1520 строки
38 KiB
C
1520 строки
38 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#include <linux/perf_event.h>
|
|
#include <linux/jump_label.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/jiffies.h>
|
|
#include <asm/apicdef.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/nmi.h>
|
|
|
|
#include "../perf_event.h"
|
|
|
|
static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
|
|
static unsigned long perf_nmi_window;
|
|
|
|
/* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */
|
|
#define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
|
|
#define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)
|
|
|
|
/* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
|
|
static u64 amd_pmu_global_cntr_mask __read_mostly;
|
|
|
|
static __initconst const u64 amd_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
|
|
[ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
|
|
[ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
|
|
[ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
|
|
[ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
|
|
[ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
|
|
[ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
|
|
[ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
|
|
[ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 amd_hw_cache_event_ids_f17h
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
|
|
[C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */
|
|
[C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
|
|
[C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
|
|
[C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */
|
|
[C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = 0,
|
|
[C(RESULT_MISS)] = 0,
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = -1,
|
|
[C(RESULT_MISS)] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* AMD Performance Monitor K7 and later, up to and including Family 16h:
|
|
*/
|
|
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
|
|
{
|
|
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
|
|
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
|
|
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
|
|
};
|
|
|
|
/*
|
|
* AMD Performance Monitor Family 17h and later:
|
|
*/
|
|
static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
|
|
{
|
|
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x0964,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
|
|
[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287,
|
|
[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187,
|
|
};
|
|
|
|
static u64 amd_pmu_event_map(int hw_event)
|
|
{
|
|
if (boot_cpu_data.x86 >= 0x17)
|
|
return amd_f17h_perfmon_event_map[hw_event];
|
|
|
|
return amd_perfmon_event_map[hw_event];
|
|
}
|
|
|
|
/*
|
|
* Previously calculated offsets
|
|
*/
|
|
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
|
|
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
|
|
|
|
/*
|
|
* Legacy CPUs:
|
|
* 4 counters starting at 0xc0010000 each offset by 1
|
|
*
|
|
* CPUs with core performance counter extensions:
|
|
* 6 counters starting at 0xc0010200 each offset by 2
|
|
*/
|
|
static inline int amd_pmu_addr_offset(int index, bool eventsel)
|
|
{
|
|
int offset;
|
|
|
|
if (!index)
|
|
return index;
|
|
|
|
if (eventsel)
|
|
offset = event_offsets[index];
|
|
else
|
|
offset = count_offsets[index];
|
|
|
|
if (offset)
|
|
return offset;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
|
|
offset = index;
|
|
else
|
|
offset = index << 1;
|
|
|
|
if (eventsel)
|
|
event_offsets[index] = offset;
|
|
else
|
|
count_offsets[index] = offset;
|
|
|
|
return offset;
|
|
}
|
|
|
|
/*
|
|
* AMD64 events are detected based on their event codes.
|
|
*/
|
|
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
|
|
{
|
|
return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
|
|
}
|
|
|
|
static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
|
|
{
|
|
if (!(x86_pmu.flags & PMU_FL_PAIR))
|
|
return false;
|
|
|
|
switch (amd_get_event_code(hwc)) {
|
|
case 0x003: return true; /* Retired SSE/AVX FLOPs */
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
#define AMD_FAM19H_BRS_EVENT 0xc4 /* RETIRED_TAKEN_BRANCH_INSTRUCTIONS */
|
|
static inline int amd_is_brs_event(struct perf_event *e)
|
|
{
|
|
return (e->hw.config & AMD64_RAW_EVENT_MASK) == AMD_FAM19H_BRS_EVENT;
|
|
}
|
|
|
|
static int amd_core_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (event->attr.exclude_host && event->attr.exclude_guest)
|
|
/*
|
|
* When HO == GO == 1 the hardware treats that as GO == HO == 0
|
|
* and will count in both modes. We don't want to count in that
|
|
* case so we emulate no-counting by setting US = OS = 0.
|
|
*/
|
|
event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
|
|
ARCH_PERFMON_EVENTSEL_OS);
|
|
else if (event->attr.exclude_host)
|
|
event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
|
|
else if (event->attr.exclude_guest)
|
|
event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
|
|
|
|
if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
|
|
event->hw.flags |= PERF_X86_EVENT_PAIR;
|
|
|
|
/*
|
|
* if branch stack is requested
|
|
*/
|
|
if (has_branch_stack(event)) {
|
|
/*
|
|
* Due to interrupt holding, BRS is not recommended in
|
|
* counting mode.
|
|
*/
|
|
if (!is_sampling_event(event))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Due to the way BRS operates by holding the interrupt until
|
|
* lbr_nr entries have been captured, it does not make sense
|
|
* to allow sampling on BRS with an event that does not match
|
|
* what BRS is capturing, i.e., retired taken branches.
|
|
* Otherwise the correlation with the event's period is even
|
|
* more loose:
|
|
*
|
|
* With retired taken branch:
|
|
* Effective P = P + 16 + X
|
|
* With any other event:
|
|
* Effective P = P + Y + X
|
|
*
|
|
* Where X is the number of taken branches due to interrupt
|
|
* skid. Skid is large.
|
|
*
|
|
* Where Y is the occurences of the event while BRS is
|
|
* capturing the lbr_nr entries.
|
|
*
|
|
* By using retired taken branches, we limit the impact on the
|
|
* Y variable. We know it cannot be more than the depth of
|
|
* BRS.
|
|
*/
|
|
if (!amd_is_brs_event(event))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* BRS implementation does not work with frequency mode
|
|
* reprogramming of the period.
|
|
*/
|
|
if (event->attr.freq)
|
|
return -EINVAL;
|
|
/*
|
|
* The kernel subtracts BRS depth from period, so it must
|
|
* be big enough.
|
|
*/
|
|
if (event->attr.sample_period <= x86_pmu.lbr_nr)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Check if we can allow PERF_SAMPLE_BRANCH_STACK
|
|
*/
|
|
ret = amd_brs_setup_filter(event);
|
|
|
|
/* only set in case of success */
|
|
if (!ret)
|
|
event->hw.flags |= PERF_X86_EVENT_AMD_BRS;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
|
|
{
|
|
return (hwc->config & 0xe0) == 0xe0;
|
|
}
|
|
|
|
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
|
|
{
|
|
struct amd_nb *nb = cpuc->amd_nb;
|
|
|
|
return nb && nb->nb_id != -1;
|
|
}
|
|
|
|
static int amd_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
int ret;
|
|
|
|
/* pass precise event sampling to ibs: */
|
|
if (event->attr.precise_ip && get_ibs_caps())
|
|
return -ENOENT;
|
|
|
|
if (has_branch_stack(event) && !x86_pmu.lbr_nr)
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = x86_pmu_hw_config(event);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (event->attr.type == PERF_TYPE_RAW)
|
|
event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
|
|
|
|
return amd_core_hw_config(event);
|
|
}
|
|
|
|
static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct amd_nb *nb = cpuc->amd_nb;
|
|
int i;
|
|
|
|
/*
|
|
* need to scan whole list because event may not have
|
|
* been assigned during scheduling
|
|
*
|
|
* no race condition possible because event can only
|
|
* be removed on one CPU at a time AND PMU is disabled
|
|
* when we come here
|
|
*/
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
if (cmpxchg(nb->owners + i, event, NULL) == event)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* AMD64 NorthBridge events need special treatment because
|
|
* counter access needs to be synchronized across all cores
|
|
* of a package. Refer to BKDG section 3.12
|
|
*
|
|
* NB events are events measuring L3 cache, Hypertransport
|
|
* traffic. They are identified by an event code >= 0xe00.
|
|
* They measure events on the NorthBride which is shared
|
|
* by all cores on a package. NB events are counted on a
|
|
* shared set of counters. When a NB event is programmed
|
|
* in a counter, the data actually comes from a shared
|
|
* counter. Thus, access to those counters needs to be
|
|
* synchronized.
|
|
*
|
|
* We implement the synchronization such that no two cores
|
|
* can be measuring NB events using the same counters. Thus,
|
|
* we maintain a per-NB allocation table. The available slot
|
|
* is propagated using the event_constraint structure.
|
|
*
|
|
* We provide only one choice for each NB event based on
|
|
* the fact that only NB events have restrictions. Consequently,
|
|
* if a counter is available, there is a guarantee the NB event
|
|
* will be assigned to it. If no slot is available, an empty
|
|
* constraint is returned and scheduling will eventually fail
|
|
* for this event.
|
|
*
|
|
* Note that all cores attached the same NB compete for the same
|
|
* counters to host NB events, this is why we use atomic ops. Some
|
|
* multi-chip CPUs may have more than one NB.
|
|
*
|
|
* Given that resources are allocated (cmpxchg), they must be
|
|
* eventually freed for others to use. This is accomplished by
|
|
* calling __amd_put_nb_event_constraints()
|
|
*
|
|
* Non NB events are not impacted by this restriction.
|
|
*/
|
|
static struct event_constraint *
|
|
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
|
|
struct event_constraint *c)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct amd_nb *nb = cpuc->amd_nb;
|
|
struct perf_event *old;
|
|
int idx, new = -1;
|
|
|
|
if (!c)
|
|
c = &unconstrained;
|
|
|
|
if (cpuc->is_fake)
|
|
return c;
|
|
|
|
/*
|
|
* detect if already present, if so reuse
|
|
*
|
|
* cannot merge with actual allocation
|
|
* because of possible holes
|
|
*
|
|
* event can already be present yet not assigned (in hwc->idx)
|
|
* because of successive calls to x86_schedule_events() from
|
|
* hw_perf_group_sched_in() without hw_perf_enable()
|
|
*/
|
|
for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
|
|
if (new == -1 || hwc->idx == idx)
|
|
/* assign free slot, prefer hwc->idx */
|
|
old = cmpxchg(nb->owners + idx, NULL, event);
|
|
else if (nb->owners[idx] == event)
|
|
/* event already present */
|
|
old = event;
|
|
else
|
|
continue;
|
|
|
|
if (old && old != event)
|
|
continue;
|
|
|
|
/* reassign to this slot */
|
|
if (new != -1)
|
|
cmpxchg(nb->owners + new, event, NULL);
|
|
new = idx;
|
|
|
|
/* already present, reuse */
|
|
if (old == event)
|
|
break;
|
|
}
|
|
|
|
if (new == -1)
|
|
return &emptyconstraint;
|
|
|
|
return &nb->event_constraints[new];
|
|
}
|
|
|
|
static struct amd_nb *amd_alloc_nb(int cpu)
|
|
{
|
|
struct amd_nb *nb;
|
|
int i;
|
|
|
|
nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!nb)
|
|
return NULL;
|
|
|
|
nb->nb_id = -1;
|
|
|
|
/*
|
|
* initialize all possible NB constraints
|
|
*/
|
|
for (i = 0; i < x86_pmu.num_counters; i++) {
|
|
__set_bit(i, nb->event_constraints[i].idxmsk);
|
|
nb->event_constraints[i].weight = 1;
|
|
}
|
|
return nb;
|
|
}
|
|
|
|
static void amd_pmu_cpu_reset(int cpu)
|
|
{
|
|
if (x86_pmu.version < 2)
|
|
return;
|
|
|
|
/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
|
|
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);
|
|
|
|
/* Clear overflow bits i.e. PerfCntrGLobalStatus.PerfCntrOvfl */
|
|
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, amd_pmu_global_cntr_mask);
|
|
}
|
|
|
|
static int amd_pmu_cpu_prepare(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
WARN_ON_ONCE(cpuc->amd_nb);
|
|
|
|
if (!x86_pmu.amd_nb_constraints)
|
|
return 0;
|
|
|
|
cpuc->amd_nb = amd_alloc_nb(cpu);
|
|
if (!cpuc->amd_nb)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void amd_pmu_cpu_starting(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
|
|
struct amd_nb *nb;
|
|
int i, nb_id;
|
|
|
|
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
|
|
|
|
if (!x86_pmu.amd_nb_constraints)
|
|
return;
|
|
|
|
nb_id = topology_die_id(cpu);
|
|
WARN_ON_ONCE(nb_id == BAD_APICID);
|
|
|
|
for_each_online_cpu(i) {
|
|
nb = per_cpu(cpu_hw_events, i).amd_nb;
|
|
if (WARN_ON_ONCE(!nb))
|
|
continue;
|
|
|
|
if (nb->nb_id == nb_id) {
|
|
*onln = cpuc->amd_nb;
|
|
cpuc->amd_nb = nb;
|
|
break;
|
|
}
|
|
}
|
|
|
|
cpuc->amd_nb->nb_id = nb_id;
|
|
cpuc->amd_nb->refcnt++;
|
|
|
|
amd_brs_reset();
|
|
amd_pmu_cpu_reset(cpu);
|
|
}
|
|
|
|
static void amd_pmu_cpu_dead(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuhw;
|
|
|
|
if (!x86_pmu.amd_nb_constraints)
|
|
return;
|
|
|
|
cpuhw = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
if (cpuhw->amd_nb) {
|
|
struct amd_nb *nb = cpuhw->amd_nb;
|
|
|
|
if (nb->nb_id == -1 || --nb->refcnt == 0)
|
|
kfree(nb);
|
|
|
|
cpuhw->amd_nb = NULL;
|
|
}
|
|
|
|
amd_pmu_cpu_reset(cpu);
|
|
}
|
|
|
|
static inline void amd_pmu_set_global_ctl(u64 ctl)
|
|
{
|
|
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
|
|
}
|
|
|
|
static inline u64 amd_pmu_get_global_status(void)
|
|
{
|
|
u64 status;
|
|
|
|
/* PerfCntrGlobalStatus is read-only */
|
|
rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);
|
|
|
|
return status & amd_pmu_global_cntr_mask;
|
|
}
|
|
|
|
static inline void amd_pmu_ack_global_status(u64 status)
|
|
{
|
|
/*
|
|
* PerfCntrGlobalStatus is read-only but an overflow acknowledgment
|
|
* mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
|
|
* clears the same bit in PerfCntrGlobalStatus
|
|
*/
|
|
|
|
/* Only allow modifications to PerfCntrGlobalStatus.PerfCntrOvfl */
|
|
status &= amd_pmu_global_cntr_mask;
|
|
wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
|
|
}
|
|
|
|
static bool amd_pmu_test_overflow_topbit(int idx)
|
|
{
|
|
u64 counter;
|
|
|
|
rdmsrl(x86_pmu_event_addr(idx), counter);
|
|
|
|
return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
|
|
}
|
|
|
|
static bool amd_pmu_test_overflow_status(int idx)
|
|
{
|
|
return amd_pmu_get_global_status() & BIT_ULL(idx);
|
|
}
|
|
|
|
DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);
|
|
|
|
/*
|
|
* When a PMC counter overflows, an NMI is used to process the event and
|
|
* reset the counter. NMI latency can result in the counter being updated
|
|
* before the NMI can run, which can result in what appear to be spurious
|
|
* NMIs. This function is intended to wait for the NMI to run and reset
|
|
* the counter to avoid possible unhandled NMI messages.
|
|
*/
|
|
#define OVERFLOW_WAIT_COUNT 50
|
|
|
|
static void amd_pmu_wait_on_overflow(int idx)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Wait for the counter to be reset if it has overflowed. This loop
|
|
* should exit very, very quickly, but just in case, don't wait
|
|
* forever...
|
|
*/
|
|
for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
|
|
if (!static_call(amd_pmu_test_overflow)(idx))
|
|
break;
|
|
|
|
/* Might be in IRQ context, so can't sleep */
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void amd_pmu_check_overflow(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
/*
|
|
* This shouldn't be called from NMI context, but add a safeguard here
|
|
* to return, since if we're in NMI context we can't wait for an NMI
|
|
* to reset an overflowed counter value.
|
|
*/
|
|
if (in_nmi())
|
|
return;
|
|
|
|
/*
|
|
* Check each counter for overflow and wait for it to be reset by the
|
|
* NMI if it has overflowed. This relies on the fact that all active
|
|
* counters are always enabled when this function is called and
|
|
* ARCH_PERFMON_EVENTSEL_INT is always set.
|
|
*/
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
amd_pmu_wait_on_overflow(idx);
|
|
}
|
|
}
|
|
|
|
static void amd_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
x86_pmu_enable_event(event);
|
|
}
|
|
|
|
static void amd_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int idx;
|
|
|
|
amd_brs_enable_all();
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
/* only activate events which are marked as active */
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
amd_pmu_enable_event(cpuc->events[idx]);
|
|
}
|
|
}
|
|
|
|
static void amd_pmu_v2_enable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/*
|
|
* Testing cpu_hw_events.enabled should be skipped in this case unlike
|
|
* in x86_pmu_enable_event().
|
|
*
|
|
* Since cpu_hw_events.enabled is set only after returning from
|
|
* x86_pmu_start(), the PMCs must be programmed and kept ready.
|
|
* Counting starts only after x86_pmu_enable_all() is called.
|
|
*/
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
|
|
static void amd_pmu_v2_enable_all(int added)
|
|
{
|
|
amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
|
|
}
|
|
|
|
static void amd_pmu_disable_event(struct perf_event *event)
|
|
{
|
|
x86_pmu_disable_event(event);
|
|
|
|
/*
|
|
* This can be called from NMI context (via x86_pmu_stop). The counter
|
|
* may have overflowed, but either way, we'll never see it get reset
|
|
* by the NMI if we're already in the NMI. And the NMI latency support
|
|
* below will take care of any pending NMI that might have been
|
|
* generated by the overflow.
|
|
*/
|
|
if (in_nmi())
|
|
return;
|
|
|
|
amd_pmu_wait_on_overflow(event->hw.idx);
|
|
}
|
|
|
|
static void amd_pmu_disable_all(void)
|
|
{
|
|
amd_brs_disable_all();
|
|
x86_pmu_disable_all();
|
|
amd_pmu_check_overflow();
|
|
}
|
|
|
|
static void amd_pmu_v2_disable_all(void)
|
|
{
|
|
/* Disable all PMCs */
|
|
amd_pmu_set_global_ctl(0);
|
|
amd_pmu_check_overflow();
|
|
}
|
|
|
|
static void amd_pmu_add_event(struct perf_event *event)
|
|
{
|
|
if (needs_branch_stack(event))
|
|
amd_pmu_brs_add(event);
|
|
}
|
|
|
|
static void amd_pmu_del_event(struct perf_event *event)
|
|
{
|
|
if (needs_branch_stack(event))
|
|
amd_pmu_brs_del(event);
|
|
}
|
|
|
|
/*
|
|
* Because of NMI latency, if multiple PMC counters are active or other sources
|
|
* of NMIs are received, the perf NMI handler can handle one or more overflowed
|
|
* PMC counters outside of the NMI associated with the PMC overflow. If the NMI
|
|
* doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
|
|
* back-to-back NMI support won't be active. This PMC handler needs to take into
|
|
* account that this can occur, otherwise this could result in unknown NMI
|
|
* messages being issued. Examples of this is PMC overflow while in the NMI
|
|
* handler when multiple PMCs are active or PMC overflow while handling some
|
|
* other source of an NMI.
|
|
*
|
|
* Attempt to mitigate this by creating an NMI window in which un-handled NMIs
|
|
* received during this window will be claimed. This prevents extending the
|
|
* window past when it is possible that latent NMIs should be received. The
|
|
* per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
|
|
* handled a counter. When an un-handled NMI is received, it will be claimed
|
|
* only if arriving within that window.
|
|
*/
|
|
static inline int amd_pmu_adjust_nmi_window(int handled)
|
|
{
|
|
/*
|
|
* If a counter was handled, record a timestamp such that un-handled
|
|
* NMIs will be claimed if arriving within that window.
|
|
*/
|
|
if (handled) {
|
|
this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);
|
|
|
|
return handled;
|
|
}
|
|
|
|
if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
|
|
return NMI_DONE;
|
|
|
|
return NMI_HANDLED;
|
|
}
|
|
|
|
static int amd_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
int handled;
|
|
int pmu_enabled;
|
|
|
|
/*
|
|
* Save the PMU state.
|
|
* It needs to be restored when leaving the handler.
|
|
*/
|
|
pmu_enabled = cpuc->enabled;
|
|
cpuc->enabled = 0;
|
|
|
|
/* stop everything (includes BRS) */
|
|
amd_pmu_disable_all();
|
|
|
|
/* Drain BRS is in use (could be inactive) */
|
|
if (cpuc->lbr_users)
|
|
amd_brs_drain();
|
|
|
|
/* Process any counter overflows */
|
|
handled = x86_pmu_handle_irq(regs);
|
|
|
|
cpuc->enabled = pmu_enabled;
|
|
if (pmu_enabled)
|
|
amd_pmu_enable_all(0);
|
|
|
|
return amd_pmu_adjust_nmi_window(handled);
|
|
}
|
|
|
|
static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
struct perf_sample_data data;
|
|
struct hw_perf_event *hwc;
|
|
struct perf_event *event;
|
|
int handled = 0, idx;
|
|
u64 status, mask;
|
|
bool pmu_enabled;
|
|
|
|
/*
|
|
* Save the PMU state as it needs to be restored when leaving the
|
|
* handler
|
|
*/
|
|
pmu_enabled = cpuc->enabled;
|
|
cpuc->enabled = 0;
|
|
|
|
/* Stop counting */
|
|
amd_pmu_v2_disable_all();
|
|
|
|
status = amd_pmu_get_global_status();
|
|
|
|
/* Check if any overflows are pending */
|
|
if (!status)
|
|
goto done;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
event = cpuc->events[idx];
|
|
hwc = &event->hw;
|
|
x86_perf_event_update(event);
|
|
mask = BIT_ULL(idx);
|
|
|
|
if (!(status & mask))
|
|
continue;
|
|
|
|
/* Event overflow */
|
|
handled++;
|
|
perf_sample_data_init(&data, 0, hwc->last_period);
|
|
|
|
if (!x86_perf_event_set_period(event))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
|
|
status &= ~mask;
|
|
}
|
|
|
|
/*
|
|
* It should never be the case that some overflows are not handled as
|
|
* the corresponding PMCs are expected to be inactive according to the
|
|
* active_mask
|
|
*/
|
|
WARN_ON(status > 0);
|
|
|
|
/* Clear overflow bits */
|
|
amd_pmu_ack_global_status(~status);
|
|
|
|
/*
|
|
* Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
|
|
* PMI entry is not set by the local APIC when a PMC overflow occurs
|
|
*/
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
done:
|
|
cpuc->enabled = pmu_enabled;
|
|
|
|
/* Resume counting only if PMU is active */
|
|
if (pmu_enabled)
|
|
amd_pmu_v2_enable_all(0);
|
|
|
|
return amd_pmu_adjust_nmi_window(handled);
|
|
}
|
|
|
|
static struct event_constraint *
|
|
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
/*
|
|
* if not NB event or no NB, then no constraints
|
|
*/
|
|
if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
|
|
return &unconstrained;
|
|
|
|
return __amd_get_nb_event_constraints(cpuc, event, NULL);
|
|
}
|
|
|
|
static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
|
|
__amd_put_nb_event_constraints(cpuc, event);
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7,32-35");
|
|
PMU_FORMAT_ATTR(umask, "config:8-15" );
|
|
PMU_FORMAT_ATTR(edge, "config:18" );
|
|
PMU_FORMAT_ATTR(inv, "config:23" );
|
|
PMU_FORMAT_ATTR(cmask, "config:24-31" );
|
|
|
|
static struct attribute *amd_format_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
NULL,
|
|
};
|
|
|
|
/* AMD Family 15h */
|
|
|
|
#define AMD_EVENT_TYPE_MASK 0x000000F0ULL
|
|
|
|
#define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
|
|
#define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
|
|
#define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
|
|
#define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
|
|
#define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
|
|
#define AMD_EVENT_EX_LS 0x000000C0ULL
|
|
#define AMD_EVENT_DE 0x000000D0ULL
|
|
#define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
|
|
|
|
/*
|
|
* AMD family 15h event code/PMC mappings:
|
|
*
|
|
* type = event_code & 0x0F0:
|
|
*
|
|
* 0x000 FP PERF_CTL[5:3]
|
|
* 0x010 FP PERF_CTL[5:3]
|
|
* 0x020 LS PERF_CTL[5:0]
|
|
* 0x030 LS PERF_CTL[5:0]
|
|
* 0x040 DC PERF_CTL[5:0]
|
|
* 0x050 DC PERF_CTL[5:0]
|
|
* 0x060 CU PERF_CTL[2:0]
|
|
* 0x070 CU PERF_CTL[2:0]
|
|
* 0x080 IC/DE PERF_CTL[2:0]
|
|
* 0x090 IC/DE PERF_CTL[2:0]
|
|
* 0x0A0 ---
|
|
* 0x0B0 ---
|
|
* 0x0C0 EX/LS PERF_CTL[5:0]
|
|
* 0x0D0 DE PERF_CTL[2:0]
|
|
* 0x0E0 NB NB_PERF_CTL[3:0]
|
|
* 0x0F0 NB NB_PERF_CTL[3:0]
|
|
*
|
|
* Exceptions:
|
|
*
|
|
* 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
|
|
* 0x003 FP PERF_CTL[3]
|
|
* 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
|
|
* 0x00B FP PERF_CTL[3]
|
|
* 0x00D FP PERF_CTL[3]
|
|
* 0x023 DE PERF_CTL[2:0]
|
|
* 0x02D LS PERF_CTL[3]
|
|
* 0x02E LS PERF_CTL[3,0]
|
|
* 0x031 LS PERF_CTL[2:0] (**)
|
|
* 0x043 CU PERF_CTL[2:0]
|
|
* 0x045 CU PERF_CTL[2:0]
|
|
* 0x046 CU PERF_CTL[2:0]
|
|
* 0x054 CU PERF_CTL[2:0]
|
|
* 0x055 CU PERF_CTL[2:0]
|
|
* 0x08F IC PERF_CTL[0]
|
|
* 0x187 DE PERF_CTL[0]
|
|
* 0x188 DE PERF_CTL[0]
|
|
* 0x0DB EX PERF_CTL[5:0]
|
|
* 0x0DC LS PERF_CTL[5:0]
|
|
* 0x0DD LS PERF_CTL[5:0]
|
|
* 0x0DE LS PERF_CTL[5:0]
|
|
* 0x0DF LS PERF_CTL[5:0]
|
|
* 0x1C0 EX PERF_CTL[5:3]
|
|
* 0x1D6 EX PERF_CTL[5:0]
|
|
* 0x1D8 EX PERF_CTL[5:0]
|
|
*
|
|
* (*) depending on the umask all FPU counters may be used
|
|
* (**) only one unitmask enabled at a time
|
|
*/
|
|
|
|
static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
|
|
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
|
|
static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
|
|
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
|
|
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
|
|
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
|
|
|
|
static struct event_constraint *
|
|
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned int event_code = amd_get_event_code(hwc);
|
|
|
|
switch (event_code & AMD_EVENT_TYPE_MASK) {
|
|
case AMD_EVENT_FP:
|
|
switch (event_code) {
|
|
case 0x000:
|
|
if (!(hwc->config & 0x0000F000ULL))
|
|
break;
|
|
if (!(hwc->config & 0x00000F00ULL))
|
|
break;
|
|
return &amd_f15_PMC3;
|
|
case 0x004:
|
|
if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
|
|
break;
|
|
return &amd_f15_PMC3;
|
|
case 0x003:
|
|
case 0x00B:
|
|
case 0x00D:
|
|
return &amd_f15_PMC3;
|
|
}
|
|
return &amd_f15_PMC53;
|
|
case AMD_EVENT_LS:
|
|
case AMD_EVENT_DC:
|
|
case AMD_EVENT_EX_LS:
|
|
switch (event_code) {
|
|
case 0x023:
|
|
case 0x043:
|
|
case 0x045:
|
|
case 0x046:
|
|
case 0x054:
|
|
case 0x055:
|
|
return &amd_f15_PMC20;
|
|
case 0x02D:
|
|
return &amd_f15_PMC3;
|
|
case 0x02E:
|
|
return &amd_f15_PMC30;
|
|
case 0x031:
|
|
if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
|
|
return &amd_f15_PMC20;
|
|
return &emptyconstraint;
|
|
case 0x1C0:
|
|
return &amd_f15_PMC53;
|
|
default:
|
|
return &amd_f15_PMC50;
|
|
}
|
|
case AMD_EVENT_CU:
|
|
case AMD_EVENT_IC_DE:
|
|
case AMD_EVENT_DE:
|
|
switch (event_code) {
|
|
case 0x08F:
|
|
case 0x187:
|
|
case 0x188:
|
|
return &amd_f15_PMC0;
|
|
case 0x0DB ... 0x0DF:
|
|
case 0x1D6:
|
|
case 0x1D8:
|
|
return &amd_f15_PMC50;
|
|
default:
|
|
return &amd_f15_PMC20;
|
|
}
|
|
case AMD_EVENT_NB:
|
|
/* moved to uncore.c */
|
|
return &emptyconstraint;
|
|
default:
|
|
return &emptyconstraint;
|
|
}
|
|
}
|
|
|
|
static struct event_constraint pair_constraint;
|
|
|
|
static struct event_constraint *
|
|
amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (amd_is_pair_event_code(hwc))
|
|
return &pair_constraint;
|
|
|
|
return &unconstrained;
|
|
}
|
|
|
|
static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (is_counter_pair(hwc))
|
|
--cpuc->n_pair;
|
|
}
|
|
|
|
/*
|
|
* Because of the way BRS operates with an inactive and active phases, and
|
|
* the link to one counter, it is not possible to have two events using BRS
|
|
* scheduled at the same time. There would be an issue with enforcing the
|
|
* period of each one and given that the BRS saturates, it would not be possible
|
|
* to guarantee correlated content for all events. Therefore, in situations
|
|
* where multiple events want to use BRS, the kernel enforces mutual exclusion.
|
|
* Exclusion is enforced by chosing only one counter for events using BRS.
|
|
* The event scheduling logic will then automatically multiplex the
|
|
* events and ensure that at most one event is actively using BRS.
|
|
*
|
|
* The BRS counter could be any counter, but there is no constraint on Fam19h,
|
|
* therefore all counters are equal and thus we pick the first one: PMC0
|
|
*/
|
|
static struct event_constraint amd_fam19h_brs_cntr0_constraint =
|
|
EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);
|
|
|
|
static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
|
|
__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);
|
|
|
|
static struct event_constraint *
|
|
amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
bool has_brs = has_amd_brs(hwc);
|
|
|
|
/*
|
|
* In case BRS is used with an event requiring a counter pair,
|
|
* the kernel allows it but only on counter 0 & 1 to enforce
|
|
* multiplexing requiring to protect BRS in case of multiple
|
|
* BRS users
|
|
*/
|
|
if (amd_is_pair_event_code(hwc)) {
|
|
return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
|
|
: &pair_constraint;
|
|
}
|
|
|
|
if (has_brs)
|
|
return &amd_fam19h_brs_cntr0_constraint;
|
|
|
|
return &unconstrained;
|
|
}
|
|
|
|
|
|
static ssize_t amd_event_sysfs_show(char *page, u64 config)
|
|
{
|
|
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
|
|
(config & AMD64_EVENTSEL_EVENT) >> 24;
|
|
|
|
return x86_event_sysfs_show(page, config, event);
|
|
}
|
|
|
|
static void amd_pmu_sched_task(struct perf_event_context *ctx,
|
|
bool sched_in)
|
|
{
|
|
if (sched_in && x86_pmu.lbr_nr)
|
|
amd_pmu_brs_sched_task(ctx, sched_in);
|
|
}
|
|
|
|
static u64 amd_pmu_limit_period(struct perf_event *event, u64 left)
|
|
{
|
|
/*
|
|
* Decrease period by the depth of the BRS feature to get the last N
|
|
* taken branches and approximate the desired period
|
|
*/
|
|
if (has_branch_stack(event) && left > x86_pmu.lbr_nr)
|
|
left -= x86_pmu.lbr_nr;
|
|
|
|
return left;
|
|
}
|
|
|
|
static __initconst const struct x86_pmu amd_pmu = {
|
|
.name = "AMD",
|
|
.handle_irq = amd_pmu_handle_irq,
|
|
.disable_all = amd_pmu_disable_all,
|
|
.enable_all = amd_pmu_enable_all,
|
|
.enable = amd_pmu_enable_event,
|
|
.disable = amd_pmu_disable_event,
|
|
.hw_config = amd_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_K7_EVNTSEL0,
|
|
.perfctr = MSR_K7_PERFCTR0,
|
|
.addr_offset = amd_pmu_addr_offset,
|
|
.event_map = amd_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(amd_perfmon_event_map),
|
|
.num_counters = AMD64_NUM_COUNTERS,
|
|
.add = amd_pmu_add_event,
|
|
.del = amd_pmu_del_event,
|
|
.cntval_bits = 48,
|
|
.cntval_mask = (1ULL << 48) - 1,
|
|
.apic = 1,
|
|
/* use highest bit to detect overflow */
|
|
.max_period = (1ULL << 47) - 1,
|
|
.get_event_constraints = amd_get_event_constraints,
|
|
.put_event_constraints = amd_put_event_constraints,
|
|
|
|
.format_attrs = amd_format_attr,
|
|
.events_sysfs_show = amd_event_sysfs_show,
|
|
|
|
.cpu_prepare = amd_pmu_cpu_prepare,
|
|
.cpu_starting = amd_pmu_cpu_starting,
|
|
.cpu_dead = amd_pmu_cpu_dead,
|
|
|
|
.amd_nb_constraints = 1,
|
|
};
|
|
|
|
static ssize_t branches_show(struct device *cdev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
|
|
}
|
|
|
|
static DEVICE_ATTR_RO(branches);
|
|
|
|
static struct attribute *amd_pmu_brs_attrs[] = {
|
|
&dev_attr_branches.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t
|
|
amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
|
|
{
|
|
return x86_pmu.lbr_nr ? attr->mode : 0;
|
|
}
|
|
|
|
static struct attribute_group group_caps_amd_brs = {
|
|
.name = "caps",
|
|
.attrs = amd_pmu_brs_attrs,
|
|
.is_visible = amd_brs_is_visible,
|
|
};
|
|
|
|
EVENT_ATTR_STR(branch-brs, amd_branch_brs,
|
|
"event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");
|
|
|
|
static struct attribute *amd_brs_events_attrs[] = {
|
|
EVENT_PTR(amd_branch_brs),
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group group_events_amd_brs = {
|
|
.name = "events",
|
|
.attrs = amd_brs_events_attrs,
|
|
.is_visible = amd_brs_is_visible,
|
|
};
|
|
|
|
static const struct attribute_group *amd_attr_update[] = {
|
|
&group_caps_amd_brs,
|
|
&group_events_amd_brs,
|
|
NULL,
|
|
};
|
|
|
|
static int __init amd_core_pmu_init(void)
|
|
{
|
|
union cpuid_0x80000022_ebx ebx;
|
|
u64 even_ctr_mask = 0ULL;
|
|
int i;
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
|
|
return 0;
|
|
|
|
/* Avoid calculating the value each time in the NMI handler */
|
|
perf_nmi_window = msecs_to_jiffies(100);
|
|
|
|
/*
|
|
* If core performance counter extensions exists, we must use
|
|
* MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
|
|
* amd_pmu_addr_offset().
|
|
*/
|
|
x86_pmu.eventsel = MSR_F15H_PERF_CTL;
|
|
x86_pmu.perfctr = MSR_F15H_PERF_CTR;
|
|
x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
|
|
|
|
/* Check for Performance Monitoring v2 support */
|
|
if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
|
|
ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);
|
|
|
|
/* Update PMU version for later usage */
|
|
x86_pmu.version = 2;
|
|
|
|
/* Find the number of available Core PMCs */
|
|
x86_pmu.num_counters = ebx.split.num_core_pmc;
|
|
|
|
amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
|
|
|
|
/* Update PMC handling functions */
|
|
x86_pmu.enable_all = amd_pmu_v2_enable_all;
|
|
x86_pmu.disable_all = amd_pmu_v2_disable_all;
|
|
x86_pmu.enable = amd_pmu_v2_enable_event;
|
|
x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
|
|
static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
|
|
}
|
|
|
|
/*
|
|
* AMD Core perfctr has separate MSRs for the NB events, see
|
|
* the amd/uncore.c driver.
|
|
*/
|
|
x86_pmu.amd_nb_constraints = 0;
|
|
|
|
if (boot_cpu_data.x86 == 0x15) {
|
|
pr_cont("Fam15h ");
|
|
x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
|
|
}
|
|
if (boot_cpu_data.x86 >= 0x17) {
|
|
pr_cont("Fam17h+ ");
|
|
/*
|
|
* Family 17h and compatibles have constraints for Large
|
|
* Increment per Cycle events: they may only be assigned an
|
|
* even numbered counter that has a consecutive adjacent odd
|
|
* numbered counter following it.
|
|
*/
|
|
for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
|
|
even_ctr_mask |= 1 << i;
|
|
|
|
pair_constraint = (struct event_constraint)
|
|
__EVENT_CONSTRAINT(0, even_ctr_mask, 0,
|
|
x86_pmu.num_counters / 2, 0,
|
|
PERF_X86_EVENT_PAIR);
|
|
|
|
x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
|
|
x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
|
|
x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
|
|
x86_pmu.flags |= PMU_FL_PAIR;
|
|
}
|
|
|
|
/*
|
|
* BRS requires special event constraints and flushing on ctxsw.
|
|
*/
|
|
if (boot_cpu_data.x86 >= 0x19 && !amd_brs_init()) {
|
|
x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
|
|
x86_pmu.sched_task = amd_pmu_sched_task;
|
|
x86_pmu.limit_period = amd_pmu_limit_period;
|
|
/*
|
|
* put_event_constraints callback same as Fam17h, set above
|
|
*/
|
|
|
|
/* branch sampling must be stopped when entering low power */
|
|
amd_brs_lopwr_init();
|
|
}
|
|
|
|
x86_pmu.attr_update = amd_attr_update;
|
|
|
|
pr_cont("core perfctr, ");
|
|
return 0;
|
|
}
|
|
|
|
__init int amd_pmu_init(void)
|
|
{
|
|
int ret;
|
|
|
|
/* Performance-monitoring supported from K7 and later: */
|
|
if (boot_cpu_data.x86 < 6)
|
|
return -ENODEV;
|
|
|
|
x86_pmu = amd_pmu;
|
|
|
|
ret = amd_core_pmu_init();
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (num_possible_cpus() == 1) {
|
|
/*
|
|
* No point in allocating data structures to serialize
|
|
* against other CPUs, when there is only the one CPU.
|
|
*/
|
|
x86_pmu.amd_nb_constraints = 0;
|
|
}
|
|
|
|
if (boot_cpu_data.x86 >= 0x17)
|
|
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
|
|
else
|
|
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void amd_pmu_reload_virt(void)
|
|
{
|
|
if (x86_pmu.version >= 2) {
|
|
/*
|
|
* Clear global enable bits, reprogram the PERF_CTL
|
|
* registers with updated perf_ctr_virt_mask and then
|
|
* set global enable bits once again
|
|
*/
|
|
amd_pmu_v2_disable_all();
|
|
amd_pmu_enable_all(0);
|
|
amd_pmu_v2_enable_all(0);
|
|
return;
|
|
}
|
|
|
|
amd_pmu_disable_all();
|
|
amd_pmu_enable_all(0);
|
|
}
|
|
|
|
void amd_pmu_enable_virt(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
cpuc->perf_ctr_virt_mask = 0;
|
|
|
|
/* Reload all events */
|
|
amd_pmu_reload_virt();
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
|
|
|
|
void amd_pmu_disable_virt(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
|
|
|
|
/*
|
|
* We only mask out the Host-only bit so that host-only counting works
|
|
* when SVM is disabled. If someone sets up a guest-only counter when
|
|
* SVM is disabled the Guest-only bits still gets set and the counter
|
|
* will not count anything.
|
|
*/
|
|
cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
|
|
|
|
/* Reload all events */
|
|
amd_pmu_reload_virt();
|
|
}
|
|
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
|