* OSVW unavailable or ID unknown, match family-model-stepping range */
|
|
ms = (cpu->x86_model << 4) | cpu->x86_mask;
|
|
while ((range = *erratum++))
|
|
if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
|
|
(ms >= AMD_MODEL_RANGE_START(range)) &&
|
|
(ms <= AMD_MODEL_RANGE_END(range)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void set_dr_addr_mask(unsigned long mask, int dr)
|
|
{
|
|
if (!boot_cpu_has(X86_FEATURE_BPEXT))
|
|
return;
|
|
|
|
switch (dr) {
|
|
case 0:
|
|
wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|