WSL2-Linux-Kernel/drivers/hwmon/fam15h_power.c

519 строки
13 KiB
C

/*
* fam15h_power.c - AMD Family 15h processor power monitoring
*
* Copyright (c) 2011-2016 Advanced Micro Devices, Inc.
* Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
*
*
* This driver is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License; either
* version 2 of the License, or (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/bitops.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/time.h>
#include <linux/sched.h>
#include <asm/processor.h>
#include <asm/msr.h>
MODULE_DESCRIPTION("AMD Family 15h CPU processor power monitor");
MODULE_AUTHOR("Andreas Herrmann <herrmann.der.user@googlemail.com>");
MODULE_LICENSE("GPL");
/* D18F3 */
#define REG_NORTHBRIDGE_CAP 0xe8
/* D18F4 */
#define REG_PROCESSOR_TDP 0x1b8
/* D18F5 */
#define REG_TDP_RUNNING_AVERAGE 0xe0
#define REG_TDP_LIMIT3 0xe8
#define FAM15H_MIN_NUM_ATTRS 2
#define FAM15H_NUM_GROUPS 2
#define MAX_CUS 8
/* set maximum interval as 1 second */
#define MAX_INTERVAL 1000
#define MSR_F15H_CU_PWR_ACCUMULATOR 0xc001007a
#define MSR_F15H_CU_MAX_PWR_ACCUMULATOR 0xc001007b
#define MSR_F15H_PTSC 0xc0010280
#define PCI_DEVICE_ID_AMD_15H_M70H_NB_F4 0x15b4
struct fam15h_power_data {
struct pci_dev *pdev;
unsigned int tdp_to_watts;
unsigned int base_tdp;
unsigned int processor_pwr_watts;
unsigned int cpu_pwr_sample_ratio;
const struct attribute_group *groups[FAM15H_NUM_GROUPS];
struct attribute_group group;
/* maximum accumulated power of a compute unit */
u64 max_cu_acc_power;
/* accumulated power of the compute units */
u64 cu_acc_power[MAX_CUS];
/* performance timestamp counter */
u64 cpu_sw_pwr_ptsc[MAX_CUS];
/* online/offline status of current compute unit */
int cu_on[MAX_CUS];
unsigned long power_period;
};
static bool is_carrizo_or_later(void)
{
return boot_cpu_data.x86 == 0x15 && boot_cpu_data.x86_model >= 0x60;
}
static ssize_t show_power(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 val, tdp_limit, running_avg_range;
s32 running_avg_capture;
u64 curr_pwr_watts;
struct fam15h_power_data *data = dev_get_drvdata(dev);
struct pci_dev *f4 = data->pdev;
pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
REG_TDP_RUNNING_AVERAGE, &val);
/*
* On Carrizo and later platforms, TdpRunAvgAccCap bit field
* is extended to 4:31 from 4:25.
*/
if (is_carrizo_or_later()) {
running_avg_capture = val >> 4;
running_avg_capture = sign_extend32(running_avg_capture, 27);
} else {
running_avg_capture = (val >> 4) & 0x3fffff;
running_avg_capture = sign_extend32(running_avg_capture, 21);
}
running_avg_range = (val & 0xf) + 1;
pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
REG_TDP_LIMIT3, &val);
/*
* On Carrizo and later platforms, ApmTdpLimit bit field
* is extended to 16:31 from 16:28.
*/
if (is_carrizo_or_later())
tdp_limit = val >> 16;
else
tdp_limit = (val >> 16) & 0x1fff;
curr_pwr_watts = ((u64)(tdp_limit +
data->base_tdp)) << running_avg_range;
curr_pwr_watts -= running_avg_capture;
curr_pwr_watts *= data->tdp_to_watts;
/*
* Convert to microWatt
*
* power is in Watt provided as fixed point integer with
* scaling factor 1/(2^16). For conversion we use
* (10^6)/(2^16) = 15625/(2^10)
*/
curr_pwr_watts = (curr_pwr_watts * 15625) >> (10 + running_avg_range);
return sprintf(buf, "%u\n", (unsigned int) curr_pwr_watts);
}
static DEVICE_ATTR(power1_input, S_IRUGO, show_power, NULL);
static ssize_t show_power_crit(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fam15h_power_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->processor_pwr_watts);
}
static DEVICE_ATTR(power1_crit, S_IRUGO, show_power_crit, NULL);
static void do_read_registers_on_cu(void *_data)
{
struct fam15h_power_data *data = _data;
int cpu, cu;
cpu = smp_processor_id();
/*
* With the new x86 topology modelling, cpu core id actually
* is compute unit id.
*/
cu = cpu_data(cpu).cpu_core_id;
rdmsrl_safe(MSR_F15H_CU_PWR_ACCUMULATOR, &data->cu_acc_power[cu]);
rdmsrl_safe(MSR_F15H_PTSC, &data->cpu_sw_pwr_ptsc[cu]);
data->cu_on[cu] = 1;
}
/*
* This function is only able to be called when CPUID
* Fn8000_0007:EDX[12] is set.
*/
static int read_registers(struct fam15h_power_data *data)
{
int core, this_core;
cpumask_var_t mask;
int ret, cpu;
ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
if (!ret)
return -ENOMEM;
memset(data->cu_on, 0, sizeof(int) * MAX_CUS);
get_online_cpus();
/*
* Choose the first online core of each compute unit, and then
* read their MSR value of power and ptsc in a single IPI,
* because the MSR value of CPU core represent the compute
* unit's.
*/
core = -1;
for_each_online_cpu(cpu) {
this_core = topology_core_id(cpu);
if (this_core == core)
continue;
core = this_core;
/* get any CPU on this compute unit */
cpumask_set_cpu(cpumask_any(topology_sibling_cpumask(cpu)), mask);
}
on_each_cpu_mask(mask, do_read_registers_on_cu, data, true);
put_online_cpus();
free_cpumask_var(mask);
return 0;
}
static ssize_t acc_show_power(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fam15h_power_data *data = dev_get_drvdata(dev);
u64 prev_cu_acc_power[MAX_CUS], prev_ptsc[MAX_CUS],
jdelta[MAX_CUS];
u64 tdelta, avg_acc;
int cu, cu_num, ret;
signed long leftover;
/*
* With the new x86 topology modelling, x86_max_cores is the
* compute unit number.
*/
cu_num = boot_cpu_data.x86_max_cores;
ret = read_registers(data);
if (ret)
return 0;
for (cu = 0; cu < cu_num; cu++) {
prev_cu_acc_power[cu] = data->cu_acc_power[cu];
prev_ptsc[cu] = data->cpu_sw_pwr_ptsc[cu];
}
leftover = schedule_timeout_interruptible(msecs_to_jiffies(data->power_period));
if (leftover)
return 0;
ret = read_registers(data);
if (ret)
return 0;
for (cu = 0, avg_acc = 0; cu < cu_num; cu++) {
/* check if current compute unit is online */
if (data->cu_on[cu] == 0)
continue;
if (data->cu_acc_power[cu] < prev_cu_acc_power[cu]) {
jdelta[cu] = data->max_cu_acc_power + data->cu_acc_power[cu];
jdelta[cu] -= prev_cu_acc_power[cu];
} else {
jdelta[cu] = data->cu_acc_power[cu] - prev_cu_acc_power[cu];
}
tdelta = data->cpu_sw_pwr_ptsc[cu] - prev_ptsc[cu];
jdelta[cu] *= data->cpu_pwr_sample_ratio * 1000;
do_div(jdelta[cu], tdelta);
/* the unit is microWatt */
avg_acc += jdelta[cu];
}
return sprintf(buf, "%llu\n", (unsigned long long)avg_acc);
}
static DEVICE_ATTR(power1_average, S_IRUGO, acc_show_power, NULL);
static ssize_t acc_show_power_period(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct fam15h_power_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%lu\n", data->power_period);
}
static ssize_t acc_set_power_period(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct fam15h_power_data *data = dev_get_drvdata(dev);
unsigned long temp;
int ret;
ret = kstrtoul(buf, 10, &temp);
if (ret)
return ret;
if (temp > MAX_INTERVAL)
return -EINVAL;
/* the interval value should be greater than 0 */
if (temp <= 0)
return -EINVAL;
data->power_period = temp;
return count;
}
static DEVICE_ATTR(power1_average_interval, S_IRUGO | S_IWUSR,
acc_show_power_period, acc_set_power_period);
static int fam15h_power_init_attrs(struct pci_dev *pdev,
struct fam15h_power_data *data)
{
int n = FAM15H_MIN_NUM_ATTRS;
struct attribute **fam15h_power_attrs;
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86 == 0x15 &&
(c->x86_model <= 0xf ||
(c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
n += 1;
/* check if processor supports accumulated power */
if (boot_cpu_has(X86_FEATURE_ACC_POWER))
n += 2;
fam15h_power_attrs = devm_kcalloc(&pdev->dev, n,
sizeof(*fam15h_power_attrs),
GFP_KERNEL);
if (!fam15h_power_attrs)
return -ENOMEM;
n = 0;
fam15h_power_attrs[n++] = &dev_attr_power1_crit.attr;
if (c->x86 == 0x15 &&
(c->x86_model <= 0xf ||
(c->x86_model >= 0x60 && c->x86_model <= 0x7f)))
fam15h_power_attrs[n++] = &dev_attr_power1_input.attr;
if (boot_cpu_has(X86_FEATURE_ACC_POWER)) {
fam15h_power_attrs[n++] = &dev_attr_power1_average.attr;
fam15h_power_attrs[n++] = &dev_attr_power1_average_interval.attr;
}
data->group.attrs = fam15h_power_attrs;
return 0;
}
static bool should_load_on_this_node(struct pci_dev *f4)
{
u32 val;
pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 3),
REG_NORTHBRIDGE_CAP, &val);
if ((val & BIT(29)) && ((val >> 30) & 3))
return false;
return true;
}
/*
* Newer BKDG versions have an updated recommendation on how to properly
* initialize the running average range (was: 0xE, now: 0x9). This avoids
* counter saturations resulting in bogus power readings.
* We correct this value ourselves to cope with older BIOSes.
*/
static const struct pci_device_id affected_device[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
{ 0 }
};
static void tweak_runavg_range(struct pci_dev *pdev)
{
u32 val;
/*
* let this quirk apply only to the current version of the
* northbridge, since future versions may change the behavior
*/
if (!pci_match_id(affected_device, pdev))
return;
pci_bus_read_config_dword(pdev->bus,
PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
REG_TDP_RUNNING_AVERAGE, &val);
if ((val & 0xf) != 0xe)
return;
val &= ~0xf;
val |= 0x9;
pci_bus_write_config_dword(pdev->bus,
PCI_DEVFN(PCI_SLOT(pdev->devfn), 5),
REG_TDP_RUNNING_AVERAGE, val);
}
#ifdef CONFIG_PM
static int fam15h_power_resume(struct pci_dev *pdev)
{
tweak_runavg_range(pdev);
return 0;
}
#else
#define fam15h_power_resume NULL
#endif
static int fam15h_power_init_data(struct pci_dev *f4,
struct fam15h_power_data *data)
{
u32 val;
u64 tmp;
int ret;
pci_read_config_dword(f4, REG_PROCESSOR_TDP, &val);
data->base_tdp = val >> 16;
tmp = val & 0xffff;
pci_bus_read_config_dword(f4->bus, PCI_DEVFN(PCI_SLOT(f4->devfn), 5),
REG_TDP_LIMIT3, &val);
data->tdp_to_watts = ((val & 0x3ff) << 6) | ((val >> 10) & 0x3f);
tmp *= data->tdp_to_watts;
/* result not allowed to be >= 256W */
if ((tmp >> 16) >= 256)
dev_warn(&f4->dev,
"Bogus value for ProcessorPwrWatts (processor_pwr_watts>=%u)\n",
(unsigned int) (tmp >> 16));
/* convert to microWatt */
data->processor_pwr_watts = (tmp * 15625) >> 10;
ret = fam15h_power_init_attrs(f4, data);
if (ret)
return ret;
/* CPUID Fn8000_0007:EDX[12] indicates to support accumulated power */
if (!boot_cpu_has(X86_FEATURE_ACC_POWER))
return 0;
/*
* determine the ratio of the compute unit power accumulator
* sample period to the PTSC counter period by executing CPUID
* Fn8000_0007:ECX
*/
data->cpu_pwr_sample_ratio = cpuid_ecx(0x80000007);
if (rdmsrl_safe(MSR_F15H_CU_MAX_PWR_ACCUMULATOR, &tmp)) {
pr_err("Failed to read max compute unit power accumulator MSR\n");
return -ENODEV;
}
data->max_cu_acc_power = tmp;
/*
* Milliseconds are a reasonable interval for the measurement.
* But it shouldn't set too long here, because several seconds
* would cause the read function to hang. So set default
* interval as 10 ms.
*/
data->power_period = 10;
return read_registers(data);
}
static int fam15h_power_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct fam15h_power_data *data;
struct device *dev = &pdev->dev;
struct device *hwmon_dev;
int ret;
/*
* though we ignore every other northbridge, we still have to
* do the tweaking on _each_ node in MCM processors as the counters
* are working hand-in-hand
*/
tweak_runavg_range(pdev);
if (!should_load_on_this_node(pdev))
return -ENODEV;
data = devm_kzalloc(dev, sizeof(struct fam15h_power_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
ret = fam15h_power_init_data(pdev, data);
if (ret)
return ret;
data->pdev = pdev;
data->groups[0] = &data->group;
hwmon_dev = devm_hwmon_device_register_with_groups(dev, "fam15h_power",
data,
&data->groups[0]);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct pci_device_id fam15h_power_id_table[] = {
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_NB_F4) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M30H_NB_F4) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M60H_NB_F4) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_15H_M70H_NB_F4) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_NB_F4) },
{ PCI_VDEVICE(AMD, PCI_DEVICE_ID_AMD_16H_M30H_NB_F4) },
{}
};
MODULE_DEVICE_TABLE(pci, fam15h_power_id_table);
static struct pci_driver fam15h_power_driver = {
.name = "fam15h_power",
.id_table = fam15h_power_id_table,
.probe = fam15h_power_probe,
.resume = fam15h_power_resume,
};
module_pci_driver(fam15h_power_driver);