WSL2-Linux-Kernel/drivers/scsi/gdth.c

5680 строки
201 KiB
C

/************************************************************************
* Linux driver for *
* ICP vortex GmbH: GDT ISA/EISA/PCI Disk Array Controllers *
* Intel Corporation: Storage RAID Controllers *
* *
* gdth.c *
* Copyright (C) 1995-06 ICP vortex GmbH, Achim Leubner *
* Copyright (C) 2002-04 Intel Corporation *
* Copyright (C) 2003-06 Adaptec Inc. *
* <achim_leubner@adaptec.com> *
* *
* Additions/Fixes: *
* Boji Tony Kannanthanam <boji.t.kannanthanam@intel.com> *
* Johannes Dinner <johannes_dinner@adaptec.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation; either version 2 of the License, *
* or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this kernel; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
* *
* Linux kernel 2.4.x, 2.6.x supported *
* *
* $Log: gdth.c,v $
* Revision 1.74 2006/04/10 13:44:47 achim
* Community changes for 2.6.x
* Kernel 2.2.x no longer supported
* scsi_request interface removed, thanks to Christoph Hellwig
*
* Revision 1.73 2004/03/31 13:33:03 achim
* Special command 0xfd implemented to detect 64-bit DMA support
*
* Revision 1.72 2004/03/17 08:56:04 achim
* 64-bit DMA only enabled if FW >= x.43
*
* Revision 1.71 2004/03/05 15:51:29 achim
* Screen service: separate message buffer, bugfixes
*
* Revision 1.70 2004/02/27 12:19:07 achim
* Bugfix: Reset bit in config (0xfe) call removed
*
* Revision 1.69 2004/02/20 09:50:24 achim
* Compatibility changes for kernels < 2.4.20
* Bugfix screen service command size
* pci_set_dma_mask() error handling added
*
* Revision 1.68 2004/02/19 15:46:54 achim
* 64-bit DMA bugfixes
* Drive size bugfix for drives > 1TB
*
* Revision 1.67 2004/01/14 13:11:57 achim
* Tool access over /proc no longer supported
* Bugfixes IOCTLs
*
* Revision 1.66 2003/12/19 15:04:06 achim
* Bugfixes support for drives > 2TB
*
* Revision 1.65 2003/12/15 11:21:56 achim
* 64-bit DMA support added
* Support for drives > 2 TB implemented
* Kernels 2.2.x, 2.4.x, 2.6.x supported
*
* Revision 1.64 2003/09/17 08:30:26 achim
* EISA/ISA controller scan disabled
* Command line switch probe_eisa_isa added
*
* Revision 1.63 2003/07/12 14:01:00 Daniele Bellucci <bellucda@tiscali.it>
* Minor cleanups in gdth_ioctl.
*
* Revision 1.62 2003/02/27 15:01:59 achim
* Dynamic DMA mapping implemented
* New (character device) IOCTL interface added
* Other controller related changes made
*
* Revision 1.61 2002/11/08 13:09:52 boji
* Added support for XSCALE based RAID Controllers
* Fixed SCREENSERVICE initialization in SMP cases
* Added checks for gdth_polling before GDTH_HA_LOCK
*
* Revision 1.60 2002/02/05 09:35:22 achim
* MODULE_LICENSE only if kernel >= 2.4.11
*
* Revision 1.59 2002/01/30 09:46:33 achim
* Small changes
*
* Revision 1.58 2002/01/29 15:30:02 achim
* Set default value of shared_access to Y
* New status S_CACHE_RESERV for clustering added
*
* Revision 1.57 2001/08/21 11:16:35 achim
* Bugfix free_irq()
*
* Revision 1.56 2001/08/09 11:19:39 achim
* Scsi_Host_Template changes
*
* Revision 1.55 2001/08/09 10:11:28 achim
* Command HOST_UNFREEZE_IO before cache service init.
*
* Revision 1.54 2001/07/20 13:48:12 achim
* Expand: gdth_analyse_hdrive() removed
*
* Revision 1.53 2001/07/17 09:52:49 achim
* Small OEM related change
*
* Revision 1.52 2001/06/19 15:06:20 achim
* New host command GDT_UNFREEZE_IO added
*
* Revision 1.51 2001/05/22 06:42:37 achim
* PCI: Subdevice ID added
*
* Revision 1.50 2001/05/17 13:42:16 achim
* Support for Intel Storage RAID Controllers added
*
* Revision 1.50 2001/05/17 12:12:34 achim
* Support for Intel Storage RAID Controllers added
*
* Revision 1.49 2001/03/15 15:07:17 achim
* New __setup interface for boot command line options added
*
* Revision 1.48 2001/02/06 12:36:28 achim
* Bugfix Cluster protocol
*
* Revision 1.47 2001/01/10 14:42:06 achim
* New switch shared_access added
*
* Revision 1.46 2001/01/09 08:11:35 achim
* gdth_command() removed
* meaning of Scsi_Pointer members changed
*
* Revision 1.45 2000/11/16 12:02:24 achim
* Changes for kernel 2.4
*
* Revision 1.44 2000/10/11 08:44:10 achim
* Clustering changes: New flag media_changed added
*
* Revision 1.43 2000/09/20 12:59:01 achim
* DPMEM remap functions for all PCI controller types implemented
* Small changes for ia64 platform
*
* Revision 1.42 2000/07/20 09:04:50 achim
* Small changes for kernel 2.4
*
* Revision 1.41 2000/07/04 14:11:11 achim
* gdth_analyse_hdrive() added to rescan drives after online expansion
*
* Revision 1.40 2000/06/27 11:24:16 achim
* Changes Clustering, Screenservice
*
* Revision 1.39 2000/06/15 13:09:04 achim
* Changes for gdth_do_cmd()
*
* Revision 1.38 2000/06/15 12:08:43 achim
* Bugfix gdth_sync_event(), service SCREENSERVICE
* Data direction for command 0xc2 changed to DOU
*
* Revision 1.37 2000/05/25 13:50:10 achim
* New driver parameter virt_ctr added
*
* Revision 1.36 2000/05/04 08:50:46 achim
* Event buffer now in gdth_ha_str
*
* Revision 1.35 2000/03/03 10:44:08 achim
* New event_string only valid for the RP controller family
*
* Revision 1.34 2000/03/02 14:55:29 achim
* New mechanism for async. event handling implemented
*
* Revision 1.33 2000/02/21 15:37:37 achim
* Bugfix Alpha platform + DPMEM above 4GB
*
* Revision 1.32 2000/02/14 16:17:37 achim
* Bugfix sense_buffer[] + raw devices
*
* Revision 1.31 2000/02/10 10:29:00 achim
* Delete sense_buffer[0], if command OK
*
* Revision 1.30 1999/11/02 13:42:39 achim
* ARRAY_DRV_LIST2 implemented
* Now 255 log. and 100 host drives supported
*
* Revision 1.29 1999/10/05 13:28:47 achim
* GDT_CLUST_RESET added
*
* Revision 1.28 1999/08/12 13:44:54 achim
* MOUNTALL removed
* Cluster drives -> removeable drives
*
* Revision 1.27 1999/06/22 07:22:38 achim
* Small changes
*
* Revision 1.26 1999/06/10 16:09:12 achim
* Cluster Host Drive support: Bugfixes
*
* Revision 1.25 1999/06/01 16:03:56 achim
* gdth_init_pci(): Manipulate config. space to start RP controller
*
* Revision 1.24 1999/05/26 11:53:06 achim
* Cluster Host Drive support added
*
* Revision 1.23 1999/03/26 09:12:31 achim
* Default value for hdr_channel set to 0
*
* Revision 1.22 1999/03/22 16:27:16 achim
* Bugfix: gdth_store_event() must not be locked with GDTH_LOCK_HA()
*
* Revision 1.21 1999/03/16 13:40:34 achim
* Problems with reserved drives solved
* gdth_eh_bus_reset() implemented
*
* Revision 1.20 1999/03/10 09:08:13 achim
* Bugfix: Corrections in gdth_direction_tab[] made
* Bugfix: Increase command timeout (gdth_update_timeout()) NOT in gdth_putq()
*
* Revision 1.19 1999/03/05 14:38:16 achim
* Bugfix: Heads/Sectors mapping for reserved devices possibly wrong
* -> gdth_eval_mapping() implemented, changes in gdth_bios_param()
* INIT_RETRIES set to 100s to avoid DEINIT-Timeout for controllers
* with BIOS disabled and memory test set to Intensive
* Enhanced /proc support
*
* Revision 1.18 1999/02/24 09:54:33 achim
* Command line parameter hdr_channel implemented
* Bugfix for EISA controllers + Linux 2.2.x
*
* Revision 1.17 1998/12/17 15:58:11 achim
* Command line parameters implemented
* Changes for Alpha platforms
* PCI controller scan changed
* SMP support improved (spin_lock_irqsave(),...)
* New async. events, new scan/reserve commands included
*
* Revision 1.16 1998/09/28 16:08:46 achim
* GDT_PCIMPR: DPMEM remapping, if required
* mdelay() added
*
* Revision 1.15 1998/06/03 14:54:06 achim
* gdth_delay(), gdth_flush() implemented
* Bugfix: gdth_release() changed
*
* Revision 1.14 1998/05/22 10:01:17 achim
* mj: pcibios_strerror() removed
* Improved SMP support (if version >= 2.1.95)
* gdth_halt(): halt_called flag added (if version < 2.1)
*
* Revision 1.13 1998/04/16 09:14:57 achim
* Reserve drives (for raw service) implemented
* New error handling code enabled
* Get controller name from board_info() IOCTL
* Final round of PCI device driver patches by Martin Mares
*
* Revision 1.12 1998/03/03 09:32:37 achim
* Fibre channel controller support added
*
* Revision 1.11 1998/01/27 16:19:14 achim
* SA_SHIRQ added
* add_timer()/del_timer() instead of GDTH_TIMER
* scsi_add_timer()/scsi_del_timer() instead of SCSI_TIMER
* New error handling included
*
* Revision 1.10 1997/10/31 12:29:57 achim
* Read heads/sectors from host drive
*
* Revision 1.9 1997/09/04 10:07:25 achim
* IO-mapping with virt_to_bus(), gdth_readb(), gdth_writeb(), ...
* register_reboot_notifier() to get a notify on shutown used
*
* Revision 1.8 1997/04/02 12:14:30 achim
* Version 1.00 (see gdth.h), tested with kernel 2.0.29
*
* Revision 1.7 1997/03/12 13:33:37 achim
* gdth_reset() changed, new async. events
*
* Revision 1.6 1997/03/04 14:01:11 achim
* Shutdown routine gdth_halt() implemented
*
* Revision 1.5 1997/02/21 09:08:36 achim
* New controller included (RP, RP1, RP2 series)
* IOCTL interface implemented
*
* Revision 1.4 1996/07/05 12:48:55 achim
* Function gdth_bios_param() implemented
* New constant GDTH_MAXC_P_L inserted
* GDT_WRITE_THR, GDT_EXT_INFO implemented
* Function gdth_reset() changed
*
* Revision 1.3 1996/05/10 09:04:41 achim
* Small changes for Linux 1.2.13
*
* Revision 1.2 1996/05/09 12:45:27 achim
* Loadable module support implemented
* /proc support corrections made
*
* Revision 1.1 1996/04/11 07:35:57 achim
* Initial revision
*
************************************************************************/
/* All GDT Disk Array Controllers are fully supported by this driver.
* This includes the PCI/EISA/ISA SCSI Disk Array Controllers and the
* PCI Fibre Channel Disk Array Controllers. See gdth.h for a complete
* list of all controller types.
*
* If you have one or more GDT3000/3020 EISA controllers with
* controller BIOS disabled, you have to set the IRQ values with the
* command line option "gdth=irq1,irq2,...", where the irq1,irq2,... are
* the IRQ values for the EISA controllers.
*
* After the optional list of IRQ values, other possible
* command line options are:
* disable:Y disable driver
* disable:N enable driver
* reserve_mode:0 reserve no drives for the raw service
* reserve_mode:1 reserve all not init., removable drives
* reserve_mode:2 reserve all not init. drives
* reserve_list:h,b,t,l,h,b,t,l,... reserve particular drive(s) with
* h- controller no., b- channel no.,
* t- target ID, l- LUN
* reverse_scan:Y reverse scan order for PCI controllers
* reverse_scan:N scan PCI controllers like BIOS
* max_ids:x x - target ID count per channel (1..MAXID)
* rescan:Y rescan all channels/IDs
* rescan:N use all devices found until now
* virt_ctr:Y map every channel to a virtual controller
* virt_ctr:N use multi channel support
* hdr_channel:x x - number of virtual bus for host drives
* shared_access:Y disable driver reserve/release protocol to
* access a shared resource from several nodes,
* appropriate controller firmware required
* shared_access:N enable driver reserve/release protocol
* probe_eisa_isa:Y scan for EISA/ISA controllers
* probe_eisa_isa:N do not scan for EISA/ISA controllers
* force_dma32:Y use only 32 bit DMA mode
* force_dma32:N use 64 bit DMA mode, if supported
*
* The default values are: "gdth=disable:N,reserve_mode:1,reverse_scan:N,
* max_ids:127,rescan:N,virt_ctr:N,hdr_channel:0,
* shared_access:Y,probe_eisa_isa:N,force_dma32:N".
* Here is another example: "gdth=reserve_list:0,1,2,0,0,1,3,0,rescan:Y".
*
* When loading the gdth driver as a module, the same options are available.
* You can set the IRQs with "IRQ=...". However, the syntax to specify the
* options changes slightly. You must replace all ',' between options
* with ' ' and all ':' with '=' and you must use
* '1' in place of 'Y' and '0' in place of 'N'.
*
* Default: "modprobe gdth disable=0 reserve_mode=1 reverse_scan=0
* max_ids=127 rescan=0 virt_ctr=0 hdr_channel=0 shared_access=0
* probe_eisa_isa=0 force_dma32=0"
* The other example: "modprobe gdth reserve_list=0,1,2,0,0,1,3,0 rescan=1".
*/
/* The meaning of the Scsi_Pointer members in this driver is as follows:
* ptr: Chaining
* this_residual: Command priority
* buffer: phys. DMA sense buffer
* dma_handle: phys. DMA buffer (kernel >= 2.4.0)
* buffers_residual: Timeout value
* Status: Command status (gdth_do_cmd()), DMA mem. mappings
* Message: Additional info (gdth_do_cmd()), DMA direction
* have_data_in: Flag for gdth_wait_completion()
* sent_command: Opcode special command
* phase: Service/parameter/return code special command
*/
/* interrupt coalescing */
/* #define INT_COAL */
/* statistics */
#define GDTH_STATISTICS
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/timer.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,6)
#include <linux/dma-mapping.h>
#else
#define DMA_32BIT_MASK 0x00000000ffffffffULL
#define DMA_64BIT_MASK 0xffffffffffffffffULL
#endif
#ifdef GDTH_RTC
#include <linux/mc146818rtc.h>
#endif
#include <linux/reboot.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/spinlock.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
#include <linux/blkdev.h>
#else
#include <linux/blk.h>
#include "sd.h"
#endif
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "gdth_kcompat.h"
#include "gdth.h"
static void gdth_delay(int milliseconds);
static void gdth_eval_mapping(ulong32 size, ulong32 *cyls, int *heads, int *secs);
static irqreturn_t gdth_interrupt(int irq, void *dev_id);
static int gdth_sync_event(int hanum,int service,unchar index,Scsi_Cmnd *scp);
static int gdth_async_event(int hanum);
static void gdth_log_event(gdth_evt_data *dvr, char *buffer);
static void gdth_putq(int hanum,Scsi_Cmnd *scp,unchar priority);
static void gdth_next(int hanum);
static int gdth_fill_raw_cmd(int hanum,Scsi_Cmnd *scp,unchar b);
static int gdth_special_cmd(int hanum,Scsi_Cmnd *scp);
static gdth_evt_str *gdth_store_event(gdth_ha_str *ha, ushort source,
ushort idx, gdth_evt_data *evt);
static int gdth_read_event(gdth_ha_str *ha, int handle, gdth_evt_str *estr);
static void gdth_readapp_event(gdth_ha_str *ha, unchar application,
gdth_evt_str *estr);
static void gdth_clear_events(void);
static void gdth_copy_internal_data(int hanum,Scsi_Cmnd *scp,
char *buffer,ushort count);
static int gdth_internal_cache_cmd(int hanum,Scsi_Cmnd *scp);
static int gdth_fill_cache_cmd(int hanum,Scsi_Cmnd *scp,ushort hdrive);
static int gdth_search_eisa(ushort eisa_adr);
static int gdth_search_isa(ulong32 bios_adr);
static int gdth_search_pci(gdth_pci_str *pcistr);
static void gdth_search_dev(gdth_pci_str *pcistr, ushort *cnt,
ushort vendor, ushort dev);
static void gdth_sort_pci(gdth_pci_str *pcistr, int cnt);
static int gdth_init_eisa(ushort eisa_adr,gdth_ha_str *ha);
static int gdth_init_isa(ulong32 bios_adr,gdth_ha_str *ha);
static int gdth_init_pci(gdth_pci_str *pcistr,gdth_ha_str *ha);
static void gdth_enable_int(int hanum);
static int gdth_get_status(unchar *pIStatus,int irq);
static int gdth_test_busy(int hanum);
static int gdth_get_cmd_index(int hanum);
static void gdth_release_event(int hanum);
static int gdth_wait(int hanum,int index,ulong32 time);
static int gdth_internal_cmd(int hanum,unchar service,ushort opcode,ulong32 p1,
ulong64 p2,ulong64 p3);
static int gdth_search_drives(int hanum);
static int gdth_analyse_hdrive(int hanum, ushort hdrive);
static const char *gdth_ctr_name(int hanum);
static int gdth_open(struct inode *inode, struct file *filep);
static int gdth_close(struct inode *inode, struct file *filep);
static int gdth_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg);
static void gdth_flush(int hanum);
static int gdth_halt(struct notifier_block *nb, ulong event, void *buf);
static int gdth_queuecommand(Scsi_Cmnd *scp,void (*done)(Scsi_Cmnd *));
static void gdth_scsi_done(struct scsi_cmnd *scp);
#ifdef DEBUG_GDTH
static unchar DebugState = DEBUG_GDTH;
#ifdef __SERIAL__
#define MAX_SERBUF 160
static void ser_init(void);
static void ser_puts(char *str);
static void ser_putc(char c);
static int ser_printk(const char *fmt, ...);
static char strbuf[MAX_SERBUF+1];
#ifdef __COM2__
#define COM_BASE 0x2f8
#else
#define COM_BASE 0x3f8
#endif
static void ser_init()
{
unsigned port=COM_BASE;
outb(0x80,port+3);
outb(0,port+1);
/* 19200 Baud, if 9600: outb(12,port) */
outb(6, port);
outb(3,port+3);
outb(0,port+1);
/*
ser_putc('I');
ser_putc(' ');
*/
}
static void ser_puts(char *str)
{
char *ptr;
ser_init();
for (ptr=str;*ptr;++ptr)
ser_putc(*ptr);
}
static void ser_putc(char c)
{
unsigned port=COM_BASE;
while ((inb(port+5) & 0x20)==0);
outb(c,port);
if (c==0x0a)
{
while ((inb(port+5) & 0x20)==0);
outb(0x0d,port);
}
}
static int ser_printk(const char *fmt, ...)
{
va_list args;
int i;
va_start(args,fmt);
i = vsprintf(strbuf,fmt,args);
ser_puts(strbuf);
va_end(args);
return i;
}
#define TRACE(a) {if (DebugState==1) {ser_printk a;}}
#define TRACE2(a) {if (DebugState==1 || DebugState==2) {ser_printk a;}}
#define TRACE3(a) {if (DebugState!=0) {ser_printk a;}}
#else /* !__SERIAL__ */
#define TRACE(a) {if (DebugState==1) {printk a;}}
#define TRACE2(a) {if (DebugState==1 || DebugState==2) {printk a;}}
#define TRACE3(a) {if (DebugState!=0) {printk a;}}
#endif
#else /* !DEBUG */
#define TRACE(a)
#define TRACE2(a)
#define TRACE3(a)
#endif
#ifdef GDTH_STATISTICS
static ulong32 max_rq=0, max_index=0, max_sg=0;
#ifdef INT_COAL
static ulong32 max_int_coal=0;
#endif
static ulong32 act_ints=0, act_ios=0, act_stats=0, act_rq=0;
static struct timer_list gdth_timer;
#endif
#define PTR2USHORT(a) (ushort)(ulong)(a)
#define GDTOFFSOF(a,b) (size_t)&(((a*)0)->b)
#define INDEX_OK(i,t) ((i)<ARRAY_SIZE(t))
#define NUMDATA(a) ( (gdth_num_str *)((a)->hostdata))
#define HADATA(a) (&((gdth_ext_str *)((a)->hostdata))->haext)
#define CMDDATA(a) (&((gdth_ext_str *)((a)->hostdata))->cmdext)
#define BUS_L2P(a,b) ((b)>(a)->virt_bus ? (b-1):(b))
#define gdth_readb(addr) readb(addr)
#define gdth_readw(addr) readw(addr)
#define gdth_readl(addr) readl(addr)
#define gdth_writeb(b,addr) writeb((b),(addr))
#define gdth_writew(b,addr) writew((b),(addr))
#define gdth_writel(b,addr) writel((b),(addr))
static unchar gdth_drq_tab[4] = {5,6,7,7}; /* DRQ table */
static unchar gdth_irq_tab[6] = {0,10,11,12,14,0}; /* IRQ table */
static unchar gdth_polling; /* polling if TRUE */
static unchar gdth_from_wait = FALSE; /* gdth_wait() */
static int wait_index,wait_hanum; /* gdth_wait() */
static int gdth_ctr_count = 0; /* controller count */
static int gdth_ctr_vcount = 0; /* virt. ctr. count */
static int gdth_ctr_released = 0; /* gdth_release() */
static struct Scsi_Host *gdth_ctr_tab[MAXHA]; /* controller table */
static struct Scsi_Host *gdth_ctr_vtab[MAXHA*MAXBUS]; /* virt. ctr. table */
static unchar gdth_write_through = FALSE; /* write through */
static gdth_evt_str ebuffer[MAX_EVENTS]; /* event buffer */
static int elastidx;
static int eoldidx;
static int major;
#define DIN 1 /* IN data direction */
#define DOU 2 /* OUT data direction */
#define DNO DIN /* no data transfer */
#define DUN DIN /* unknown data direction */
static unchar gdth_direction_tab[0x100] = {
DNO,DNO,DIN,DIN,DOU,DIN,DIN,DOU,DIN,DUN,DOU,DOU,DUN,DUN,DUN,DIN,
DNO,DIN,DIN,DOU,DIN,DOU,DNO,DNO,DOU,DNO,DIN,DNO,DIN,DOU,DNO,DUN,
DIN,DUN,DIN,DUN,DOU,DIN,DUN,DUN,DIN,DIN,DOU,DNO,DUN,DIN,DOU,DOU,
DOU,DOU,DOU,DNO,DIN,DNO,DNO,DIN,DOU,DOU,DOU,DOU,DIN,DOU,DIN,DOU,
DOU,DOU,DIN,DIN,DIN,DNO,DUN,DNO,DNO,DNO,DUN,DNO,DOU,DIN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DOU,DUN,DUN,DUN,DUN,DIN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DIN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DIN,DUN,
DUN,DUN,DUN,DUN,DUN,DNO,DNO,DUN,DIN,DNO,DOU,DUN,DNO,DUN,DOU,DOU,
DOU,DOU,DOU,DNO,DUN,DIN,DOU,DIN,DIN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN
};
/* LILO and modprobe/insmod parameters */
/* IRQ list for GDT3000/3020 EISA controllers */
static int irq[MAXHA] __initdata =
{0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
/* disable driver flag */
static int disable __initdata = 0;
/* reserve flag */
static int reserve_mode = 1;
/* reserve list */
static int reserve_list[MAX_RES_ARGS] =
{0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
/* scan order for PCI controllers */
static int reverse_scan = 0;
/* virtual channel for the host drives */
static int hdr_channel = 0;
/* max. IDs per channel */
static int max_ids = MAXID;
/* rescan all IDs */
static int rescan = 0;
/* map channels to virtual controllers */
static int virt_ctr = 0;
/* shared access */
static int shared_access = 1;
/* enable support for EISA and ISA controllers */
static int probe_eisa_isa = 0;
/* 64 bit DMA mode, support for drives > 2 TB, if force_dma32 = 0 */
static int force_dma32 = 0;
/* parameters for modprobe/insmod */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11)
module_param_array(irq, int, NULL, 0);
module_param(disable, int, 0);
module_param(reserve_mode, int, 0);
module_param_array(reserve_list, int, NULL, 0);
module_param(reverse_scan, int, 0);
module_param(hdr_channel, int, 0);
module_param(max_ids, int, 0);
module_param(rescan, int, 0);
module_param(virt_ctr, int, 0);
module_param(shared_access, int, 0);
module_param(probe_eisa_isa, int, 0);
module_param(force_dma32, int, 0);
#else
MODULE_PARM(irq, "i");
MODULE_PARM(disable, "i");
MODULE_PARM(reserve_mode, "i");
MODULE_PARM(reserve_list, "4-" __MODULE_STRING(MAX_RES_ARGS) "i");
MODULE_PARM(reverse_scan, "i");
MODULE_PARM(hdr_channel, "i");
MODULE_PARM(max_ids, "i");
MODULE_PARM(rescan, "i");
MODULE_PARM(virt_ctr, "i");
MODULE_PARM(shared_access, "i");
MODULE_PARM(probe_eisa_isa, "i");
MODULE_PARM(force_dma32, "i");
#endif
MODULE_AUTHOR("Achim Leubner");
MODULE_LICENSE("GPL");
/* ioctl interface */
static const struct file_operations gdth_fops = {
.ioctl = gdth_ioctl,
.open = gdth_open,
.release = gdth_close,
};
#include "gdth_proc.h"
#include "gdth_proc.c"
/* notifier block to get a notify on system shutdown/halt/reboot */
static struct notifier_block gdth_notifier = {
gdth_halt, NULL, 0
};
static int notifier_disabled = 0;
static void gdth_delay(int milliseconds)
{
if (milliseconds == 0) {
udelay(1);
} else {
mdelay(milliseconds);
}
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static void gdth_scsi_done(struct scsi_cmnd *scp)
{
TRACE2(("gdth_scsi_done()\n"));
if (scp->request)
complete((struct completion *)scp->request);
}
int __gdth_execute(struct scsi_device *sdev, gdth_cmd_str *gdtcmd, char *cmnd,
int timeout, u32 *info)
{
Scsi_Cmnd *scp;
DECLARE_COMPLETION_ONSTACK(wait);
int rval;
scp = kmalloc(sizeof(*scp), GFP_KERNEL);
if (!scp)
return -ENOMEM;
memset(scp, 0, sizeof(*scp));
scp->device = sdev;
/* use request field to save the ptr. to completion struct. */
scp->request = (struct request *)&wait;
scp->timeout_per_command = timeout*HZ;
scp->request_buffer = gdtcmd;
scp->cmd_len = 12;
memcpy(scp->cmnd, cmnd, 12);
scp->SCp.this_residual = IOCTL_PRI; /* priority */
scp->done = gdth_scsi_done; /* some fn. test this */
gdth_queuecommand(scp, gdth_scsi_done);
wait_for_completion(&wait);
rval = scp->SCp.Status;
if (info)
*info = scp->SCp.Message;
kfree(scp);
return rval;
}
#else
static void gdth_scsi_done(Scsi_Cmnd *scp)
{
TRACE2(("gdth_scsi_done()\n"));
scp->request.rq_status = RQ_SCSI_DONE;
if (scp->request.waiting)
complete(scp->request.waiting);
}
int __gdth_execute(struct scsi_device *sdev, gdth_cmd_str *gdtcmd, char *cmnd,
int timeout, u32 *info)
{
Scsi_Cmnd *scp = scsi_allocate_device(sdev, 1, FALSE);
unsigned bufflen = gdtcmd ? sizeof(gdth_cmd_str) : 0;
DECLARE_COMPLETION_ONSTACK(wait);
int rval;
if (!scp)
return -ENOMEM;
scp->cmd_len = 12;
scp->use_sg = 0;
scp->SCp.this_residual = IOCTL_PRI; /* priority */
scp->request.rq_status = RQ_SCSI_BUSY;
scp->request.waiting = &wait;
scsi_do_cmd(scp, cmnd, gdtcmd, bufflen, gdth_scsi_done, timeout*HZ, 1);
wait_for_completion(&wait);
rval = scp->SCp.Status;
if (info)
*info = scp->SCp.Message;
scsi_release_command(scp);
return rval;
}
#endif
int gdth_execute(struct Scsi_Host *shost, gdth_cmd_str *gdtcmd, char *cmnd,
int timeout, u32 *info)
{
struct scsi_device *sdev = scsi_get_host_dev(shost);
int rval = __gdth_execute(sdev, gdtcmd, cmnd, timeout, info);
scsi_free_host_dev(sdev);
return rval;
}
static void gdth_eval_mapping(ulong32 size, ulong32 *cyls, int *heads, int *secs)
{
*cyls = size /HEADS/SECS;
if (*cyls <= MAXCYLS) {
*heads = HEADS;
*secs = SECS;
} else { /* too high for 64*32 */
*cyls = size /MEDHEADS/MEDSECS;
if (*cyls <= MAXCYLS) {
*heads = MEDHEADS;
*secs = MEDSECS;
} else { /* too high for 127*63 */
*cyls = size /BIGHEADS/BIGSECS;
*heads = BIGHEADS;
*secs = BIGSECS;
}
}
}
/* controller search and initialization functions */
static int __init gdth_search_eisa(ushort eisa_adr)
{
ulong32 id;
TRACE(("gdth_search_eisa() adr. %x\n",eisa_adr));
id = inl(eisa_adr+ID0REG);
if (id == GDT3A_ID || id == GDT3B_ID) { /* GDT3000A or GDT3000B */
if ((inb(eisa_adr+EISAREG) & 8) == 0)
return 0; /* not EISA configured */
return 1;
}
if (id == GDT3_ID) /* GDT3000 */
return 1;
return 0;
}
static int __init gdth_search_isa(ulong32 bios_adr)
{
void __iomem *addr;
ulong32 id;
TRACE(("gdth_search_isa() bios adr. %x\n",bios_adr));
if ((addr = ioremap(bios_adr+BIOS_ID_OFFS, sizeof(ulong32))) != NULL) {
id = gdth_readl(addr);
iounmap(addr);
if (id == GDT2_ID) /* GDT2000 */
return 1;
}
return 0;
}
static int __init gdth_search_pci(gdth_pci_str *pcistr)
{
ushort device, cnt;
TRACE(("gdth_search_pci()\n"));
cnt = 0;
for (device = 0; device <= PCI_DEVICE_ID_VORTEX_GDT6555; ++device)
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, device);
for (device = PCI_DEVICE_ID_VORTEX_GDT6x17RP;
device <= PCI_DEVICE_ID_VORTEX_GDTMAXRP; ++device)
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, device);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX,
PCI_DEVICE_ID_VORTEX_GDTNEWRX);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX,
PCI_DEVICE_ID_VORTEX_GDTNEWRX2);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_SRC);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_SRC_XSCALE);
return cnt;
}
/* Vortex only makes RAID controllers.
* We do not really want to specify all 550 ids here, so wildcard match.
*/
static struct pci_device_id gdthtable[] __maybe_unused = {
{PCI_VENDOR_ID_VORTEX,PCI_ANY_ID,PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_INTEL,PCI_DEVICE_ID_INTEL_SRC,PCI_ANY_ID,PCI_ANY_ID},
{PCI_VENDOR_ID_INTEL,PCI_DEVICE_ID_INTEL_SRC_XSCALE,PCI_ANY_ID,PCI_ANY_ID},
{0}
};
MODULE_DEVICE_TABLE(pci,gdthtable);
static void __init gdth_search_dev(gdth_pci_str *pcistr, ushort *cnt,
ushort vendor, ushort device)
{
ulong base0, base1, base2;
struct pci_dev *pdev;
TRACE(("gdth_search_dev() cnt %d vendor %x device %x\n",
*cnt, vendor, device));
pdev = NULL;
while ((pdev = pci_find_device(vendor, device, pdev))
!= NULL) {
if (pci_enable_device(pdev))
continue;
if (*cnt >= MAXHA)
return;
/* GDT PCI controller found, resources are already in pdev */
pcistr[*cnt].pdev = pdev;
pcistr[*cnt].vendor_id = vendor;
pcistr[*cnt].device_id = device;
pcistr[*cnt].subdevice_id = pdev->subsystem_device;
pcistr[*cnt].bus = pdev->bus->number;
pcistr[*cnt].device_fn = pdev->devfn;
pcistr[*cnt].irq = pdev->irq;
base0 = pci_resource_flags(pdev, 0);
base1 = pci_resource_flags(pdev, 1);
base2 = pci_resource_flags(pdev, 2);
if (device <= PCI_DEVICE_ID_VORTEX_GDT6000B || /* GDT6000/B */
device >= PCI_DEVICE_ID_VORTEX_GDT6x17RP) { /* MPR */
if (!(base0 & IORESOURCE_MEM))
continue;
pcistr[*cnt].dpmem = pci_resource_start(pdev, 0);
} else { /* GDT6110, GDT6120, .. */
if (!(base0 & IORESOURCE_MEM) ||
!(base2 & IORESOURCE_MEM) ||
!(base1 & IORESOURCE_IO))
continue;
pcistr[*cnt].dpmem = pci_resource_start(pdev, 2);
pcistr[*cnt].io_mm = pci_resource_start(pdev, 0);
pcistr[*cnt].io = pci_resource_start(pdev, 1);
}
TRACE2(("Controller found at %d/%d, irq %d, dpmem 0x%lx\n",
pcistr[*cnt].bus, PCI_SLOT(pcistr[*cnt].device_fn),
pcistr[*cnt].irq, pcistr[*cnt].dpmem));
(*cnt)++;
}
}
static void __init gdth_sort_pci(gdth_pci_str *pcistr, int cnt)
{
gdth_pci_str temp;
int i, changed;
TRACE(("gdth_sort_pci() cnt %d\n",cnt));
if (cnt == 0)
return;
do {
changed = FALSE;
for (i = 0; i < cnt-1; ++i) {
if (!reverse_scan) {
if ((pcistr[i].bus > pcistr[i+1].bus) ||
(pcistr[i].bus == pcistr[i+1].bus &&
PCI_SLOT(pcistr[i].device_fn) >
PCI_SLOT(pcistr[i+1].device_fn))) {
temp = pcistr[i];
pcistr[i] = pcistr[i+1];
pcistr[i+1] = temp;
changed = TRUE;
}
} else {
if ((pcistr[i].bus < pcistr[i+1].bus) ||
(pcistr[i].bus == pcistr[i+1].bus &&
PCI_SLOT(pcistr[i].device_fn) <
PCI_SLOT(pcistr[i+1].device_fn))) {
temp = pcistr[i];
pcistr[i] = pcistr[i+1];
pcistr[i+1] = temp;
changed = TRUE;
}
}
}
} while (changed);
}
static int __init gdth_init_eisa(ushort eisa_adr,gdth_ha_str *ha)
{
ulong32 retries,id;
unchar prot_ver,eisacf,i,irq_found;
TRACE(("gdth_init_eisa() adr. %x\n",eisa_adr));
/* disable board interrupts, deinitialize services */
outb(0xff,eisa_adr+EDOORREG);
outb(0x00,eisa_adr+EDENABREG);
outb(0x00,eisa_adr+EINTENABREG);
outb(0xff,eisa_adr+LDOORREG);
retries = INIT_RETRIES;
gdth_delay(20);
while (inb(eisa_adr+EDOORREG) != 0xff) {
if (--retries == 0) {
printk("GDT-EISA: Initialization error (DEINIT failed)\n");
return 0;
}
gdth_delay(1);
TRACE2(("wait for DEINIT: retries=%d\n",retries));
}
prot_ver = inb(eisa_adr+MAILBOXREG);
outb(0xff,eisa_adr+EDOORREG);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-EISA: Illegal protocol version\n");
return 0;
}
ha->bmic = eisa_adr;
ha->brd_phys = (ulong32)eisa_adr >> 12;
outl(0,eisa_adr+MAILBOXREG);
outl(0,eisa_adr+MAILBOXREG+4);
outl(0,eisa_adr+MAILBOXREG+8);
outl(0,eisa_adr+MAILBOXREG+12);
/* detect IRQ */
if ((id = inl(eisa_adr+ID0REG)) == GDT3_ID) {
ha->oem_id = OEM_ID_ICP;
ha->type = GDT_EISA;
ha->stype = id;
outl(1,eisa_adr+MAILBOXREG+8);
outb(0xfe,eisa_adr+LDOORREG);
retries = INIT_RETRIES;
gdth_delay(20);
while (inb(eisa_adr+EDOORREG) != 0xfe) {
if (--retries == 0) {
printk("GDT-EISA: Initialization error (get IRQ failed)\n");
return 0;
}
gdth_delay(1);
}
ha->irq = inb(eisa_adr+MAILBOXREG);
outb(0xff,eisa_adr+EDOORREG);
TRACE2(("GDT3000/3020: IRQ=%d\n",ha->irq));
/* check the result */
if (ha->irq == 0) {
TRACE2(("Unknown IRQ, use IRQ table from cmd line !\n"));
for (i = 0, irq_found = FALSE;
i < MAXHA && irq[i] != 0xff; ++i) {
if (irq[i]==10 || irq[i]==11 || irq[i]==12 || irq[i]==14) {
irq_found = TRUE;
break;
}
}
if (irq_found) {
ha->irq = irq[i];
irq[i] = 0;
printk("GDT-EISA: Can not detect controller IRQ,\n");
printk("Use IRQ setting from command line (IRQ = %d)\n",
ha->irq);
} else {
printk("GDT-EISA: Initialization error (unknown IRQ), Enable\n");
printk("the controller BIOS or use command line parameters\n");
return 0;
}
}
} else {
eisacf = inb(eisa_adr+EISAREG) & 7;
if (eisacf > 4) /* level triggered */
eisacf -= 4;
ha->irq = gdth_irq_tab[eisacf];
ha->oem_id = OEM_ID_ICP;
ha->type = GDT_EISA;
ha->stype = id;
}
ha->dma64_support = 0;
return 1;
}
static int __init gdth_init_isa(ulong32 bios_adr,gdth_ha_str *ha)
{
register gdt2_dpram_str __iomem *dp2_ptr;
int i;
unchar irq_drq,prot_ver;
ulong32 retries;
TRACE(("gdth_init_isa() bios adr. %x\n",bios_adr));
ha->brd = ioremap(bios_adr, sizeof(gdt2_dpram_str));
if (ha->brd == NULL) {
printk("GDT-ISA: Initialization error (DPMEM remap error)\n");
return 0;
}
dp2_ptr = ha->brd;
gdth_writeb(1, &dp2_ptr->io.memlock); /* switch off write protection */
/* reset interface area */
memset_io(&dp2_ptr->u, 0, sizeof(dp2_ptr->u));
if (gdth_readl(&dp2_ptr->u) != 0) {
printk("GDT-ISA: Initialization error (DPMEM write error)\n");
iounmap(ha->brd);
return 0;
}
/* disable board interrupts, read DRQ and IRQ */
gdth_writeb(0xff, &dp2_ptr->io.irqdel);
gdth_writeb(0x00, &dp2_ptr->io.irqen);
gdth_writeb(0x00, &dp2_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp2_ptr->u.ic.Cmd_Index);
irq_drq = gdth_readb(&dp2_ptr->io.rq);
for (i=0; i<3; ++i) {
if ((irq_drq & 1)==0)
break;
irq_drq >>= 1;
}
ha->drq = gdth_drq_tab[i];
irq_drq = gdth_readb(&dp2_ptr->io.rq) >> 3;
for (i=1; i<5; ++i) {
if ((irq_drq & 1)==0)
break;
irq_drq >>= 1;
}
ha->irq = gdth_irq_tab[i];
/* deinitialize services */
gdth_writel(bios_adr, &dp2_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp2_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp2_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp2_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-ISA: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp2_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp2_ptr->u.ic.Status);
gdth_writeb(0xff, &dp2_ptr->io.irqdel);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-ISA: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->oem_id = OEM_ID_ICP;
ha->type = GDT_ISA;
ha->ic_all_size = sizeof(dp2_ptr->u);
ha->stype= GDT2_ID;
ha->brd_phys = bios_adr >> 4;
/* special request to controller BIOS */
gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[1]);
gdth_writel(0x01, &dp2_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp2_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp2_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp2_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-ISA: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp2_ptr->u.ic.Status);
gdth_writeb(0xff, &dp2_ptr->io.irqdel);
ha->dma64_support = 0;
return 1;
}
static int __init gdth_init_pci(gdth_pci_str *pcistr,gdth_ha_str *ha)
{
register gdt6_dpram_str __iomem *dp6_ptr;
register gdt6c_dpram_str __iomem *dp6c_ptr;
register gdt6m_dpram_str __iomem *dp6m_ptr;
ulong32 retries;
unchar prot_ver;
ushort command;
int i, found = FALSE;
TRACE(("gdth_init_pci()\n"));
if (pcistr->vendor_id == PCI_VENDOR_ID_INTEL)
ha->oem_id = OEM_ID_INTEL;
else
ha->oem_id = OEM_ID_ICP;
ha->brd_phys = (pcistr->bus << 8) | (pcistr->device_fn & 0xf8);
ha->stype = (ulong32)pcistr->device_id;
ha->subdevice_id = pcistr->subdevice_id;
ha->irq = pcistr->irq;
ha->pdev = pcistr->pdev;
if (ha->stype <= PCI_DEVICE_ID_VORTEX_GDT6000B) { /* GDT6000/B */
TRACE2(("init_pci() dpmem %lx irq %d\n",pcistr->dpmem,ha->irq));
ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
/* check and reset interface area */
dp6_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6_ptr->u);
if (gdth_readl(&dp6_ptr->u) != DPMEM_MAGIC) {
printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n",
pcistr->dpmem);
found = FALSE;
for (i = 0xC8000; i < 0xE8000; i += 0x4000) {
iounmap(ha->brd);
ha->brd = ioremap(i, sizeof(ushort));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
if (gdth_readw(ha->brd) != 0xffff) {
TRACE2(("init_pci_old() address 0x%x busy\n", i));
continue;
}
iounmap(ha->brd);
pci_write_config_dword(pcistr->pdev,
PCI_BASE_ADDRESS_0, i);
ha->brd = ioremap(i, sizeof(gdt6_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
dp6_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6_ptr->u);
if (gdth_readl(&dp6_ptr->u) == DPMEM_MAGIC) {
printk("GDT-PCI: Use free address at 0x%x\n", i);
found = TRUE;
break;
}
}
if (!found) {
printk("GDT-PCI: No free address found!\n");
iounmap(ha->brd);
return 0;
}
}
memset_io(&dp6_ptr->u, 0, sizeof(dp6_ptr->u));
if (gdth_readl(&dp6_ptr->u) != 0) {
printk("GDT-PCI: Initialization error (DPMEM write error)\n");
iounmap(ha->brd);
return 0;
}
/* disable board interrupts, deinit services */
gdth_writeb(0xff, &dp6_ptr->io.irqdel);
gdth_writeb(0x00, &dp6_ptr->io.irqen);
gdth_writeb(0x00, &dp6_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp6_ptr->u.ic.Cmd_Index);
gdth_writel(pcistr->dpmem, &dp6_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp6_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp6_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp6_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp6_ptr->u.ic.S_Status);
gdth_writeb(0xff, &dp6_ptr->io.irqdel);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-PCI: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->type = GDT_PCI;
ha->ic_all_size = sizeof(dp6_ptr->u);
/* special command to controller BIOS */
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[1]);
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp6_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp6_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp6_ptr->u.ic.S_Status);
gdth_writeb(0xff, &dp6_ptr->io.irqdel);
ha->dma64_support = 0;
} else if (ha->stype <= PCI_DEVICE_ID_VORTEX_GDT6555) { /* GDT6110, ... */
ha->plx = (gdt6c_plx_regs *)pcistr->io;
TRACE2(("init_pci_new() dpmem %lx irq %d\n",
pcistr->dpmem,ha->irq));
ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6c_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
iounmap(ha->brd);
return 0;
}
/* check and reset interface area */
dp6c_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6c_ptr->u);
if (gdth_readl(&dp6c_ptr->u) != DPMEM_MAGIC) {
printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n",
pcistr->dpmem);
found = FALSE;
for (i = 0xC8000; i < 0xE8000; i += 0x4000) {
iounmap(ha->brd);
ha->brd = ioremap(i, sizeof(ushort));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
if (gdth_readw(ha->brd) != 0xffff) {
TRACE2(("init_pci_plx() address 0x%x busy\n", i));
continue;
}
iounmap(ha->brd);
pci_write_config_dword(pcistr->pdev,
PCI_BASE_ADDRESS_2, i);
ha->brd = ioremap(i, sizeof(gdt6c_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
dp6c_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6c_ptr->u);
if (gdth_readl(&dp6c_ptr->u) == DPMEM_MAGIC) {
printk("GDT-PCI: Use free address at 0x%x\n", i);
found = TRUE;
break;
}
}
if (!found) {
printk("GDT-PCI: No free address found!\n");
iounmap(ha->brd);
return 0;
}
}
memset_io(&dp6c_ptr->u, 0, sizeof(dp6c_ptr->u));
if (gdth_readl(&dp6c_ptr->u) != 0) {
printk("GDT-PCI: Initialization error (DPMEM write error)\n");
iounmap(ha->brd);
return 0;
}
/* disable board interrupts, deinit services */
outb(0x00,PTR2USHORT(&ha->plx->control1));
outb(0xff,PTR2USHORT(&ha->plx->edoor_reg));
gdth_writeb(0x00, &dp6c_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp6c_ptr->u.ic.Cmd_Index);
gdth_writel(pcistr->dpmem, &dp6c_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp6c_ptr->u.ic.S_Cmd_Indx);
outb(1,PTR2USHORT(&ha->plx->ldoor_reg));
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6c_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp6c_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp6c_ptr->u.ic.Status);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-PCI: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->type = GDT_PCINEW;
ha->ic_all_size = sizeof(dp6c_ptr->u);
/* special command to controller BIOS */
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[1]);
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp6c_ptr->u.ic.S_Cmd_Indx);
outb(1,PTR2USHORT(&ha->plx->ldoor_reg));
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6c_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp6c_ptr->u.ic.S_Status);
ha->dma64_support = 0;
} else { /* MPR */
TRACE2(("init_pci_mpr() dpmem %lx irq %d\n",pcistr->dpmem,ha->irq));
ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6m_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
/* manipulate config. space to enable DPMEM, start RP controller */
pci_read_config_word(pcistr->pdev, PCI_COMMAND, &command);
command |= 6;
pci_write_config_word(pcistr->pdev, PCI_COMMAND, command);
if (pci_resource_start(pcistr->pdev, 8) == 1UL)
pci_resource_start(pcistr->pdev, 8) = 0UL;
i = 0xFEFF0001UL;
pci_write_config_dword(pcistr->pdev, PCI_ROM_ADDRESS, i);
gdth_delay(1);
pci_write_config_dword(pcistr->pdev, PCI_ROM_ADDRESS,
pci_resource_start(pcistr->pdev, 8));
dp6m_ptr = ha->brd;
/* Ensure that it is safe to access the non HW portions of DPMEM.
* Aditional check needed for Xscale based RAID controllers */
while( ((int)gdth_readb(&dp6m_ptr->i960r.sema0_reg) ) & 3 )
gdth_delay(1);
/* check and reset interface area */
gdth_writel(DPMEM_MAGIC, &dp6m_ptr->u);
if (gdth_readl(&dp6m_ptr->u) != DPMEM_MAGIC) {
printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n",
pcistr->dpmem);
found = FALSE;
for (i = 0xC8000; i < 0xE8000; i += 0x4000) {
iounmap(ha->brd);
ha->brd = ioremap(i, sizeof(ushort));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
if (gdth_readw(ha->brd) != 0xffff) {
TRACE2(("init_pci_mpr() address 0x%x busy\n", i));
continue;
}
iounmap(ha->brd);
pci_write_config_dword(pcistr->pdev,
PCI_BASE_ADDRESS_0, i);
ha->brd = ioremap(i, sizeof(gdt6m_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
dp6m_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6m_ptr->u);
if (gdth_readl(&dp6m_ptr->u) == DPMEM_MAGIC) {
printk("GDT-PCI: Use free address at 0x%x\n", i);
found = TRUE;
break;
}
}
if (!found) {
printk("GDT-PCI: No free address found!\n");
iounmap(ha->brd);
return 0;
}
}
memset_io(&dp6m_ptr->u, 0, sizeof(dp6m_ptr->u));
/* disable board interrupts, deinit services */
gdth_writeb(gdth_readb(&dp6m_ptr->i960r.edoor_en_reg) | 4,
&dp6m_ptr->i960r.edoor_en_reg);
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(0x00, &dp6m_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp6m_ptr->u.ic.Cmd_Index);
gdth_writel(pcistr->dpmem, &dp6m_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp6m_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp6m_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp6m_ptr->u.ic.S_Status);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-PCI: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->type = GDT_PCIMPR;
ha->ic_all_size = sizeof(dp6m_ptr->u);
/* special command to controller BIOS */
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[1]);
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp6m_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp6m_ptr->u.ic.S_Status);
/* read FW version to detect 64-bit DMA support */
gdth_writeb(0xfd, &dp6m_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xfd) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)(gdth_readl(&dp6m_ptr->u.ic.S_Info[0]) >> 16);
gdth_writeb(0, &dp6m_ptr->u.ic.S_Status);
if (prot_ver < 0x2b) /* FW < x.43: no 64-bit DMA support */
ha->dma64_support = 0;
else
ha->dma64_support = 1;
}
return 1;
}
/* controller protocol functions */
static void __init gdth_enable_int(int hanum)
{
gdth_ha_str *ha;
ulong flags;
gdt2_dpram_str __iomem *dp2_ptr;
gdt6_dpram_str __iomem *dp6_ptr;
gdt6m_dpram_str __iomem *dp6m_ptr;
TRACE(("gdth_enable_int() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
spin_lock_irqsave(&ha->smp_lock, flags);
if (ha->type == GDT_EISA) {
outb(0xff, ha->bmic + EDOORREG);
outb(0xff, ha->bmic + EDENABREG);
outb(0x01, ha->bmic + EINTENABREG);
} else if (ha->type == GDT_ISA) {
dp2_ptr = ha->brd;
gdth_writeb(1, &dp2_ptr->io.irqdel);
gdth_writeb(0, &dp2_ptr->u.ic.Cmd_Index);
gdth_writeb(1, &dp2_ptr->io.irqen);
} else if (ha->type == GDT_PCI) {
dp6_ptr = ha->brd;
gdth_writeb(1, &dp6_ptr->io.irqdel);
gdth_writeb(0, &dp6_ptr->u.ic.Cmd_Index);
gdth_writeb(1, &dp6_ptr->io.irqen);
} else if (ha->type == GDT_PCINEW) {
outb(0xff, PTR2USHORT(&ha->plx->edoor_reg));
outb(0x03, PTR2USHORT(&ha->plx->control1));
} else if (ha->type == GDT_PCIMPR) {
dp6m_ptr = ha->brd;
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(gdth_readb(&dp6m_ptr->i960r.edoor_en_reg) & ~4,
&dp6m_ptr->i960r.edoor_en_reg);
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
static int gdth_get_status(unchar *pIStatus,int irq)
{
register gdth_ha_str *ha;
int i;
TRACE(("gdth_get_status() irq %d ctr_count %d\n",
irq,gdth_ctr_count));
*pIStatus = 0;
for (i=0; i<gdth_ctr_count; ++i) {
ha = HADATA(gdth_ctr_tab[i]);
if (ha->irq != (unchar)irq) /* check IRQ */
continue;
if (ha->type == GDT_EISA)
*pIStatus = inb((ushort)ha->bmic + EDOORREG);
else if (ha->type == GDT_ISA)
*pIStatus =
gdth_readb(&((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Cmd_Index);
else if (ha->type == GDT_PCI)
*pIStatus =
gdth_readb(&((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Cmd_Index);
else if (ha->type == GDT_PCINEW)
*pIStatus = inb(PTR2USHORT(&ha->plx->edoor_reg));
else if (ha->type == GDT_PCIMPR)
*pIStatus =
gdth_readb(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.edoor_reg);
if (*pIStatus)
return i; /* board found */
}
return -1;
}
static int gdth_test_busy(int hanum)
{
register gdth_ha_str *ha;
register int gdtsema0 = 0;
TRACE(("gdth_test_busy() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->type == GDT_EISA)
gdtsema0 = (int)inb(ha->bmic + SEMA0REG);
else if (ha->type == GDT_ISA)
gdtsema0 = (int)gdth_readb(&((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
else if (ha->type == GDT_PCI)
gdtsema0 = (int)gdth_readb(&((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
else if (ha->type == GDT_PCINEW)
gdtsema0 = (int)inb(PTR2USHORT(&ha->plx->sema0_reg));
else if (ha->type == GDT_PCIMPR)
gdtsema0 =
(int)gdth_readb(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.sema0_reg);
return (gdtsema0 & 1);
}
static int gdth_get_cmd_index(int hanum)
{
register gdth_ha_str *ha;
int i;
TRACE(("gdth_get_cmd_index() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
for (i=0; i<GDTH_MAXCMDS; ++i) {
if (ha->cmd_tab[i].cmnd == UNUSED_CMND) {
ha->cmd_tab[i].cmnd = ha->pccb->RequestBuffer;
ha->cmd_tab[i].service = ha->pccb->Service;
ha->pccb->CommandIndex = (ulong32)i+2;
return (i+2);
}
}
return 0;
}
static void gdth_set_sema0(int hanum)
{
register gdth_ha_str *ha;
TRACE(("gdth_set_sema0() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->type == GDT_EISA) {
outb(1, ha->bmic + SEMA0REG);
} else if (ha->type == GDT_ISA) {
gdth_writeb(1, &((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
} else if (ha->type == GDT_PCI) {
gdth_writeb(1, &((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
} else if (ha->type == GDT_PCINEW) {
outb(1, PTR2USHORT(&ha->plx->sema0_reg));
} else if (ha->type == GDT_PCIMPR) {
gdth_writeb(1, &((gdt6m_dpram_str __iomem *)ha->brd)->i960r.sema0_reg);
}
}
static void gdth_copy_command(int hanum)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmd_ptr;
register gdt6m_dpram_str __iomem *dp6m_ptr;
register gdt6c_dpram_str __iomem *dp6c_ptr;
gdt6_dpram_str __iomem *dp6_ptr;
gdt2_dpram_str __iomem *dp2_ptr;
ushort cp_count,dp_offset,cmd_no;
TRACE(("gdth_copy_command() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
cp_count = ha->cmd_len;
dp_offset= ha->cmd_offs_dpmem;
cmd_no = ha->cmd_cnt;
cmd_ptr = ha->pccb;
++ha->cmd_cnt;
if (ha->type == GDT_EISA)
return; /* no DPMEM, no copy */
/* set cpcount dword aligned */
if (cp_count & 3)
cp_count += (4 - (cp_count & 3));
ha->cmd_offs_dpmem += cp_count;
/* set offset and service, copy command to DPMEM */
if (ha->type == GDT_ISA) {
dp2_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp2_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp2_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp2_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
} else if (ha->type == GDT_PCI) {
dp6_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp6_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp6_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp6_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
} else if (ha->type == GDT_PCINEW) {
dp6c_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp6c_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp6c_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp6c_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
} else if (ha->type == GDT_PCIMPR) {
dp6m_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp6m_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp6m_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp6m_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
}
}
static void gdth_release_event(int hanum)
{
register gdth_ha_str *ha;
TRACE(("gdth_release_event() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
#ifdef GDTH_STATISTICS
{
ulong32 i,j;
for (i=0,j=0; j<GDTH_MAXCMDS; ++j) {
if (ha->cmd_tab[j].cmnd != UNUSED_CMND)
++i;
}
if (max_index < i) {
max_index = i;
TRACE3(("GDT: max_index = %d\n",(ushort)i));
}
}
#endif
if (ha->pccb->OpCode == GDT_INIT)
ha->pccb->Service |= 0x80;
if (ha->type == GDT_EISA) {
if (ha->pccb->OpCode == GDT_INIT) /* store DMA buffer */
outl(ha->ccb_phys, ha->bmic + MAILBOXREG);
outb(ha->pccb->Service, ha->bmic + LDOORREG);
} else if (ha->type == GDT_ISA) {
gdth_writeb(0, &((gdt2_dpram_str __iomem *)ha->brd)->io.event);
} else if (ha->type == GDT_PCI) {
gdth_writeb(0, &((gdt6_dpram_str __iomem *)ha->brd)->io.event);
} else if (ha->type == GDT_PCINEW) {
outb(1, PTR2USHORT(&ha->plx->ldoor_reg));
} else if (ha->type == GDT_PCIMPR) {
gdth_writeb(1, &((gdt6m_dpram_str __iomem *)ha->brd)->i960r.ldoor_reg);
}
}
static int gdth_wait(int hanum,int index,ulong32 time)
{
gdth_ha_str *ha;
int answer_found = FALSE;
TRACE(("gdth_wait() hanum %d index %d time %d\n",hanum,index,time));
ha = HADATA(gdth_ctr_tab[hanum]);
if (index == 0)
return 1; /* no wait required */
gdth_from_wait = TRUE;
do {
gdth_interrupt((int)ha->irq,ha);
if (wait_hanum==hanum && wait_index==index) {
answer_found = TRUE;
break;
}
gdth_delay(1);
} while (--time);
gdth_from_wait = FALSE;
while (gdth_test_busy(hanum))
gdth_delay(0);
return (answer_found);
}
static int gdth_internal_cmd(int hanum,unchar service,ushort opcode,ulong32 p1,
ulong64 p2,ulong64 p3)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmd_ptr;
int retries,index;
TRACE2(("gdth_internal_cmd() service %d opcode %d\n",service,opcode));
ha = HADATA(gdth_ctr_tab[hanum]);
cmd_ptr = ha->pccb;
memset((char*)cmd_ptr,0,sizeof(gdth_cmd_str));
/* make command */
for (retries = INIT_RETRIES;;) {
cmd_ptr->Service = service;
cmd_ptr->RequestBuffer = INTERNAL_CMND;
if (!(index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
gdth_set_sema0(hanum);
cmd_ptr->OpCode = opcode;
cmd_ptr->BoardNode = LOCALBOARD;
if (service == CACHESERVICE) {
if (opcode == GDT_IOCTL) {
cmd_ptr->u.ioctl.subfunc = p1;
cmd_ptr->u.ioctl.channel = (ulong32)p2;
cmd_ptr->u.ioctl.param_size = (ushort)p3;
cmd_ptr->u.ioctl.p_param = ha->scratch_phys;
} else {
if (ha->cache_feat & GDT_64BIT) {
cmd_ptr->u.cache64.DeviceNo = (ushort)p1;
cmd_ptr->u.cache64.BlockNo = p2;
} else {
cmd_ptr->u.cache.DeviceNo = (ushort)p1;
cmd_ptr->u.cache.BlockNo = (ulong32)p2;
}
}
} else if (service == SCSIRAWSERVICE) {
if (ha->raw_feat & GDT_64BIT) {
cmd_ptr->u.raw64.direction = p1;
cmd_ptr->u.raw64.bus = (unchar)p2;
cmd_ptr->u.raw64.target = (unchar)p3;
cmd_ptr->u.raw64.lun = (unchar)(p3 >> 8);
} else {
cmd_ptr->u.raw.direction = p1;
cmd_ptr->u.raw.bus = (unchar)p2;
cmd_ptr->u.raw.target = (unchar)p3;
cmd_ptr->u.raw.lun = (unchar)(p3 >> 8);
}
} else if (service == SCREENSERVICE) {
if (opcode == GDT_REALTIME) {
*(ulong32 *)&cmd_ptr->u.screen.su.data[0] = p1;
*(ulong32 *)&cmd_ptr->u.screen.su.data[4] = (ulong32)p2;
*(ulong32 *)&cmd_ptr->u.screen.su.data[8] = (ulong32)p3;
}
}
ha->cmd_len = sizeof(gdth_cmd_str);
ha->cmd_offs_dpmem = 0;
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
gdth_release_event(hanum);
gdth_delay(20);
if (!gdth_wait(hanum,index,INIT_TIMEOUT)) {
printk("GDT: Initialization error (timeout service %d)\n",service);
return 0;
}
if (ha->status != S_BSY || --retries == 0)
break;
gdth_delay(1);
}
return (ha->status != S_OK ? 0:1);
}
/* search for devices */
static int __init gdth_search_drives(int hanum)
{
register gdth_ha_str *ha;
ushort cdev_cnt, i;
int ok;
ulong32 bus_no, drv_cnt, drv_no, j;
gdth_getch_str *chn;
gdth_drlist_str *drl;
gdth_iochan_str *ioc;
gdth_raw_iochan_str *iocr;
gdth_arcdl_str *alst;
gdth_alist_str *alst2;
gdth_oem_str_ioctl *oemstr;
#ifdef INT_COAL
gdth_perf_modes *pmod;
#endif
#ifdef GDTH_RTC
unchar rtc[12];
ulong flags;
#endif
TRACE(("gdth_search_drives() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
ok = 0;
/* initialize controller services, at first: screen service */
ha->screen_feat = 0;
if (!force_dma32) {
ok = gdth_internal_cmd(hanum,SCREENSERVICE,GDT_X_INIT_SCR,0,0,0);
if (ok)
ha->screen_feat = GDT_64BIT;
}
if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC))
ok = gdth_internal_cmd(hanum,SCREENSERVICE,GDT_INIT,0,0,0);
if (!ok) {
printk("GDT-HA %d: Initialization error screen service (code %d)\n",
hanum, ha->status);
return 0;
}
TRACE2(("gdth_search_drives(): SCREENSERVICE initialized\n"));
#ifdef GDTH_RTC
/* read realtime clock info, send to controller */
/* 1. wait for the falling edge of update flag */
spin_lock_irqsave(&rtc_lock, flags);
for (j = 0; j < 1000000; ++j)
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (j = 0; j < 1000000; ++j)
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
/* 2. read info */
do {
for (j = 0; j < 12; ++j)
rtc[j] = CMOS_READ(j);
} while (rtc[0] != CMOS_READ(0));
spin_unlock_irqrestore(&rtc_lock, flags);
TRACE2(("gdth_search_drives(): RTC: %x/%x/%x\n",*(ulong32 *)&rtc[0],
*(ulong32 *)&rtc[4], *(ulong32 *)&rtc[8]));
/* 3. send to controller firmware */
gdth_internal_cmd(hanum,SCREENSERVICE,GDT_REALTIME, *(ulong32 *)&rtc[0],
*(ulong32 *)&rtc[4], *(ulong32 *)&rtc[8]);
#endif
/* unfreeze all IOs */
gdth_internal_cmd(hanum,CACHESERVICE,GDT_UNFREEZE_IO,0,0,0);
/* initialize cache service */
ha->cache_feat = 0;
if (!force_dma32) {
ok = gdth_internal_cmd(hanum,CACHESERVICE,GDT_X_INIT_HOST,LINUX_OS,0,0);
if (ok)
ha->cache_feat = GDT_64BIT;
}
if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC))
ok = gdth_internal_cmd(hanum,CACHESERVICE,GDT_INIT,LINUX_OS,0,0);
if (!ok) {
printk("GDT-HA %d: Initialization error cache service (code %d)\n",
hanum, ha->status);
return 0;
}
TRACE2(("gdth_search_drives(): CACHESERVICE initialized\n"));
cdev_cnt = (ushort)ha->info;
ha->fw_vers = ha->service;
#ifdef INT_COAL
if (ha->type == GDT_PCIMPR) {
/* set perf. modes */
pmod = (gdth_perf_modes *)ha->pscratch;
pmod->version = 1;
pmod->st_mode = 1; /* enable one status buffer */
*((ulong64 *)&pmod->st_buff_addr1) = ha->coal_stat_phys;
pmod->st_buff_indx1 = COALINDEX;
pmod->st_buff_addr2 = 0;
pmod->st_buff_u_addr2 = 0;
pmod->st_buff_indx2 = 0;
pmod->st_buff_size = sizeof(gdth_coal_status) * MAXOFFSETS;
pmod->cmd_mode = 0; // disable all cmd buffers
pmod->cmd_buff_addr1 = 0;
pmod->cmd_buff_u_addr1 = 0;
pmod->cmd_buff_indx1 = 0;
pmod->cmd_buff_addr2 = 0;
pmod->cmd_buff_u_addr2 = 0;
pmod->cmd_buff_indx2 = 0;
pmod->cmd_buff_size = 0;
pmod->reserved1 = 0;
pmod->reserved2 = 0;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,SET_PERF_MODES,
INVALID_CHANNEL,sizeof(gdth_perf_modes))) {
printk("GDT-HA %d: Interrupt coalescing activated\n", hanum);
}
}
#endif
/* detect number of buses - try new IOCTL */
iocr = (gdth_raw_iochan_str *)ha->pscratch;
iocr->hdr.version = 0xffffffff;
iocr->hdr.list_entries = MAXBUS;
iocr->hdr.first_chan = 0;
iocr->hdr.last_chan = MAXBUS-1;
iocr->hdr.list_offset = GDTOFFSOF(gdth_raw_iochan_str, list[0]);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,IOCHAN_RAW_DESC,
INVALID_CHANNEL,sizeof(gdth_raw_iochan_str))) {
TRACE2(("IOCHAN_RAW_DESC supported!\n"));
ha->bus_cnt = iocr->hdr.chan_count;
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
if (iocr->list[bus_no].proc_id < MAXID)
ha->bus_id[bus_no] = iocr->list[bus_no].proc_id;
else
ha->bus_id[bus_no] = 0xff;
}
} else {
/* old method */
chn = (gdth_getch_str *)ha->pscratch;
for (bus_no = 0; bus_no < MAXBUS; ++bus_no) {
chn->channel_no = bus_no;
if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
SCSI_CHAN_CNT | L_CTRL_PATTERN,
IO_CHANNEL | INVALID_CHANNEL,
sizeof(gdth_getch_str))) {
if (bus_no == 0) {
printk("GDT-HA %d: Error detecting channel count (0x%x)\n",
hanum, ha->status);
return 0;
}
break;
}
if (chn->siop_id < MAXID)
ha->bus_id[bus_no] = chn->siop_id;
else
ha->bus_id[bus_no] = 0xff;
}
ha->bus_cnt = (unchar)bus_no;
}
TRACE2(("gdth_search_drives() %d channels\n",ha->bus_cnt));
/* read cache configuration */
if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_INFO,
INVALID_CHANNEL,sizeof(gdth_cinfo_str))) {
printk("GDT-HA %d: Initialization error cache service (code %d)\n",
hanum, ha->status);
return 0;
}
ha->cpar = ((gdth_cinfo_str *)ha->pscratch)->cpar;
TRACE2(("gdth_search_drives() cinfo: vs %x sta %d str %d dw %d b %d\n",
ha->cpar.version,ha->cpar.state,ha->cpar.strategy,
ha->cpar.write_back,ha->cpar.block_size));
/* read board info and features */
ha->more_proc = FALSE;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,BOARD_INFO,
INVALID_CHANNEL,sizeof(gdth_binfo_str))) {
memcpy(&ha->binfo, (gdth_binfo_str *)ha->pscratch,
sizeof(gdth_binfo_str));
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,BOARD_FEATURES,
INVALID_CHANNEL,sizeof(gdth_bfeat_str))) {
TRACE2(("BOARD_INFO/BOARD_FEATURES supported\n"));
ha->bfeat = *(gdth_bfeat_str *)ha->pscratch;
ha->more_proc = TRUE;
}
} else {
TRACE2(("BOARD_INFO requires firmware >= 1.10/2.08\n"));
strcpy(ha->binfo.type_string, gdth_ctr_name(hanum));
}
TRACE2(("Controller name: %s\n",ha->binfo.type_string));
/* read more informations */
if (ha->more_proc) {
/* physical drives, channel addresses */
ioc = (gdth_iochan_str *)ha->pscratch;
ioc->hdr.version = 0xffffffff;
ioc->hdr.list_entries = MAXBUS;
ioc->hdr.first_chan = 0;
ioc->hdr.last_chan = MAXBUS-1;
ioc->hdr.list_offset = GDTOFFSOF(gdth_iochan_str, list[0]);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,IOCHAN_DESC,
INVALID_CHANNEL,sizeof(gdth_iochan_str))) {
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
ha->raw[bus_no].address = ioc->list[bus_no].address;
ha->raw[bus_no].local_no = ioc->list[bus_no].local_no;
}
} else {
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
ha->raw[bus_no].address = IO_CHANNEL;
ha->raw[bus_no].local_no = bus_no;
}
}
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
chn = (gdth_getch_str *)ha->pscratch;
chn->channel_no = ha->raw[bus_no].local_no;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
SCSI_CHAN_CNT | L_CTRL_PATTERN,
ha->raw[bus_no].address | INVALID_CHANNEL,
sizeof(gdth_getch_str))) {
ha->raw[bus_no].pdev_cnt = chn->drive_cnt;
TRACE2(("Channel %d: %d phys. drives\n",
bus_no,chn->drive_cnt));
}
if (ha->raw[bus_no].pdev_cnt > 0) {
drl = (gdth_drlist_str *)ha->pscratch;
drl->sc_no = ha->raw[bus_no].local_no;
drl->sc_cnt = ha->raw[bus_no].pdev_cnt;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
SCSI_DR_LIST | L_CTRL_PATTERN,
ha->raw[bus_no].address | INVALID_CHANNEL,
sizeof(gdth_drlist_str))) {
for (j = 0; j < ha->raw[bus_no].pdev_cnt; ++j)
ha->raw[bus_no].id_list[j] = drl->sc_list[j];
} else {
ha->raw[bus_no].pdev_cnt = 0;
}
}
}
/* logical drives */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_DRV_CNT,
INVALID_CHANNEL,sizeof(ulong32))) {
drv_cnt = *(ulong32 *)ha->pscratch;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_DRV_LIST,
INVALID_CHANNEL,drv_cnt * sizeof(ulong32))) {
for (j = 0; j < drv_cnt; ++j) {
drv_no = ((ulong32 *)ha->pscratch)[j];
if (drv_no < MAX_LDRIVES) {
ha->hdr[drv_no].is_logdrv = TRUE;
TRACE2(("Drive %d is log. drive\n",drv_no));
}
}
}
alst = (gdth_arcdl_str *)ha->pscratch;
alst->entries_avail = MAX_LDRIVES;
alst->first_entry = 0;
alst->list_offset = GDTOFFSOF(gdth_arcdl_str, list[0]);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
ARRAY_DRV_LIST2 | LA_CTRL_PATTERN,
INVALID_CHANNEL, sizeof(gdth_arcdl_str) +
(alst->entries_avail-1) * sizeof(gdth_alist_str))) {
for (j = 0; j < alst->entries_init; ++j) {
ha->hdr[j].is_arraydrv = alst->list[j].is_arrayd;
ha->hdr[j].is_master = alst->list[j].is_master;
ha->hdr[j].is_parity = alst->list[j].is_parity;
ha->hdr[j].is_hotfix = alst->list[j].is_hotfix;
ha->hdr[j].master_no = alst->list[j].cd_handle;
}
} else if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
ARRAY_DRV_LIST | LA_CTRL_PATTERN,
0, 35 * sizeof(gdth_alist_str))) {
for (j = 0; j < 35; ++j) {
alst2 = &((gdth_alist_str *)ha->pscratch)[j];
ha->hdr[j].is_arraydrv = alst2->is_arrayd;
ha->hdr[j].is_master = alst2->is_master;
ha->hdr[j].is_parity = alst2->is_parity;
ha->hdr[j].is_hotfix = alst2->is_hotfix;
ha->hdr[j].master_no = alst2->cd_handle;
}
}
}
}
/* initialize raw service */
ha->raw_feat = 0;
if (!force_dma32) {
ok = gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_X_INIT_RAW,0,0,0);
if (ok)
ha->raw_feat = GDT_64BIT;
}
if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC))
ok = gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_INIT,0,0,0);
if (!ok) {
printk("GDT-HA %d: Initialization error raw service (code %d)\n",
hanum, ha->status);
return 0;
}
TRACE2(("gdth_search_drives(): RAWSERVICE initialized\n"));
/* set/get features raw service (scatter/gather) */
if (gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_SET_FEAT,SCATTER_GATHER,
0,0)) {
TRACE2(("gdth_search_drives(): set features RAWSERVICE OK\n"));
if (gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_GET_FEAT,0,0,0)) {
TRACE2(("gdth_search_dr(): get feat RAWSERVICE %d\n",
ha->info));
ha->raw_feat |= (ushort)ha->info;
}
}
/* set/get features cache service (equal to raw service) */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_SET_FEAT,0,
SCATTER_GATHER,0)) {
TRACE2(("gdth_search_drives(): set features CACHESERVICE OK\n"));
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_GET_FEAT,0,0,0)) {
TRACE2(("gdth_search_dr(): get feat CACHESERV. %d\n",
ha->info));
ha->cache_feat |= (ushort)ha->info;
}
}
/* reserve drives for raw service */
if (reserve_mode != 0) {
gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_RESERVE_ALL,
reserve_mode == 1 ? 1 : 3, 0, 0);
TRACE2(("gdth_search_drives(): RESERVE_ALL code %d\n",
ha->status));
}
for (i = 0; i < MAX_RES_ARGS; i += 4) {
if (reserve_list[i] == hanum && reserve_list[i+1] < ha->bus_cnt &&
reserve_list[i+2] < ha->tid_cnt && reserve_list[i+3] < MAXLUN) {
TRACE2(("gdth_search_drives(): reserve ha %d bus %d id %d lun %d\n",
reserve_list[i], reserve_list[i+1],
reserve_list[i+2], reserve_list[i+3]));
if (!gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_RESERVE,0,
reserve_list[i+1], reserve_list[i+2] |
(reserve_list[i+3] << 8))) {
printk("GDT-HA %d: Error raw service (RESERVE, code %d)\n",
hanum, ha->status);
}
}
}
/* Determine OEM string using IOCTL */
oemstr = (gdth_oem_str_ioctl *)ha->pscratch;
oemstr->params.ctl_version = 0x01;
oemstr->params.buffer_size = sizeof(oemstr->text);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
CACHE_READ_OEM_STRING_RECORD,INVALID_CHANNEL,
sizeof(gdth_oem_str_ioctl))) {
TRACE2(("gdth_search_drives(): CACHE_READ_OEM_STRING_RECORD OK\n"));
printk("GDT-HA %d: Vendor: %s Name: %s\n",
hanum,oemstr->text.oem_company_name,ha->binfo.type_string);
/* Save the Host Drive inquiry data */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
strlcpy(ha->oem_name,oemstr->text.scsi_host_drive_inquiry_vendor_id,
sizeof(ha->oem_name));
#else
strncpy(ha->oem_name,oemstr->text.scsi_host_drive_inquiry_vendor_id,7);
ha->oem_name[7] = '\0';
#endif
} else {
/* Old method, based on PCI ID */
TRACE2(("gdth_search_drives(): CACHE_READ_OEM_STRING_RECORD failed\n"));
printk("GDT-HA %d: Name: %s\n",
hanum,ha->binfo.type_string);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
if (ha->oem_id == OEM_ID_INTEL)
strlcpy(ha->oem_name,"Intel ", sizeof(ha->oem_name));
else
strlcpy(ha->oem_name,"ICP ", sizeof(ha->oem_name));
#else
if (ha->oem_id == OEM_ID_INTEL)
strcpy(ha->oem_name,"Intel ");
else
strcpy(ha->oem_name,"ICP ");
#endif
}
/* scanning for host drives */
for (i = 0; i < cdev_cnt; ++i)
gdth_analyse_hdrive(hanum,i);
TRACE(("gdth_search_drives() OK\n"));
return 1;
}
static int gdth_analyse_hdrive(int hanum,ushort hdrive)
{
register gdth_ha_str *ha;
ulong32 drv_cyls;
int drv_hds, drv_secs;
TRACE(("gdth_analyse_hdrive() hanum %d drive %d\n",hanum,hdrive));
if (hdrive >= MAX_HDRIVES)
return 0;
ha = HADATA(gdth_ctr_tab[hanum]);
if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_INFO,hdrive,0,0))
return 0;
ha->hdr[hdrive].present = TRUE;
ha->hdr[hdrive].size = ha->info;
/* evaluate mapping (sectors per head, heads per cylinder) */
ha->hdr[hdrive].size &= ~SECS32;
if (ha->info2 == 0) {
gdth_eval_mapping(ha->hdr[hdrive].size,&drv_cyls,&drv_hds,&drv_secs);
} else {
drv_hds = ha->info2 & 0xff;
drv_secs = (ha->info2 >> 8) & 0xff;
drv_cyls = (ulong32)ha->hdr[hdrive].size / drv_hds / drv_secs;
}
ha->hdr[hdrive].heads = (unchar)drv_hds;
ha->hdr[hdrive].secs = (unchar)drv_secs;
/* round size */
ha->hdr[hdrive].size = drv_cyls * drv_hds * drv_secs;
if (ha->cache_feat & GDT_64BIT) {
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_X_INFO,hdrive,0,0)
&& ha->info2 != 0) {
ha->hdr[hdrive].size = ((ulong64)ha->info2 << 32) | ha->info;
}
}
TRACE2(("gdth_search_dr() cdr. %d size %d hds %d scs %d\n",
hdrive,ha->hdr[hdrive].size,drv_hds,drv_secs));
/* get informations about device */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_DEVTYPE,hdrive,0,0)) {
TRACE2(("gdth_search_dr() cache drive %d devtype %d\n",
hdrive,ha->info));
ha->hdr[hdrive].devtype = (ushort)ha->info;
}
/* cluster info */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_CLUST_INFO,hdrive,0,0)) {
TRACE2(("gdth_search_dr() cache drive %d cluster info %d\n",
hdrive,ha->info));
if (!shared_access)
ha->hdr[hdrive].cluster_type = (unchar)ha->info;
}
/* R/W attributes */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_RW_ATTRIBS,hdrive,0,0)) {
TRACE2(("gdth_search_dr() cache drive %d r/w attrib. %d\n",
hdrive,ha->info));
ha->hdr[hdrive].rw_attribs = (unchar)ha->info;
}
return 1;
}
/* command queueing/sending functions */
static void gdth_putq(int hanum,Scsi_Cmnd *scp,unchar priority)
{
register gdth_ha_str *ha;
register Scsi_Cmnd *pscp;
register Scsi_Cmnd *nscp;
ulong flags;
unchar b, t;
TRACE(("gdth_putq() priority %d\n",priority));
ha = HADATA(gdth_ctr_tab[hanum]);
spin_lock_irqsave(&ha->smp_lock, flags);
if (scp->done != gdth_scsi_done) {
scp->SCp.this_residual = (int)priority;
b = virt_ctr ? NUMDATA(scp->device->host)->busnum:scp->device->channel;
t = scp->device->id;
if (priority >= DEFAULT_PRI) {
if ((b != ha->virt_bus && ha->raw[BUS_L2P(ha,b)].lock) ||
(b==ha->virt_bus && t<MAX_HDRIVES && ha->hdr[t].lock)) {
TRACE2(("gdth_putq(): locked IO ->update_timeout()\n"));
scp->SCp.buffers_residual = gdth_update_timeout(hanum, scp, 0);
}
}
}
if (ha->req_first==NULL) {
ha->req_first = scp; /* queue was empty */
scp->SCp.ptr = NULL;
} else { /* queue not empty */
pscp = ha->req_first;
nscp = (Scsi_Cmnd *)pscp->SCp.ptr;
/* priority: 0-highest,..,0xff-lowest */
while (nscp && (unchar)nscp->SCp.this_residual <= priority) {
pscp = nscp;
nscp = (Scsi_Cmnd *)pscp->SCp.ptr;
}
pscp->SCp.ptr = (char *)scp;
scp->SCp.ptr = (char *)nscp;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
#ifdef GDTH_STATISTICS
flags = 0;
for (nscp=ha->req_first; nscp; nscp=(Scsi_Cmnd*)nscp->SCp.ptr)
++flags;
if (max_rq < flags) {
max_rq = flags;
TRACE3(("GDT: max_rq = %d\n",(ushort)max_rq));
}
#endif
}
static void gdth_next(int hanum)
{
register gdth_ha_str *ha;
register Scsi_Cmnd *pscp;
register Scsi_Cmnd *nscp;
unchar b, t, l, firsttime;
unchar this_cmd, next_cmd;
ulong flags = 0;
int cmd_index;
TRACE(("gdth_next() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
if (!gdth_polling)
spin_lock_irqsave(&ha->smp_lock, flags);
ha->cmd_cnt = ha->cmd_offs_dpmem = 0;
this_cmd = firsttime = TRUE;
next_cmd = gdth_polling ? FALSE:TRUE;
cmd_index = 0;
for (nscp = pscp = ha->req_first; nscp; nscp = (Scsi_Cmnd *)nscp->SCp.ptr) {
if (nscp != pscp && nscp != (Scsi_Cmnd *)pscp->SCp.ptr)
pscp = (Scsi_Cmnd *)pscp->SCp.ptr;
if (nscp->done != gdth_scsi_done) {
b = virt_ctr ?
NUMDATA(nscp->device->host)->busnum : nscp->device->channel;
t = nscp->device->id;
l = nscp->device->lun;
if (nscp->SCp.this_residual >= DEFAULT_PRI) {
if ((b != ha->virt_bus && ha->raw[BUS_L2P(ha,b)].lock) ||
(b == ha->virt_bus && t < MAX_HDRIVES && ha->hdr[t].lock))
continue;
}
} else
b = t = l = 0;
if (firsttime) {
if (gdth_test_busy(hanum)) { /* controller busy ? */
TRACE(("gdth_next() controller %d busy !\n",hanum));
if (!gdth_polling) {
spin_unlock_irqrestore(&ha->smp_lock, flags);
return;
}
while (gdth_test_busy(hanum))
gdth_delay(1);
}
firsttime = FALSE;
}
if (nscp->done != gdth_scsi_done) {
if (nscp->SCp.phase == -1) {
nscp->SCp.phase = CACHESERVICE; /* default: cache svc. */
if (nscp->cmnd[0] == TEST_UNIT_READY) {
TRACE2(("TEST_UNIT_READY Bus %d Id %d LUN %d\n",
b, t, l));
/* TEST_UNIT_READY -> set scan mode */
if ((ha->scan_mode & 0x0f) == 0) {
if (b == 0 && t == 0 && l == 0) {
ha->scan_mode |= 1;
TRACE2(("Scan mode: 0x%x\n", ha->scan_mode));
}
} else if ((ha->scan_mode & 0x0f) == 1) {
if (b == 0 && ((t == 0 && l == 1) ||
(t == 1 && l == 0))) {
nscp->SCp.sent_command = GDT_SCAN_START;
nscp->SCp.phase = ((ha->scan_mode & 0x10 ? 1:0) << 8)
| SCSIRAWSERVICE;
ha->scan_mode = 0x12;
TRACE2(("Scan mode: 0x%x (SCAN_START)\n",
ha->scan_mode));
} else {
ha->scan_mode &= 0x10;
TRACE2(("Scan mode: 0x%x\n", ha->scan_mode));
}
} else if (ha->scan_mode == 0x12) {
if (b == ha->bus_cnt && t == ha->tid_cnt-1) {
nscp->SCp.phase = SCSIRAWSERVICE;
nscp->SCp.sent_command = GDT_SCAN_END;
ha->scan_mode &= 0x10;
TRACE2(("Scan mode: 0x%x (SCAN_END)\n",
ha->scan_mode));
}
}
}
if (b == ha->virt_bus && nscp->cmnd[0] != INQUIRY &&
nscp->cmnd[0] != READ_CAPACITY && nscp->cmnd[0] != MODE_SENSE &&
(ha->hdr[t].cluster_type & CLUSTER_DRIVE)) {
/* always GDT_CLUST_INFO! */
nscp->SCp.sent_command = GDT_CLUST_INFO;
}
}
}
if (nscp->SCp.sent_command != -1) {
if ((nscp->SCp.phase & 0xff) == CACHESERVICE) {
if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
next_cmd = FALSE;
} else if ((nscp->SCp.phase & 0xff) == SCSIRAWSERVICE) {
if (!(cmd_index=gdth_fill_raw_cmd(hanum,nscp,BUS_L2P(ha,b))))
this_cmd = FALSE;
next_cmd = FALSE;
} else {
memset((char*)nscp->sense_buffer,0,16);
nscp->sense_buffer[0] = 0x70;
nscp->sense_buffer[2] = NOT_READY;
nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
}
} else if (nscp->done == gdth_scsi_done) {
if (!(cmd_index=gdth_special_cmd(hanum,nscp)))
this_cmd = FALSE;
next_cmd = FALSE;
} else if (b != ha->virt_bus) {
if (ha->raw[BUS_L2P(ha,b)].io_cnt[t] >= GDTH_MAX_RAW ||
!(cmd_index=gdth_fill_raw_cmd(hanum,nscp,BUS_L2P(ha,b))))
this_cmd = FALSE;
else
ha->raw[BUS_L2P(ha,b)].io_cnt[t]++;
} else if (t >= MAX_HDRIVES || !ha->hdr[t].present || l != 0) {
TRACE2(("Command 0x%x to bus %d id %d lun %d -> IGNORE\n",
nscp->cmnd[0], b, t, l));
nscp->result = DID_BAD_TARGET << 16;
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else {
switch (nscp->cmnd[0]) {
case TEST_UNIT_READY:
case INQUIRY:
case REQUEST_SENSE:
case READ_CAPACITY:
case VERIFY:
case START_STOP:
case MODE_SENSE:
case SERVICE_ACTION_IN:
TRACE(("cache cmd %x/%x/%x/%x/%x/%x\n",nscp->cmnd[0],
nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3],
nscp->cmnd[4],nscp->cmnd[5]));
if (ha->hdr[t].media_changed && nscp->cmnd[0] != INQUIRY) {
/* return UNIT_ATTENTION */
TRACE2(("cmd 0x%x target %d: UNIT_ATTENTION\n",
nscp->cmnd[0], t));
ha->hdr[t].media_changed = FALSE;
memset((char*)nscp->sense_buffer,0,16);
nscp->sense_buffer[0] = 0x70;
nscp->sense_buffer[2] = UNIT_ATTENTION;
nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else if (gdth_internal_cache_cmd(hanum,nscp))
nscp->scsi_done(nscp);
break;
case ALLOW_MEDIUM_REMOVAL:
TRACE(("cache cmd %x/%x/%x/%x/%x/%x\n",nscp->cmnd[0],
nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3],
nscp->cmnd[4],nscp->cmnd[5]));
if ( (nscp->cmnd[4]&1) && !(ha->hdr[t].devtype&1) ) {
TRACE(("Prevent r. nonremov. drive->do nothing\n"));
nscp->result = DID_OK << 16;
nscp->sense_buffer[0] = 0;
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else {
nscp->cmnd[3] = (ha->hdr[t].devtype&1) ? 1:0;
TRACE(("Prevent/allow r. %d rem. drive %d\n",
nscp->cmnd[4],nscp->cmnd[3]));
if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
}
break;
case RESERVE:
case RELEASE:
TRACE2(("cache cmd %s\n",nscp->cmnd[0] == RESERVE ?
"RESERVE" : "RELEASE"));
if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
break;
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case READ_16:
case WRITE_16:
if (ha->hdr[t].media_changed) {
/* return UNIT_ATTENTION */
TRACE2(("cmd 0x%x target %d: UNIT_ATTENTION\n",
nscp->cmnd[0], t));
ha->hdr[t].media_changed = FALSE;
memset((char*)nscp->sense_buffer,0,16);
nscp->sense_buffer[0] = 0x70;
nscp->sense_buffer[2] = UNIT_ATTENTION;
nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
break;
default:
TRACE2(("cache cmd %x/%x/%x/%x/%x/%x unknown\n",nscp->cmnd[0],
nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3],
nscp->cmnd[4],nscp->cmnd[5]));
printk("GDT-HA %d: Unknown SCSI command 0x%x to cache service !\n",
hanum, nscp->cmnd[0]);
nscp->result = DID_ABORT << 16;
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
break;
}
}
if (!this_cmd)
break;
if (nscp == ha->req_first)
ha->req_first = pscp = (Scsi_Cmnd *)nscp->SCp.ptr;
else
pscp->SCp.ptr = nscp->SCp.ptr;
if (!next_cmd)
break;
}
if (ha->cmd_cnt > 0) {
gdth_release_event(hanum);
}
if (!gdth_polling)
spin_unlock_irqrestore(&ha->smp_lock, flags);
if (gdth_polling && ha->cmd_cnt > 0) {
if (!gdth_wait(hanum,cmd_index,POLL_TIMEOUT))
printk("GDT-HA %d: Command %d timed out !\n",
hanum,cmd_index);
}
}
static void gdth_copy_internal_data(int hanum,Scsi_Cmnd *scp,
char *buffer,ushort count)
{
ushort cpcount,i;
ushort cpsum,cpnow;
struct scatterlist *sl;
gdth_ha_str *ha;
char *address;
cpcount = count<=(ushort)scp->request_bufflen ? count:(ushort)scp->request_bufflen;
ha = HADATA(gdth_ctr_tab[hanum]);
if (scp->use_sg) {
sl = (struct scatterlist *)scp->request_buffer;
for (i=0,cpsum=0; i<scp->use_sg; ++i,++sl) {
unsigned long flags;
cpnow = (ushort)sl->length;
TRACE(("copy_internal() now %d sum %d count %d %d\n",
cpnow,cpsum,cpcount,(ushort)scp->bufflen));
if (cpsum+cpnow > cpcount)
cpnow = cpcount - cpsum;
cpsum += cpnow;
if (!sl->page) {
printk("GDT-HA %d: invalid sc/gt element in gdth_copy_internal_data()\n",
hanum);
return;
}
local_irq_save(flags);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
address = kmap_atomic(sl->page, KM_BIO_SRC_IRQ) + sl->offset;
memcpy(address,buffer,cpnow);
flush_dcache_page(sl->page);
kunmap_atomic(address, KM_BIO_SRC_IRQ);
#else
address = kmap_atomic(sl->page, KM_BH_IRQ) + sl->offset;
memcpy(address,buffer,cpnow);
flush_dcache_page(sl->page);
kunmap_atomic(address, KM_BH_IRQ);
#endif
local_irq_restore(flags);
if (cpsum == cpcount)
break;
buffer += cpnow;
}
} else {
TRACE(("copy_internal() count %d\n",cpcount));
memcpy((char*)scp->request_buffer,buffer,cpcount);
}
}
static int gdth_internal_cache_cmd(int hanum,Scsi_Cmnd *scp)
{
register gdth_ha_str *ha;
unchar t;
gdth_inq_data inq;
gdth_rdcap_data rdc;
gdth_sense_data sd;
gdth_modep_data mpd;
ha = HADATA(gdth_ctr_tab[hanum]);
t = scp->device->id;
TRACE(("gdth_internal_cache_cmd() cmd 0x%x hdrive %d\n",
scp->cmnd[0],t));
scp->result = DID_OK << 16;
scp->sense_buffer[0] = 0;
switch (scp->cmnd[0]) {
case TEST_UNIT_READY:
case VERIFY:
case START_STOP:
TRACE2(("Test/Verify/Start hdrive %d\n",t));
break;
case INQUIRY:
TRACE2(("Inquiry hdrive %d devtype %d\n",
t,ha->hdr[t].devtype));
inq.type_qual = (ha->hdr[t].devtype&4) ? TYPE_ROM:TYPE_DISK;
/* you can here set all disks to removable, if you want to do
a flush using the ALLOW_MEDIUM_REMOVAL command */
inq.modif_rmb = 0x00;
if ((ha->hdr[t].devtype & 1) ||
(ha->hdr[t].cluster_type & CLUSTER_DRIVE))
inq.modif_rmb = 0x80;
inq.version = 2;
inq.resp_aenc = 2;
inq.add_length= 32;
strcpy(inq.vendor,ha->oem_name);
sprintf(inq.product,"Host Drive #%02d",t);
strcpy(inq.revision," ");
gdth_copy_internal_data(hanum,scp,(char*)&inq,sizeof(gdth_inq_data));
break;
case REQUEST_SENSE:
TRACE2(("Request sense hdrive %d\n",t));
sd.errorcode = 0x70;
sd.segno = 0x00;
sd.key = NO_SENSE;
sd.info = 0;
sd.add_length= 0;
gdth_copy_internal_data(hanum,scp,(char*)&sd,sizeof(gdth_sense_data));
break;
case MODE_SENSE:
TRACE2(("Mode sense hdrive %d\n",t));
memset((char*)&mpd,0,sizeof(gdth_modep_data));
mpd.hd.data_length = sizeof(gdth_modep_data);
mpd.hd.dev_par = (ha->hdr[t].devtype&2) ? 0x80:0;
mpd.hd.bd_length = sizeof(mpd.bd);
mpd.bd.block_length[0] = (SECTOR_SIZE & 0x00ff0000) >> 16;
mpd.bd.block_length[1] = (SECTOR_SIZE & 0x0000ff00) >> 8;
mpd.bd.block_length[2] = (SECTOR_SIZE & 0x000000ff);
gdth_copy_internal_data(hanum,scp,(char*)&mpd,sizeof(gdth_modep_data));
break;
case READ_CAPACITY:
TRACE2(("Read capacity hdrive %d\n",t));
if (ha->hdr[t].size > (ulong64)0xffffffff)
rdc.last_block_no = 0xffffffff;
else
rdc.last_block_no = cpu_to_be32(ha->hdr[t].size-1);
rdc.block_length = cpu_to_be32(SECTOR_SIZE);
gdth_copy_internal_data(hanum,scp,(char*)&rdc,sizeof(gdth_rdcap_data));
break;
case SERVICE_ACTION_IN:
if ((scp->cmnd[1] & 0x1f) == SAI_READ_CAPACITY_16 &&
(ha->cache_feat & GDT_64BIT)) {
gdth_rdcap16_data rdc16;
TRACE2(("Read capacity (16) hdrive %d\n",t));
rdc16.last_block_no = cpu_to_be64(ha->hdr[t].size-1);
rdc16.block_length = cpu_to_be32(SECTOR_SIZE);
gdth_copy_internal_data(hanum,scp,(char*)&rdc16,sizeof(gdth_rdcap16_data));
} else {
scp->result = DID_ABORT << 16;
}
break;
default:
TRACE2(("Internal cache cmd 0x%x unknown\n",scp->cmnd[0]));
break;
}
if (!scp->SCp.have_data_in)
scp->SCp.have_data_in++;
else
return 1;
return 0;
}
static int gdth_fill_cache_cmd(int hanum,Scsi_Cmnd *scp,ushort hdrive)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmdp;
struct scatterlist *sl;
ulong32 cnt, blockcnt;
ulong64 no, blockno;
dma_addr_t phys_addr;
int i, cmd_index, read_write, sgcnt, mode64;
struct page *page;
ulong offset;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp = ha->pccb;
TRACE(("gdth_fill_cache_cmd() cmd 0x%x cmdsize %d hdrive %d\n",
scp->cmnd[0],scp->cmd_len,hdrive));
if (ha->type==GDT_EISA && ha->cmd_cnt>0)
return 0;
mode64 = (ha->cache_feat & GDT_64BIT) ? TRUE : FALSE;
/* test for READ_16, WRITE_16 if !mode64 ? ---
not required, should not occur due to error return on
READ_CAPACITY_16 */
cmdp->Service = CACHESERVICE;
cmdp->RequestBuffer = scp;
/* search free command index */
if (!(cmd_index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
/* if it's the first command, set command semaphore */
if (ha->cmd_cnt == 0)
gdth_set_sema0(hanum);
/* fill command */
read_write = 0;
if (scp->SCp.sent_command != -1)
cmdp->OpCode = scp->SCp.sent_command; /* special cache cmd. */
else if (scp->cmnd[0] == RESERVE)
cmdp->OpCode = GDT_RESERVE_DRV;
else if (scp->cmnd[0] == RELEASE)
cmdp->OpCode = GDT_RELEASE_DRV;
else if (scp->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
if (scp->cmnd[4] & 1) /* prevent ? */
cmdp->OpCode = GDT_MOUNT;
else if (scp->cmnd[3] & 1) /* removable drive ? */
cmdp->OpCode = GDT_UNMOUNT;
else
cmdp->OpCode = GDT_FLUSH;
} else if (scp->cmnd[0] == WRITE_6 || scp->cmnd[0] == WRITE_10 ||
scp->cmnd[0] == WRITE_12 || scp->cmnd[0] == WRITE_16
) {
read_write = 1;
if (gdth_write_through || ((ha->hdr[hdrive].rw_attribs & 1) &&
(ha->cache_feat & GDT_WR_THROUGH)))
cmdp->OpCode = GDT_WRITE_THR;
else
cmdp->OpCode = GDT_WRITE;
} else {
read_write = 2;
cmdp->OpCode = GDT_READ;
}
cmdp->BoardNode = LOCALBOARD;
if (mode64) {
cmdp->u.cache64.DeviceNo = hdrive;
cmdp->u.cache64.BlockNo = 1;
cmdp->u.cache64.sg_canz = 0;
} else {
cmdp->u.cache.DeviceNo = hdrive;
cmdp->u.cache.BlockNo = 1;
cmdp->u.cache.sg_canz = 0;
}
if (read_write) {
if (scp->cmd_len == 16) {
memcpy(&no, &scp->cmnd[2], sizeof(ulong64));
blockno = be64_to_cpu(no);
memcpy(&cnt, &scp->cmnd[10], sizeof(ulong32));
blockcnt = be32_to_cpu(cnt);
} else if (scp->cmd_len == 10) {
memcpy(&no, &scp->cmnd[2], sizeof(ulong32));
blockno = be32_to_cpu(no);
memcpy(&cnt, &scp->cmnd[7], sizeof(ushort));
blockcnt = be16_to_cpu(cnt);
} else {
memcpy(&no, &scp->cmnd[0], sizeof(ulong32));
blockno = be32_to_cpu(no) & 0x001fffffUL;
blockcnt= scp->cmnd[4]==0 ? 0x100 : scp->cmnd[4];
}
if (mode64) {
cmdp->u.cache64.BlockNo = blockno;
cmdp->u.cache64.BlockCnt = blockcnt;
} else {
cmdp->u.cache.BlockNo = (ulong32)blockno;
cmdp->u.cache.BlockCnt = blockcnt;
}
if (scp->use_sg) {
sl = (struct scatterlist *)scp->request_buffer;
sgcnt = scp->use_sg;
scp->SCp.Status = GDTH_MAP_SG;
scp->SCp.Message = (read_write == 1 ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
sgcnt = pci_map_sg(ha->pdev,sl,scp->use_sg,scp->SCp.Message);
if (mode64) {
cmdp->u.cache64.DestAddr= (ulong64)-1;
cmdp->u.cache64.sg_canz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.cache64.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
if (cmdp->u.cache64.sg_lst[i].sg_ptr > (ulong64)0xffffffff)
ha->dma64_cnt++;
else
ha->dma32_cnt++;
#endif
cmdp->u.cache64.sg_lst[i].sg_len = sg_dma_len(sl);
}
} else {
cmdp->u.cache.DestAddr= 0xffffffff;
cmdp->u.cache.sg_canz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.cache.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
ha->dma32_cnt++;
#endif
cmdp->u.cache.sg_lst[i].sg_len = sg_dma_len(sl);
}
}
#ifdef GDTH_STATISTICS
if (max_sg < (ulong32)sgcnt) {
max_sg = (ulong32)sgcnt;
TRACE3(("GDT: max_sg = %d\n",max_sg));
}
#endif
} else if (scp->request_bufflen) {
scp->SCp.Status = GDTH_MAP_SINGLE;
scp->SCp.Message = (read_write == 1 ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
page = virt_to_page(scp->request_buffer);
offset = (ulong)scp->request_buffer & ~PAGE_MASK;
phys_addr = pci_map_page(ha->pdev,page,offset,
scp->request_bufflen,scp->SCp.Message);
scp->SCp.dma_handle = phys_addr;
if (mode64) {
if (ha->cache_feat & SCATTER_GATHER) {
cmdp->u.cache64.DestAddr = (ulong64)-1;
cmdp->u.cache64.sg_canz = 1;
cmdp->u.cache64.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.cache64.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.cache64.sg_lst[1].sg_len = 0;
} else {
cmdp->u.cache64.DestAddr = phys_addr;
cmdp->u.cache64.sg_canz= 0;
}
} else {
if (ha->cache_feat & SCATTER_GATHER) {
cmdp->u.cache.DestAddr = 0xffffffff;
cmdp->u.cache.sg_canz = 1;
cmdp->u.cache.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.cache.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.cache.sg_lst[1].sg_len = 0;
} else {
cmdp->u.cache.DestAddr = phys_addr;
cmdp->u.cache.sg_canz= 0;
}
}
}
}
/* evaluate command size, check space */
if (mode64) {
TRACE(("cache cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.cache64.DestAddr,cmdp->u.cache64.sg_canz,
cmdp->u.cache64.sg_lst[0].sg_ptr,
cmdp->u.cache64.sg_lst[0].sg_len));
TRACE(("cache cmd: cmd %d blockno. %d, blockcnt %d\n",
cmdp->OpCode,cmdp->u.cache64.BlockNo,cmdp->u.cache64.BlockCnt));
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache64.sg_lst) +
(ushort)cmdp->u.cache64.sg_canz * sizeof(gdth_sg64_str);
} else {
TRACE(("cache cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.cache.DestAddr,cmdp->u.cache.sg_canz,
cmdp->u.cache.sg_lst[0].sg_ptr,
cmdp->u.cache.sg_lst[0].sg_len));
TRACE(("cache cmd: cmd %d blockno. %d, blockcnt %d\n",
cmdp->OpCode,cmdp->u.cache.BlockNo,cmdp->u.cache.BlockCnt));
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache.sg_lst) +
(ushort)cmdp->u.cache.sg_canz * sizeof(gdth_sg_str);
}
if (ha->cmd_len & 3)
ha->cmd_len += (4 - (ha->cmd_len & 3));
if (ha->cmd_cnt > 0) {
if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) >
ha->ic_all_size) {
TRACE2(("gdth_fill_cache() DPMEM overflow\n"));
ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND;
return 0;
}
}
/* copy command */
gdth_copy_command(hanum);
return cmd_index;
}
static int gdth_fill_raw_cmd(int hanum,Scsi_Cmnd *scp,unchar b)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmdp;
struct scatterlist *sl;
ushort i;
dma_addr_t phys_addr, sense_paddr;
int cmd_index, sgcnt, mode64;
unchar t,l;
struct page *page;
ulong offset;
ha = HADATA(gdth_ctr_tab[hanum]);
t = scp->device->id;
l = scp->device->lun;
cmdp = ha->pccb;
TRACE(("gdth_fill_raw_cmd() cmd 0x%x bus %d ID %d LUN %d\n",
scp->cmnd[0],b,t,l));
if (ha->type==GDT_EISA && ha->cmd_cnt>0)
return 0;
mode64 = (ha->raw_feat & GDT_64BIT) ? TRUE : FALSE;
cmdp->Service = SCSIRAWSERVICE;
cmdp->RequestBuffer = scp;
/* search free command index */
if (!(cmd_index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
/* if it's the first command, set command semaphore */
if (ha->cmd_cnt == 0)
gdth_set_sema0(hanum);
/* fill command */
if (scp->SCp.sent_command != -1) {
cmdp->OpCode = scp->SCp.sent_command; /* special raw cmd. */
cmdp->BoardNode = LOCALBOARD;
if (mode64) {
cmdp->u.raw64.direction = (scp->SCp.phase >> 8);
TRACE2(("special raw cmd 0x%x param 0x%x\n",
cmdp->OpCode, cmdp->u.raw64.direction));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst);
} else {
cmdp->u.raw.direction = (scp->SCp.phase >> 8);
TRACE2(("special raw cmd 0x%x param 0x%x\n",
cmdp->OpCode, cmdp->u.raw.direction));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst);
}
} else {
page = virt_to_page(scp->sense_buffer);
offset = (ulong)scp->sense_buffer & ~PAGE_MASK;
sense_paddr = pci_map_page(ha->pdev,page,offset,
16,PCI_DMA_FROMDEVICE);
*(ulong32 *)&scp->SCp.buffer = (ulong32)sense_paddr;
/* high part, if 64bit */
*(ulong32 *)&scp->host_scribble = (ulong32)((ulong64)sense_paddr >> 32);
cmdp->OpCode = GDT_WRITE; /* always */
cmdp->BoardNode = LOCALBOARD;
if (mode64) {
cmdp->u.raw64.reserved = 0;
cmdp->u.raw64.mdisc_time = 0;
cmdp->u.raw64.mcon_time = 0;
cmdp->u.raw64.clen = scp->cmd_len;
cmdp->u.raw64.target = t;
cmdp->u.raw64.lun = l;
cmdp->u.raw64.bus = b;
cmdp->u.raw64.priority = 0;
cmdp->u.raw64.sdlen = scp->request_bufflen;
cmdp->u.raw64.sense_len = 16;
cmdp->u.raw64.sense_data = sense_paddr;
cmdp->u.raw64.direction =
gdth_direction_tab[scp->cmnd[0]]==DOU ? GDTH_DATA_OUT:GDTH_DATA_IN;
memcpy(cmdp->u.raw64.cmd,scp->cmnd,16);
cmdp->u.raw64.sg_ranz = 0;
} else {
cmdp->u.raw.reserved = 0;
cmdp->u.raw.mdisc_time = 0;
cmdp->u.raw.mcon_time = 0;
cmdp->u.raw.clen = scp->cmd_len;
cmdp->u.raw.target = t;
cmdp->u.raw.lun = l;
cmdp->u.raw.bus = b;
cmdp->u.raw.priority = 0;
cmdp->u.raw.link_p = 0;
cmdp->u.raw.sdlen = scp->request_bufflen;
cmdp->u.raw.sense_len = 16;
cmdp->u.raw.sense_data = sense_paddr;
cmdp->u.raw.direction =
gdth_direction_tab[scp->cmnd[0]]==DOU ? GDTH_DATA_OUT:GDTH_DATA_IN;
memcpy(cmdp->u.raw.cmd,scp->cmnd,12);
cmdp->u.raw.sg_ranz = 0;
}
if (scp->use_sg) {
sl = (struct scatterlist *)scp->request_buffer;
sgcnt = scp->use_sg;
scp->SCp.Status = GDTH_MAP_SG;
scp->SCp.Message = PCI_DMA_BIDIRECTIONAL;
sgcnt = pci_map_sg(ha->pdev,sl,scp->use_sg,scp->SCp.Message);
if (mode64) {
cmdp->u.raw64.sdata = (ulong64)-1;
cmdp->u.raw64.sg_ranz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.raw64.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
if (cmdp->u.raw64.sg_lst[i].sg_ptr > (ulong64)0xffffffff)
ha->dma64_cnt++;
else
ha->dma32_cnt++;
#endif
cmdp->u.raw64.sg_lst[i].sg_len = sg_dma_len(sl);
}
} else {
cmdp->u.raw.sdata = 0xffffffff;
cmdp->u.raw.sg_ranz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.raw.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
ha->dma32_cnt++;
#endif
cmdp->u.raw.sg_lst[i].sg_len = sg_dma_len(sl);
}
}
#ifdef GDTH_STATISTICS
if (max_sg < sgcnt) {
max_sg = sgcnt;
TRACE3(("GDT: max_sg = %d\n",sgcnt));
}
#endif
} else if (scp->request_bufflen) {
scp->SCp.Status = GDTH_MAP_SINGLE;
scp->SCp.Message = PCI_DMA_BIDIRECTIONAL;
page = virt_to_page(scp->request_buffer);
offset = (ulong)scp->request_buffer & ~PAGE_MASK;
phys_addr = pci_map_page(ha->pdev,page,offset,
scp->request_bufflen,scp->SCp.Message);
scp->SCp.dma_handle = phys_addr;
if (mode64) {
if (ha->raw_feat & SCATTER_GATHER) {
cmdp->u.raw64.sdata = (ulong64)-1;
cmdp->u.raw64.sg_ranz= 1;
cmdp->u.raw64.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.raw64.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.raw64.sg_lst[1].sg_len = 0;
} else {
cmdp->u.raw64.sdata = phys_addr;
cmdp->u.raw64.sg_ranz= 0;
}
} else {
if (ha->raw_feat & SCATTER_GATHER) {
cmdp->u.raw.sdata = 0xffffffff;
cmdp->u.raw.sg_ranz= 1;
cmdp->u.raw.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.raw.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.raw.sg_lst[1].sg_len = 0;
} else {
cmdp->u.raw.sdata = phys_addr;
cmdp->u.raw.sg_ranz= 0;
}
}
}
if (mode64) {
TRACE(("raw cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.raw64.sdata,cmdp->u.raw64.sg_ranz,
cmdp->u.raw64.sg_lst[0].sg_ptr,
cmdp->u.raw64.sg_lst[0].sg_len));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst) +
(ushort)cmdp->u.raw64.sg_ranz * sizeof(gdth_sg64_str);
} else {
TRACE(("raw cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.raw.sdata,cmdp->u.raw.sg_ranz,
cmdp->u.raw.sg_lst[0].sg_ptr,
cmdp->u.raw.sg_lst[0].sg_len));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst) +
(ushort)cmdp->u.raw.sg_ranz * sizeof(gdth_sg_str);
}
}
/* check space */
if (ha->cmd_len & 3)
ha->cmd_len += (4 - (ha->cmd_len & 3));
if (ha->cmd_cnt > 0) {
if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) >
ha->ic_all_size) {
TRACE2(("gdth_fill_raw() DPMEM overflow\n"));
ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND;
return 0;
}
}
/* copy command */
gdth_copy_command(hanum);
return cmd_index;
}
static int gdth_special_cmd(int hanum,Scsi_Cmnd *scp)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmdp;
int cmd_index;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp= ha->pccb;
TRACE2(("gdth_special_cmd(): "));
if (ha->type==GDT_EISA && ha->cmd_cnt>0)
return 0;
memcpy( cmdp, scp->request_buffer, sizeof(gdth_cmd_str));
cmdp->RequestBuffer = scp;
/* search free command index */
if (!(cmd_index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
/* if it's the first command, set command semaphore */
if (ha->cmd_cnt == 0)
gdth_set_sema0(hanum);
/* evaluate command size, check space */
if (cmdp->OpCode == GDT_IOCTL) {
TRACE2(("IOCTL\n"));
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.ioctl.p_param) + sizeof(ulong64);
} else if (cmdp->Service == CACHESERVICE) {
TRACE2(("cache command %d\n",cmdp->OpCode));
if (ha->cache_feat & GDT_64BIT)
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.cache64.sg_lst) + sizeof(gdth_sg64_str);
else
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.cache.sg_lst) + sizeof(gdth_sg_str);
} else if (cmdp->Service == SCSIRAWSERVICE) {
TRACE2(("raw command %d\n",cmdp->OpCode));
if (ha->raw_feat & GDT_64BIT)
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst) + sizeof(gdth_sg64_str);
else
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst) + sizeof(gdth_sg_str);
}
if (ha->cmd_len & 3)
ha->cmd_len += (4 - (ha->cmd_len & 3));
if (ha->cmd_cnt > 0) {
if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) >
ha->ic_all_size) {
TRACE2(("gdth_special_cmd() DPMEM overflow\n"));
ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND;
return 0;
}
}
/* copy command */
gdth_copy_command(hanum);
return cmd_index;
}
/* Controller event handling functions */
static gdth_evt_str *gdth_store_event(gdth_ha_str *ha, ushort source,
ushort idx, gdth_evt_data *evt)
{
gdth_evt_str *e;
struct timeval tv;
/* no GDTH_LOCK_HA() ! */
TRACE2(("gdth_store_event() source %d idx %d\n", source, idx));
if (source == 0) /* no source -> no event */
return NULL;
if (ebuffer[elastidx].event_source == source &&
ebuffer[elastidx].event_idx == idx &&
((evt->size != 0 && ebuffer[elastidx].event_data.size != 0 &&
!memcmp((char *)&ebuffer[elastidx].event_data.eu,
(char *)&evt->eu, evt->size)) ||
(evt->size == 0 && ebuffer[elastidx].event_data.size == 0 &&
!strcmp((char *)&ebuffer[elastidx].event_data.event_string,
(char *)&evt->event_string)))) {
e = &ebuffer[elastidx];
do_gettimeofday(&tv);
e->last_stamp = tv.tv_sec;
++e->same_count;
} else {
if (ebuffer[elastidx].event_source != 0) { /* entry not free ? */
++elastidx;
if (elastidx == MAX_EVENTS)
elastidx = 0;
if (elastidx == eoldidx) { /* reached mark ? */
++eoldidx;
if (eoldidx == MAX_EVENTS)
eoldidx = 0;
}
}
e = &ebuffer[elastidx];
e->event_source = source;
e->event_idx = idx;
do_gettimeofday(&tv);
e->first_stamp = e->last_stamp = tv.tv_sec;
e->same_count = 1;
e->event_data = *evt;
e->application = 0;
}
return e;
}
static int gdth_read_event(gdth_ha_str *ha, int handle, gdth_evt_str *estr)
{
gdth_evt_str *e;
int eindex;
ulong flags;
TRACE2(("gdth_read_event() handle %d\n", handle));
spin_lock_irqsave(&ha->smp_lock, flags);
if (handle == -1)
eindex = eoldidx;
else
eindex = handle;
estr->event_source = 0;
if (eindex >= MAX_EVENTS) {
spin_unlock_irqrestore(&ha->smp_lock, flags);
return eindex;
}
e = &ebuffer[eindex];
if (e->event_source != 0) {
if (eindex != elastidx) {
if (++eindex == MAX_EVENTS)
eindex = 0;
} else {
eindex = -1;
}
memcpy(estr, e, sizeof(gdth_evt_str));
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
return eindex;
}
static void gdth_readapp_event(gdth_ha_str *ha,
unchar application, gdth_evt_str *estr)
{
gdth_evt_str *e;
int eindex;
ulong flags;
unchar found = FALSE;
TRACE2(("gdth_readapp_event() app. %d\n", application));
spin_lock_irqsave(&ha->smp_lock, flags);
eindex = eoldidx;
for (;;) {
e = &ebuffer[eindex];
if (e->event_source == 0)
break;
if ((e->application & application) == 0) {
e->application |= application;
found = TRUE;
break;
}
if (eindex == elastidx)
break;
if (++eindex == MAX_EVENTS)
eindex = 0;
}
if (found)
memcpy(estr, e, sizeof(gdth_evt_str));
else
estr->event_source = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
static void gdth_clear_events(void)
{
TRACE(("gdth_clear_events()"));
eoldidx = elastidx = 0;
ebuffer[0].event_source = 0;
}
/* SCSI interface functions */
static irqreturn_t gdth_interrupt(int irq,void *dev_id)
{
gdth_ha_str *ha2 = (gdth_ha_str *)dev_id;
register gdth_ha_str *ha;
gdt6m_dpram_str __iomem *dp6m_ptr = NULL;
gdt6_dpram_str __iomem *dp6_ptr;
gdt2_dpram_str __iomem *dp2_ptr;
Scsi_Cmnd *scp;
int hanum, rval, i;
unchar IStatus;
ushort Service;
ulong flags = 0;
#ifdef INT_COAL
int coalesced = FALSE;
int next = FALSE;
gdth_coal_status *pcs = NULL;
int act_int_coal = 0;
#endif
TRACE(("gdth_interrupt() IRQ %d\n",irq));
/* if polling and not from gdth_wait() -> return */
if (gdth_polling) {
if (!gdth_from_wait) {
return IRQ_HANDLED;
}
}
if (!gdth_polling)
spin_lock_irqsave(&ha2->smp_lock, flags);
wait_index = 0;
/* search controller */
if ((hanum = gdth_get_status(&IStatus,irq)) == -1) {
/* spurious interrupt */
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
ha = HADATA(gdth_ctr_tab[hanum]);
#ifdef GDTH_STATISTICS
++act_ints;
#endif
#ifdef INT_COAL
/* See if the fw is returning coalesced status */
if (IStatus == COALINDEX) {
/* Coalesced status. Setup the initial status
buffer pointer and flags */
pcs = ha->coal_stat;
coalesced = TRUE;
next = TRUE;
}
do {
if (coalesced) {
/* For coalesced requests all status
information is found in the status buffer */
IStatus = (unchar)(pcs->status & 0xff);
}
#endif
if (ha->type == GDT_EISA) {
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = inw(ha->bmic + MAILBOXREG+8);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
ha->info = inl(ha->bmic + MAILBOXREG+12);
ha->service = inw(ha->bmic + MAILBOXREG+10);
ha->info2 = inl(ha->bmic + MAILBOXREG+4);
outb(0xff, ha->bmic + EDOORREG); /* acknowledge interrupt */
outb(0x00, ha->bmic + SEMA1REG); /* reset status semaphore */
} else if (ha->type == GDT_ISA) {
dp2_ptr = ha->brd;
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = gdth_readw(&dp2_ptr->u.ic.Status);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
ha->info = gdth_readl(&dp2_ptr->u.ic.Info[0]);
ha->service = gdth_readw(&dp2_ptr->u.ic.Service);
ha->info2 = gdth_readl(&dp2_ptr->u.ic.Info[1]);
gdth_writeb(0xff, &dp2_ptr->io.irqdel); /* acknowledge interrupt */
gdth_writeb(0, &dp2_ptr->u.ic.Cmd_Index);/* reset command index */
gdth_writeb(0, &dp2_ptr->io.Sema1); /* reset status semaphore */
} else if (ha->type == GDT_PCI) {
dp6_ptr = ha->brd;
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = gdth_readw(&dp6_ptr->u.ic.Status);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
ha->info = gdth_readl(&dp6_ptr->u.ic.Info[0]);
ha->service = gdth_readw(&dp6_ptr->u.ic.Service);
ha->info2 = gdth_readl(&dp6_ptr->u.ic.Info[1]);
gdth_writeb(0xff, &dp6_ptr->io.irqdel); /* acknowledge interrupt */
gdth_writeb(0, &dp6_ptr->u.ic.Cmd_Index);/* reset command index */
gdth_writeb(0, &dp6_ptr->io.Sema1); /* reset status semaphore */
} else if (ha->type == GDT_PCINEW) {
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = inw(PTR2USHORT(&ha->plx->status));
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else
ha->status = S_OK;
ha->info = inl(PTR2USHORT(&ha->plx->info[0]));
ha->service = inw(PTR2USHORT(&ha->plx->service));
ha->info2 = inl(PTR2USHORT(&ha->plx->info[1]));
outb(0xff, PTR2USHORT(&ha->plx->edoor_reg));
outb(0x00, PTR2USHORT(&ha->plx->sema1_reg));
} else if (ha->type == GDT_PCIMPR) {
dp6m_ptr = ha->brd;
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
#ifdef INT_COAL
if (coalesced)
ha->status = pcs->ext_status & 0xffff;
else
#endif
ha->status = gdth_readw(&dp6m_ptr->i960r.status);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
#ifdef INT_COAL
/* get information */
if (coalesced) {
ha->info = pcs->info0;
ha->info2 = pcs->info1;
ha->service = (pcs->ext_status >> 16) & 0xffff;
} else
#endif
{
ha->info = gdth_readl(&dp6m_ptr->i960r.info[0]);
ha->service = gdth_readw(&dp6m_ptr->i960r.service);
ha->info2 = gdth_readl(&dp6m_ptr->i960r.info[1]);
}
/* event string */
if (IStatus == ASYNCINDEX) {
if (ha->service != SCREENSERVICE &&
(ha->fw_vers & 0xff) >= 0x1a) {
ha->dvr.severity = gdth_readb
(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.severity);
for (i = 0; i < 256; ++i) {
ha->dvr.event_string[i] = gdth_readb
(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.evt_str[i]);
if (ha->dvr.event_string[i] == 0)
break;
}
}
}
#ifdef INT_COAL
/* Make sure that non coalesced interrupts get cleared
before being handled by gdth_async_event/gdth_sync_event */
if (!coalesced)
#endif
{
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(0, &dp6m_ptr->i960r.sema1_reg);
}
} else {
TRACE2(("gdth_interrupt() unknown controller type\n"));
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
TRACE(("gdth_interrupt() index %d stat %d info %d\n",
IStatus,ha->status,ha->info));
if (gdth_from_wait) {
wait_hanum = hanum;
wait_index = (int)IStatus;
}
if (IStatus == ASYNCINDEX) {
TRACE2(("gdth_interrupt() async. event\n"));
gdth_async_event(hanum);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
gdth_next(hanum);
return IRQ_HANDLED;
}
if (IStatus == SPEZINDEX) {
TRACE2(("Service unknown or not initialized !\n"));
ha->dvr.size = sizeof(ha->dvr.eu.driver);
ha->dvr.eu.driver.ionode = hanum;
gdth_store_event(ha, ES_DRIVER, 4, &ha->dvr);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
scp = ha->cmd_tab[IStatus-2].cmnd;
Service = ha->cmd_tab[IStatus-2].service;
ha->cmd_tab[IStatus-2].cmnd = UNUSED_CMND;
if (scp == UNUSED_CMND) {
TRACE2(("gdth_interrupt() index to unused command (%d)\n",IStatus));
ha->dvr.size = sizeof(ha->dvr.eu.driver);
ha->dvr.eu.driver.ionode = hanum;
ha->dvr.eu.driver.index = IStatus;
gdth_store_event(ha, ES_DRIVER, 1, &ha->dvr);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
if (scp == INTERNAL_CMND) {
TRACE(("gdth_interrupt() answer to internal command\n"));
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
TRACE(("gdth_interrupt() sync. status\n"));
rval = gdth_sync_event(hanum,Service,IStatus,scp);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
if (rval == 2) {
gdth_putq(hanum,scp,scp->SCp.this_residual);
} else if (rval == 1) {
scp->scsi_done(scp);
}
#ifdef INT_COAL
if (coalesced) {
/* go to the next status in the status buffer */
++pcs;
#ifdef GDTH_STATISTICS
++act_int_coal;
if (act_int_coal > max_int_coal) {
max_int_coal = act_int_coal;
printk("GDT: max_int_coal = %d\n",(ushort)max_int_coal);
}
#endif
/* see if there is another status */
if (pcs->status == 0)
/* Stop the coalesce loop */
next = FALSE;
}
} while (next);
/* coalescing only for new GDT_PCIMPR controllers available */
if (ha->type == GDT_PCIMPR && coalesced) {
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(0, &dp6m_ptr->i960r.sema1_reg);
}
#endif
gdth_next(hanum);
return IRQ_HANDLED;
}
static int gdth_sync_event(int hanum,int service,unchar index,Scsi_Cmnd *scp)
{
register gdth_ha_str *ha;
gdth_msg_str *msg;
gdth_cmd_str *cmdp;
unchar b, t;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp = ha->pccb;
TRACE(("gdth_sync_event() serv %d status %d\n",
service,ha->status));
if (service == SCREENSERVICE) {
msg = ha->pmsg;
TRACE(("len: %d, answer: %d, ext: %d, alen: %d\n",
msg->msg_len,msg->msg_answer,msg->msg_ext,msg->msg_alen));
if (msg->msg_len > MSGLEN+1)
msg->msg_len = MSGLEN+1;
if (msg->msg_len)
if (!(msg->msg_answer && msg->msg_ext)) {
msg->msg_text[msg->msg_len] = '\0';
printk("%s",msg->msg_text);
}
if (msg->msg_ext && !msg->msg_answer) {
while (gdth_test_busy(hanum))
gdth_delay(0);
cmdp->Service = SCREENSERVICE;
cmdp->RequestBuffer = SCREEN_CMND;
gdth_get_cmd_index(hanum);
gdth_set_sema0(hanum);
cmdp->OpCode = GDT_READ;
cmdp->BoardNode = LOCALBOARD;
cmdp->u.screen.reserved = 0;
cmdp->u.screen.su.msg.msg_handle= msg->msg_handle;
cmdp->u.screen.su.msg.msg_addr = ha->msg_phys;
ha->cmd_offs_dpmem = 0;
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr)
+ sizeof(ulong64);
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
gdth_release_event(hanum);
return 0;
}
if (msg->msg_answer && msg->msg_alen) {
/* default answers (getchar() not possible) */
if (msg->msg_alen == 1) {
msg->msg_alen = 0;
msg->msg_len = 1;
msg->msg_text[0] = 0;
} else {
msg->msg_alen -= 2;
msg->msg_len = 2;
msg->msg_text[0] = 1;
msg->msg_text[1] = 0;
}
msg->msg_ext = 0;
msg->msg_answer = 0;
while (gdth_test_busy(hanum))
gdth_delay(0);
cmdp->Service = SCREENSERVICE;
cmdp->RequestBuffer = SCREEN_CMND;
gdth_get_cmd_index(hanum);
gdth_set_sema0(hanum);
cmdp->OpCode = GDT_WRITE;
cmdp->BoardNode = LOCALBOARD;
cmdp->u.screen.reserved = 0;
cmdp->u.screen.su.msg.msg_handle= msg->msg_handle;
cmdp->u.screen.su.msg.msg_addr = ha->msg_phys;
ha->cmd_offs_dpmem = 0;
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr)
+ sizeof(ulong64);
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
gdth_release_event(hanum);
return 0;
}
printk("\n");
} else {
b = virt_ctr ? NUMDATA(scp->device->host)->busnum : scp->device->channel;
t = scp->device->id;
if (scp->SCp.sent_command == -1 && b != ha->virt_bus) {
ha->raw[BUS_L2P(ha,b)].io_cnt[t]--;
}
/* cache or raw service */
if (ha->status == S_BSY) {
TRACE2(("Controller busy -> retry !\n"));
if (scp->SCp.sent_command == GDT_MOUNT)
scp->SCp.sent_command = GDT_CLUST_INFO;
/* retry */
return 2;
}
if (scp->SCp.Status == GDTH_MAP_SG)
pci_unmap_sg(ha->pdev,scp->request_buffer,
scp->use_sg,scp->SCp.Message);
else if (scp->SCp.Status == GDTH_MAP_SINGLE)
pci_unmap_page(ha->pdev,scp->SCp.dma_handle,
scp->request_bufflen,scp->SCp.Message);
if (scp->SCp.buffer) {
dma_addr_t addr;
addr = (dma_addr_t)*(ulong32 *)&scp->SCp.buffer;
if (scp->host_scribble)
addr += (dma_addr_t)
((ulong64)(*(ulong32 *)&scp->host_scribble) << 32);
pci_unmap_page(ha->pdev,addr,16,PCI_DMA_FROMDEVICE);
}
if (ha->status == S_OK) {
scp->SCp.Status = S_OK;
scp->SCp.Message = ha->info;
if (scp->SCp.sent_command != -1) {
TRACE2(("gdth_sync_event(): special cmd 0x%x OK\n",
scp->SCp.sent_command));
/* special commands GDT_CLUST_INFO/GDT_MOUNT ? */
if (scp->SCp.sent_command == GDT_CLUST_INFO) {
ha->hdr[t].cluster_type = (unchar)ha->info;
if (!(ha->hdr[t].cluster_type &
CLUSTER_MOUNTED)) {
/* NOT MOUNTED -> MOUNT */
scp->SCp.sent_command = GDT_MOUNT;
if (ha->hdr[t].cluster_type &
CLUSTER_RESERVED) {
/* cluster drive RESERVED (on the other node) */
scp->SCp.phase = -2; /* reservation conflict */
}
} else {
scp->SCp.sent_command = -1;
}
} else {
if (scp->SCp.sent_command == GDT_MOUNT) {
ha->hdr[t].cluster_type |= CLUSTER_MOUNTED;
ha->hdr[t].media_changed = TRUE;
} else if (scp->SCp.sent_command == GDT_UNMOUNT) {
ha->hdr[t].cluster_type &= ~CLUSTER_MOUNTED;
ha->hdr[t].media_changed = TRUE;
}
scp->SCp.sent_command = -1;
}
/* retry */
scp->SCp.this_residual = HIGH_PRI;
return 2;
} else {
/* RESERVE/RELEASE ? */
if (scp->cmnd[0] == RESERVE) {
ha->hdr[t].cluster_type |= CLUSTER_RESERVED;
} else if (scp->cmnd[0] == RELEASE) {
ha->hdr[t].cluster_type &= ~CLUSTER_RESERVED;
}
scp->result = DID_OK << 16;
scp->sense_buffer[0] = 0;
}
} else {
scp->SCp.Status = ha->status;
scp->SCp.Message = ha->info;
if (scp->SCp.sent_command != -1) {
TRACE2(("gdth_sync_event(): special cmd 0x%x error 0x%x\n",
scp->SCp.sent_command, ha->status));
if (scp->SCp.sent_command == GDT_SCAN_START ||
scp->SCp.sent_command == GDT_SCAN_END) {
scp->SCp.sent_command = -1;
/* retry */
scp->SCp.this_residual = HIGH_PRI;
return 2;
}
memset((char*)scp->sense_buffer,0,16);
scp->sense_buffer[0] = 0x70;
scp->sense_buffer[2] = NOT_READY;
scp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
} else if (service == CACHESERVICE) {
if (ha->status == S_CACHE_UNKNOWN &&
(ha->hdr[t].cluster_type &
CLUSTER_RESERVE_STATE) == CLUSTER_RESERVE_STATE) {
/* bus reset -> force GDT_CLUST_INFO */
ha->hdr[t].cluster_type &= ~CLUSTER_RESERVED;
}
memset((char*)scp->sense_buffer,0,16);
if (ha->status == (ushort)S_CACHE_RESERV) {
scp->result = (DID_OK << 16) | (RESERVATION_CONFLICT << 1);
} else {
scp->sense_buffer[0] = 0x70;
scp->sense_buffer[2] = NOT_READY;
scp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
}
if (scp->done != gdth_scsi_done) {
ha->dvr.size = sizeof(ha->dvr.eu.sync);
ha->dvr.eu.sync.ionode = hanum;
ha->dvr.eu.sync.service = service;
ha->dvr.eu.sync.status = ha->status;
ha->dvr.eu.sync.info = ha->info;
ha->dvr.eu.sync.hostdrive = t;
if (ha->status >= 0x8000)
gdth_store_event(ha, ES_SYNC, 0, &ha->dvr);
else
gdth_store_event(ha, ES_SYNC, service, &ha->dvr);
}
} else {
/* sense buffer filled from controller firmware (DMA) */
if (ha->status != S_RAW_SCSI || ha->info >= 0x100) {
scp->result = DID_BAD_TARGET << 16;
} else {
scp->result = (DID_OK << 16) | ha->info;
}
}
}
if (!scp->SCp.have_data_in)
scp->SCp.have_data_in++;
else
return 1;
}
return 0;
}
static char *async_cache_tab[] = {
/* 0*/ "\011\000\002\002\002\004\002\006\004"
"GDT HA %u, service %u, async. status %u/%lu unknown",
/* 1*/ "\011\000\002\002\002\004\002\006\004"
"GDT HA %u, service %u, async. status %u/%lu unknown",
/* 2*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu not ready",
/* 3*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu: REASSIGN not successful and/or data error on reassigned blocks. Drive may crash in the future and should be replaced",
/* 4*/ "\005\000\002\006\004"
"GDT HA %u, mirror update on Host Drive %lu failed",
/* 5*/ "\005\000\002\006\004"
"GDT HA %u, Mirror Drive %lu failed",
/* 6*/ "\005\000\002\006\004"
"GDT HA %u, Mirror Drive %lu: REASSIGN not successful and/or data error on reassigned blocks. Drive may crash in the future and should be replaced",
/* 7*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu write protected",
/* 8*/ "\005\000\002\006\004"
"GDT HA %u, media changed in Host Drive %lu",
/* 9*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu is offline",
/*10*/ "\005\000\002\006\004"
"GDT HA %u, media change of Mirror Drive %lu",
/*11*/ "\005\000\002\006\004"
"GDT HA %u, Mirror Drive %lu is write protected",
/*12*/ "\005\000\002\006\004"
"GDT HA %u, general error on Host Drive %lu. Please check the devices of this drive!",
/*13*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Array Drive %u: Cache Drive %u failed",
/*14*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: FAIL state entered",
/*15*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: error",
/*16*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Array Drive %u: failed drive replaced by Cache Drive %u",
/*17*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity build failed",
/*18*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild failed",
/*19*/ "\005\000\002\010\002"
"GDT HA %u, Test of Hot Fix %u failed",
/*20*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive build finished successfully",
/*21*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild finished successfully",
/*22*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Array Drive %u: Hot Fix %u activated",
/*23*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u: processing of i/o aborted due to serious drive error",
/*24*/ "\005\000\002\010\002"
"GDT HA %u, mirror update on Cache Drive %u completed",
/*25*/ "\005\000\002\010\002"
"GDT HA %u, mirror update on Cache Drive %lu failed",
/*26*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild started",
/*27*/ "\005\000\002\012\001"
"GDT HA %u, Fault bus %u: SHELF OK detected",
/*28*/ "\005\000\002\012\001"
"GDT HA %u, Fault bus %u: SHELF not OK detected",
/*29*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug started",
/*30*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: new disk detected",
/*31*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: old disk detected",
/*32*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: plugging an active disk is invalid",
/*33*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: invalid device detected",
/*34*/ "\011\000\002\012\001\013\001\006\004"
"GDT HA %u, Fault bus %u, ID %u: insufficient disk capacity (%lu MB required)",
/*35*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: disk write protected",
/*36*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: disk not available",
/*37*/ "\007\000\002\012\001\006\004"
"GDT HA %u, Fault bus %u: swap detected (%lu)",
/*38*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug finished successfully",
/*39*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug aborted due to user Hot Plug",
/*40*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug aborted",
/*41*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug for Hot Fix started",
/*42*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive build started",
/*43*/ "\003\000\002"
"GDT HA %u, DRAM parity error detected",
/*44*/ "\005\000\002\006\002"
"GDT HA %u, Mirror Drive %u: update started",
/*45*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Mirror Drive %u: Hot Fix %u activated",
/*46*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: no matching Pool Hot Fix Drive available",
/*47*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: Pool Hot Fix Drive available",
/*48*/ "\005\000\002\006\002"
"GDT HA %u, Mirror Drive %u: no matching Pool Hot Fix Drive available",
/*49*/ "\005\000\002\006\002"
"GDT HA %u, Mirror Drive %u: Pool Hot Fix Drive available",
/*50*/ "\007\000\002\012\001\013\001"
"GDT HA %u, SCSI bus %u, ID %u: IGNORE_WIDE_RESIDUE message received",
/*51*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand started",
/*52*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand finished successfully",
/*53*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand failed",
/*54*/ "\003\000\002"
"GDT HA %u, CPU temperature critical",
/*55*/ "\003\000\002"
"GDT HA %u, CPU temperature OK",
/*56*/ "\005\000\002\006\004"
"GDT HA %u, Host drive %lu created",
/*57*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand restarted",
/*58*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand stopped",
/*59*/ "\005\000\002\010\002"
"GDT HA %u, Mirror Drive %u: drive build quited",
/*60*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity build quited",
/*61*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild quited",
/*62*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify started",
/*63*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify done",
/*64*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify failed",
/*65*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity error detected",
/*66*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify quited",
/*67*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u reserved",
/*68*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u mounted and released",
/*69*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u released",
/*70*/ "\003\000\002"
"GDT HA %u, DRAM error detected and corrected with ECC",
/*71*/ "\003\000\002"
"GDT HA %u, Uncorrectable DRAM error detected with ECC",
/*72*/ "\011\000\002\012\001\013\001\014\001"
"GDT HA %u, SCSI bus %u, ID %u, LUN %u: reassigning block",
/*73*/ "\005\000\002\006\002"
"GDT HA %u, Host drive %u resetted locally",
/*74*/ "\005\000\002\006\002"
"GDT HA %u, Host drive %u resetted remotely",
/*75*/ "\003\000\002"
"GDT HA %u, async. status 75 unknown",
};
static int gdth_async_event(int hanum)
{
gdth_ha_str *ha;
gdth_cmd_str *cmdp;
int cmd_index;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp= ha->pccb;
TRACE2(("gdth_async_event() ha %d serv %d\n",
hanum,ha->service));
if (ha->service == SCREENSERVICE) {
if (ha->status == MSG_REQUEST) {
while (gdth_test_busy(hanum))
gdth_delay(0);
cmdp->Service = SCREENSERVICE;
cmdp->RequestBuffer = SCREEN_CMND;
cmd_index = gdth_get_cmd_index(hanum);
gdth_set_sema0(hanum);
cmdp->OpCode = GDT_READ;
cmdp->BoardNode = LOCALBOARD;
cmdp->u.screen.reserved = 0;
cmdp->u.screen.su.msg.msg_handle= MSG_INV_HANDLE;
cmdp->u.screen.su.msg.msg_addr = ha->msg_phys;
ha->cmd_offs_dpmem = 0;
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr)
+ sizeof(ulong64);
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
if (ha->type == GDT_EISA)
printk("[EISA slot %d] ",(ushort)ha->brd_phys);
else if (ha->type == GDT_ISA)
printk("[DPMEM 0x%4X] ",(ushort)ha->brd_phys);
else
printk("[PCI %d/%d] ",(ushort)(ha->brd_phys>>8),
(ushort)((ha->brd_phys>>3)&0x1f));
gdth_release_event(hanum);
}
} else {
if (ha->type == GDT_PCIMPR &&
(ha->fw_vers & 0xff) >= 0x1a) {
ha->dvr.size = 0;
ha->dvr.eu.async.ionode = hanum;
ha->dvr.eu.async.status = ha->status;
/* severity and event_string already set! */
} else {
ha->dvr.size = sizeof(ha->dvr.eu.async);
ha->dvr.eu.async.ionode = hanum;
ha->dvr.eu.async.service = ha->service;
ha->dvr.eu.async.status = ha->status;
ha->dvr.eu.async.info = ha->info;
*(ulong32 *)ha->dvr.eu.async.scsi_coord = ha->info2;
}
gdth_store_event( ha, ES_ASYNC, ha->service, &ha->dvr );
gdth_log_event( &ha->dvr, NULL );
/* new host drive from expand? */
if (ha->service == CACHESERVICE && ha->status == 56) {
TRACE2(("gdth_async_event(): new host drive %d created\n",
(ushort)ha->info));
/* gdth_analyse_hdrive(hanum, (ushort)ha->info); */
}
}
return 1;
}
static void gdth_log_event(gdth_evt_data *dvr, char *buffer)
{
gdth_stackframe stack;
char *f = NULL;
int i,j;
TRACE2(("gdth_log_event()\n"));
if (dvr->size == 0) {
if (buffer == NULL) {
printk("Adapter %d: %s\n",dvr->eu.async.ionode,dvr->event_string);
} else {
sprintf(buffer,"Adapter %d: %s\n",
dvr->eu.async.ionode,dvr->event_string);
}
} else if (dvr->eu.async.service == CACHESERVICE &&
INDEX_OK(dvr->eu.async.status, async_cache_tab)) {
TRACE2(("GDT: Async. event cache service, event no.: %d\n",
dvr->eu.async.status));
f = async_cache_tab[dvr->eu.async.status];
/* i: parameter to push, j: stack element to fill */
for (j=0,i=1; i < f[0]; i+=2) {
switch (f[i+1]) {
case 4:
stack.b[j++] = *(ulong32*)&dvr->eu.stream[(int)f[i]];
break;
case 2:
stack.b[j++] = *(ushort*)&dvr->eu.stream[(int)f[i]];
break;
case 1:
stack.b[j++] = *(unchar*)&dvr->eu.stream[(int)f[i]];
break;
default:
break;
}
}
if (buffer == NULL) {
printk(&f[(int)f[0]],stack);
printk("\n");
} else {
sprintf(buffer,&f[(int)f[0]],stack);
}
} else {
if (buffer == NULL) {
printk("GDT HA %u, Unknown async. event service %d event no. %d\n",
dvr->eu.async.ionode,dvr->eu.async.service,dvr->eu.async.status);
} else {
sprintf(buffer,"GDT HA %u, Unknown async. event service %d event no. %d",
dvr->eu.async.ionode,dvr->eu.async.service,dvr->eu.async.status);
}
}
}
#ifdef GDTH_STATISTICS
static void gdth_timeout(ulong data)
{
ulong32 i;
Scsi_Cmnd *nscp;
gdth_ha_str *ha;
ulong flags;
int hanum = 0;
ha = HADATA(gdth_ctr_tab[hanum]);
spin_lock_irqsave(&ha->smp_lock, flags);
for (act_stats=0,i=0; i<GDTH_MAXCMDS; ++i)
if (ha->cmd_tab[i].cmnd != UNUSED_CMND)
++act_stats;
for (act_rq=0,nscp=ha->req_first; nscp; nscp=(Scsi_Cmnd*)nscp->SCp.ptr)
++act_rq;
TRACE2(("gdth_to(): ints %d, ios %d, act_stats %d, act_rq %d\n",
act_ints, act_ios, act_stats, act_rq));
act_ints = act_ios = 0;
gdth_timer.expires = jiffies + 30 * HZ;
add_timer(&gdth_timer);
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
#endif
static void __init internal_setup(char *str,int *ints)
{
int i, argc;
char *cur_str, *argv;
TRACE2(("internal_setup() str %s ints[0] %d\n",
str ? str:"NULL", ints ? ints[0]:0));
/* read irq[] from ints[] */
if (ints) {
argc = ints[0];
if (argc > 0) {
if (argc > MAXHA)
argc = MAXHA;
for (i = 0; i < argc; ++i)
irq[i] = ints[i+1];
}
}
/* analyse string */
argv = str;
while (argv && (cur_str = strchr(argv, ':'))) {
int val = 0, c = *++cur_str;
if (c == 'n' || c == 'N')
val = 0;
else if (c == 'y' || c == 'Y')
val = 1;
else
val = (int)simple_strtoul(cur_str, NULL, 0);
if (!strncmp(argv, "disable:", 8))
disable = val;
else if (!strncmp(argv, "reserve_mode:", 13))
reserve_mode = val;
else if (!strncmp(argv, "reverse_scan:", 13))
reverse_scan = val;
else if (!strncmp(argv, "hdr_channel:", 12))
hdr_channel = val;
else if (!strncmp(argv, "max_ids:", 8))
max_ids = val;
else if (!strncmp(argv, "rescan:", 7))
rescan = val;
else if (!strncmp(argv, "virt_ctr:", 9))
virt_ctr = val;
else if (!strncmp(argv, "shared_access:", 14))
shared_access = val;
else if (!strncmp(argv, "probe_eisa_isa:", 15))
probe_eisa_isa = val;
else if (!strncmp(argv, "reserve_list:", 13)) {
reserve_list[0] = val;
for (i = 1; i < MAX_RES_ARGS; i++) {
cur_str = strchr(cur_str, ',');
if (!cur_str)
break;
if (!isdigit((int)*++cur_str)) {
--cur_str;
break;
}
reserve_list[i] =
(int)simple_strtoul(cur_str, NULL, 0);
}
if (!cur_str)
break;
argv = ++cur_str;
continue;
}
if ((argv = strchr(argv, ',')))
++argv;
}
}
int __init option_setup(char *str)
{
int ints[MAXHA];
char *cur = str;
int i = 1;
TRACE2(("option_setup() str %s\n", str ? str:"NULL"));
while (cur && isdigit(*cur) && i <= MAXHA) {
ints[i++] = simple_strtoul(cur, NULL, 0);
if ((cur = strchr(cur, ',')) != NULL) cur++;
}
ints[0] = i - 1;
internal_setup(cur, ints);
return 1;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static int __init gdth_detect(struct scsi_host_template *shtp)
#else
static int __init gdth_detect(Scsi_Host_Template *shtp)
#endif
{
struct Scsi_Host *shp;
gdth_pci_str pcistr[MAXHA];
gdth_ha_str *ha;
ulong32 isa_bios;
ushort eisa_slot;
int i,hanum,cnt,ctr,err;
unchar b;
#ifdef DEBUG_GDTH
printk("GDT: This driver contains debugging information !! Trace level = %d\n",
DebugState);
printk(" Destination of debugging information: ");
#ifdef __SERIAL__
#ifdef __COM2__
printk("Serial port COM2\n");
#else
printk("Serial port COM1\n");
#endif
#else
printk("Console\n");
#endif
gdth_delay(3000);
#endif
TRACE(("gdth_detect()\n"));
if (disable) {
printk("GDT-HA: Controller driver disabled from command line !\n");
return 0;
}
printk("GDT-HA: Storage RAID Controller Driver. Version: %s\n",GDTH_VERSION_STR);
/* initializations */
gdth_polling = TRUE; b = 0;
gdth_clear_events();
/* As default we do not probe for EISA or ISA controllers */
if (probe_eisa_isa) {
/* scanning for controllers, at first: ISA controller */
for (isa_bios=0xc8000UL; isa_bios<=0xd8000UL; isa_bios+=0x8000UL) {
dma_addr_t scratch_dma_handle;
scratch_dma_handle = 0;
if (gdth_ctr_count >= MAXHA)
break;
if (gdth_search_isa(isa_bios)) { /* controller found */
shp = scsi_register(shtp,sizeof(gdth_ext_str));
if (shp == NULL)
continue;
ha = HADATA(shp);
if (!gdth_init_isa(isa_bios,ha)) {
scsi_unregister(shp);
continue;
}
#ifdef __ia64__
break;
#else
/* controller found and initialized */
printk("Configuring GDT-ISA HA at BIOS 0x%05X IRQ %u DRQ %u\n",
isa_bios,ha->irq,ha->drq);
if (request_irq(ha->irq,gdth_interrupt,IRQF_DISABLED,"gdth",ha)) {
printk("GDT-ISA: Unable to allocate IRQ\n");
scsi_unregister(shp);
continue;
}
if (request_dma(ha->drq,"gdth")) {
printk("GDT-ISA: Unable to allocate DMA channel\n");
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
set_dma_mode(ha->drq,DMA_MODE_CASCADE);
enable_dma(ha->drq);
shp->unchecked_isa_dma = 1;
shp->irq = ha->irq;
shp->dma_channel = ha->drq;
hanum = gdth_ctr_count;
gdth_ctr_tab[gdth_ctr_count++] = shp;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum= 0;
ha->pccb = CMDDATA(shp);
ha->ccb_phys = 0L;
ha->pdev = NULL;
ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH,
&scratch_dma_handle);
ha->scratch_phys = scratch_dma_handle;
ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str),
&scratch_dma_handle);
ha->msg_phys = scratch_dma_handle;
#ifdef INT_COAL
ha->coal_stat = (gdth_coal_status *)
pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, &scratch_dma_handle);
ha->coal_stat_phys = scratch_dma_handle;
#endif
ha->scratch_busy = FALSE;
ha->req_first = NULL;
ha->tid_cnt = MAX_HDRIVES;
if (max_ids > 0 && max_ids < ha->tid_cnt)
ha->tid_cnt = max_ids;
for (i=0; i<GDTH_MAXCMDS; ++i)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
ha->scan_mode = rescan ? 0x10 : 0;
if (ha->pscratch == NULL || ha->pmsg == NULL ||
!gdth_search_drives(hanum)) {
printk("GDT-ISA: Error during device scan\n");
--gdth_ctr_count;
--gdth_ctr_vcount;
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat,
ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
if (hdr_channel < 0 || hdr_channel > ha->bus_cnt)
hdr_channel = ha->bus_cnt;
ha->virt_bus = hdr_channel;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) && \
LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
shp->highmem_io = 0;
#endif
if (ha->cache_feat & ha->raw_feat & ha->screen_feat & GDT_64BIT)
shp->max_cmd_len = 16;
shp->max_id = ha->tid_cnt;
shp->max_lun = MAXLUN;
shp->max_channel = virt_ctr ? 0 : ha->bus_cnt;
if (virt_ctr) {
virt_ctr = 1;
/* register addit. SCSI channels as virtual controllers */
for (b = 1; b < ha->bus_cnt + 1; ++b) {
shp = scsi_register(shtp,sizeof(gdth_num_str));
shp->unchecked_isa_dma = 1;
shp->irq = ha->irq;
shp->dma_channel = ha->drq;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum = b;
}
}
spin_lock_init(&ha->smp_lock);
gdth_enable_int(hanum);
#endif /* !__ia64__ */
}
}
/* scanning for EISA controllers */
for (eisa_slot=0x1000; eisa_slot<=0x8000; eisa_slot+=0x1000) {
dma_addr_t scratch_dma_handle;
scratch_dma_handle = 0;
if (gdth_ctr_count >= MAXHA)
break;
if (gdth_search_eisa(eisa_slot)) { /* controller found */
shp = scsi_register(shtp,sizeof(gdth_ext_str));
if (shp == NULL)
continue;
ha = HADATA(shp);
if (!gdth_init_eisa(eisa_slot,ha)) {
scsi_unregister(shp);
continue;
}
/* controller found and initialized */
printk("Configuring GDT-EISA HA at Slot %d IRQ %u\n",
eisa_slot>>12,ha->irq);
if (request_irq(ha->irq,gdth_interrupt,IRQF_DISABLED,"gdth",ha)) {
printk("GDT-EISA: Unable to allocate IRQ\n");
scsi_unregister(shp);
continue;
}
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
hanum = gdth_ctr_count;
gdth_ctr_tab[gdth_ctr_count++] = shp;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum= 0;
TRACE2(("EISA detect Bus 0: hanum %d\n",
NUMDATA(shp)->hanum));
ha->pccb = CMDDATA(shp);
ha->ccb_phys = 0L;
ha->pdev = NULL;
ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH,
&scratch_dma_handle);
ha->scratch_phys = scratch_dma_handle;
ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str),
&scratch_dma_handle);
ha->msg_phys = scratch_dma_handle;
#ifdef INT_COAL
ha->coal_stat = (gdth_coal_status *)
pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, &scratch_dma_handle);
ha->coal_stat_phys = scratch_dma_handle;
#endif
ha->ccb_phys =
pci_map_single(ha->pdev,ha->pccb,
sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL);
ha->scratch_busy = FALSE;
ha->req_first = NULL;
ha->tid_cnt = MAX_HDRIVES;
if (max_ids > 0 && max_ids < ha->tid_cnt)
ha->tid_cnt = max_ids;
for (i=0; i<GDTH_MAXCMDS; ++i)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
ha->scan_mode = rescan ? 0x10 : 0;
if (ha->pscratch == NULL || ha->pmsg == NULL ||
!gdth_search_drives(hanum)) {
printk("GDT-EISA: Error during device scan\n");
--gdth_ctr_count;
--gdth_ctr_vcount;
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat,
ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
if (ha->ccb_phys)
pci_unmap_single(ha->pdev,ha->ccb_phys,
sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL);
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
if (hdr_channel < 0 || hdr_channel > ha->bus_cnt)
hdr_channel = ha->bus_cnt;
ha->virt_bus = hdr_channel;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) && \
LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
shp->highmem_io = 0;
#endif
if (ha->cache_feat & ha->raw_feat & ha->screen_feat & GDT_64BIT)
shp->max_cmd_len = 16;
shp->max_id = ha->tid_cnt;
shp->max_lun = MAXLUN;
shp->max_channel = virt_ctr ? 0 : ha->bus_cnt;
if (virt_ctr) {
virt_ctr = 1;
/* register addit. SCSI channels as virtual controllers */
for (b = 1; b < ha->bus_cnt + 1; ++b) {
shp = scsi_register(shtp,sizeof(gdth_num_str));
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum = b;
}
}
spin_lock_init(&ha->smp_lock);
gdth_enable_int(hanum);
}
}
}
/* scanning for PCI controllers */
cnt = gdth_search_pci(pcistr);
printk("GDT-HA: Found %d PCI Storage RAID Controllers\n",cnt);
gdth_sort_pci(pcistr,cnt);
for (ctr = 0; ctr < cnt; ++ctr) {
dma_addr_t scratch_dma_handle;
scratch_dma_handle = 0;
if (gdth_ctr_count >= MAXHA)
break;
shp = scsi_register(shtp,sizeof(gdth_ext_str));
if (shp == NULL)
continue;
ha = HADATA(shp);
if (!gdth_init_pci(&pcistr[ctr],ha)) {
scsi_unregister(shp);
continue;
}
/* controller found and initialized */
printk("Configuring GDT-PCI HA at %d/%d IRQ %u\n",
pcistr[ctr].bus,PCI_SLOT(pcistr[ctr].device_fn),ha->irq);
if (request_irq(ha->irq, gdth_interrupt,
IRQF_DISABLED|IRQF_SHARED, "gdth", ha))
{
printk("GDT-PCI: Unable to allocate IRQ\n");
scsi_unregister(shp);
continue;
}
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
hanum = gdth_ctr_count;
gdth_ctr_tab[gdth_ctr_count++] = shp;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum= 0;
ha->pccb = CMDDATA(shp);
ha->ccb_phys = 0L;
ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH,
&scratch_dma_handle);
ha->scratch_phys = scratch_dma_handle;
ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str),
&scratch_dma_handle);
ha->msg_phys = scratch_dma_handle;
#ifdef INT_COAL
ha->coal_stat = (gdth_coal_status *)
pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, &scratch_dma_handle);
ha->coal_stat_phys = scratch_dma_handle;
#endif
ha->scratch_busy = FALSE;
ha->req_first = NULL;
ha->tid_cnt = pcistr[ctr].device_id >= 0x200 ? MAXID : MAX_HDRIVES;
if (max_ids > 0 && max_ids < ha->tid_cnt)
ha->tid_cnt = max_ids;
for (i=0; i<GDTH_MAXCMDS; ++i)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
ha->scan_mode = rescan ? 0x10 : 0;
err = FALSE;
if (ha->pscratch == NULL || ha->pmsg == NULL ||
!gdth_search_drives(hanum)) {
err = TRUE;
} else {
if (hdr_channel < 0 || hdr_channel > ha->bus_cnt)
hdr_channel = ha->bus_cnt;
ha->virt_bus = hdr_channel;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
scsi_set_pci_device(shp, pcistr[ctr].pdev);
#endif
if (!(ha->cache_feat & ha->raw_feat & ha->screen_feat &GDT_64BIT)||
/* 64-bit DMA only supported from FW >= x.43 */
(!ha->dma64_support)) {
if (pci_set_dma_mask(pcistr[ctr].pdev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "GDT-PCI %d: Unable to set 32-bit DMA\n", hanum);
err = TRUE;
}
} else {
shp->max_cmd_len = 16;
if (!pci_set_dma_mask(pcistr[ctr].pdev, DMA_64BIT_MASK)) {
printk("GDT-PCI %d: 64-bit DMA enabled\n", hanum);
} else if (pci_set_dma_mask(pcistr[ctr].pdev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "GDT-PCI %d: Unable to set 64/32-bit DMA\n", hanum);
err = TRUE;
}
}
}
if (err) {
printk("GDT-PCI %d: Error during device scan\n", hanum);
--gdth_ctr_count;
--gdth_ctr_vcount;
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat,
ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
shp->max_id = ha->tid_cnt;
shp->max_lun = MAXLUN;
shp->max_channel = virt_ctr ? 0 : ha->bus_cnt;
if (virt_ctr) {
virt_ctr = 1;
/* register addit. SCSI channels as virtual controllers */
for (b = 1; b < ha->bus_cnt + 1; ++b) {
shp = scsi_register(shtp,sizeof(gdth_num_str));
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum = b;
}
}
spin_lock_init(&ha->smp_lock);
gdth_enable_int(hanum);
}
TRACE2(("gdth_detect() %d controller detected\n",gdth_ctr_count));
if (gdth_ctr_count > 0) {
#ifdef GDTH_STATISTICS
TRACE2(("gdth_detect(): Initializing timer !\n"));
init_timer(&gdth_timer);
gdth_timer.expires = jiffies + HZ;
gdth_timer.data = 0L;
gdth_timer.function = gdth_timeout;
add_timer(&gdth_timer);
#endif
major = register_chrdev(0,"gdth",&gdth_fops);
notifier_disabled = 0;
register_reboot_notifier(&gdth_notifier);
}
gdth_polling = FALSE;
return gdth_ctr_vcount;
}
static int gdth_release(struct Scsi_Host *shp)
{
int hanum;
gdth_ha_str *ha;
TRACE2(("gdth_release()\n"));
if (NUMDATA(shp)->busnum == 0) {
hanum = NUMDATA(shp)->hanum;
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->sdev) {
scsi_free_host_dev(ha->sdev);
ha->sdev = NULL;
}
gdth_flush(hanum);
if (shp->irq) {
free_irq(shp->irq,ha);
}
#ifndef __ia64__
if (shp->dma_channel != 0xff) {
free_dma(shp->dma_channel);
}
#endif
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat, ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
if (ha->ccb_phys)
pci_unmap_single(ha->pdev,ha->ccb_phys,
sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL);
gdth_ctr_released++;
TRACE2(("gdth_release(): HA %d of %d\n",
gdth_ctr_released, gdth_ctr_count));
if (gdth_ctr_released == gdth_ctr_count) {
#ifdef GDTH_STATISTICS
del_timer(&gdth_timer);
#endif
unregister_chrdev(major,"gdth");
unregister_reboot_notifier(&gdth_notifier);
}
}
scsi_unregister(shp);
return 0;
}
static const char *gdth_ctr_name(int hanum)
{
gdth_ha_str *ha;
TRACE2(("gdth_ctr_name()\n"));
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->type == GDT_EISA) {
switch (ha->stype) {
case GDT3_ID:
return("GDT3000/3020");
case GDT3A_ID:
return("GDT3000A/3020A/3050A");
case GDT3B_ID:
return("GDT3000B/3010A");
}
} else if (ha->type == GDT_ISA) {
return("GDT2000/2020");
} else if (ha->type == GDT_PCI) {
switch (ha->stype) {
case PCI_DEVICE_ID_VORTEX_GDT60x0:
return("GDT6000/6020/6050");
case PCI_DEVICE_ID_VORTEX_GDT6000B:
return("GDT6000B/6010");
}
}
/* new controllers (GDT_PCINEW, GDT_PCIMPR, ..) use board_info IOCTL! */
return("");
}
static const char *gdth_info(struct Scsi_Host *shp)
{
int hanum;
gdth_ha_str *ha;
TRACE2(("gdth_info()\n"));
hanum = NUMDATA(shp)->hanum;
ha = HADATA(gdth_ctr_tab[hanum]);
return ((const char *)ha->binfo.type_string);
}
static int gdth_eh_bus_reset(Scsi_Cmnd *scp)
{
int i, hanum;
gdth_ha_str *ha;
ulong flags;
Scsi_Cmnd *cmnd;
unchar b;
TRACE2(("gdth_eh_bus_reset()\n"));
hanum = NUMDATA(scp->device->host)->hanum;
b = virt_ctr ? NUMDATA(scp->device->host)->busnum : scp->device->channel;
ha = HADATA(gdth_ctr_tab[hanum]);
/* clear command tab */
spin_lock_irqsave(&ha->smp_lock, flags);
for (i = 0; i < GDTH_MAXCMDS; ++i) {
cmnd = ha->cmd_tab[i].cmnd;
if (!SPECIAL_SCP(cmnd) && cmnd->device->channel == b)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
if (b == ha->virt_bus) {
/* host drives */
for (i = 0; i < MAX_HDRIVES; ++i) {
if (ha->hdr[i].present) {
spin_lock_irqsave(&ha->smp_lock, flags);
gdth_polling = TRUE;
while (gdth_test_busy(hanum))
gdth_delay(0);
if (gdth_internal_cmd(hanum, CACHESERVICE,
GDT_CLUST_RESET, i, 0, 0))
ha->hdr[i].cluster_type &= ~CLUSTER_RESERVED;
gdth_polling = FALSE;
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
}
} else {
/* raw devices */
spin_lock_irqsave(&ha->smp_lock, flags);
for (i = 0; i < MAXID; ++i)
ha->raw[BUS_L2P(ha,b)].io_cnt[i] = 0;
gdth_polling = TRUE;
while (gdth_test_busy(hanum))
gdth_delay(0);
gdth_internal_cmd(hanum, SCSIRAWSERVICE, GDT_RESET_BUS,
BUS_L2P(ha,b), 0, 0);
gdth_polling = FALSE;
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
return SUCCESS;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static int gdth_bios_param(struct scsi_device *sdev,struct block_device *bdev,sector_t cap,int *ip)
#else
static int gdth_bios_param(Disk *disk,kdev_t dev,int *ip)
#endif
{
unchar b, t;
int hanum;
gdth_ha_str *ha;
struct scsi_device *sd;
unsigned capacity;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
sd = sdev;
capacity = cap;
#else
sd = disk->device;
capacity = disk->capacity;
#endif
hanum = NUMDATA(sd->host)->hanum;
b = virt_ctr ? NUMDATA(sd->host)->busnum : sd->channel;
t = sd->id;
TRACE2(("gdth_bios_param() ha %d bus %d target %d\n", hanum, b, t));
ha = HADATA(gdth_ctr_tab[hanum]);
if (b != ha->virt_bus || ha->hdr[t].heads == 0) {
/* raw device or host drive without mapping information */
TRACE2(("Evaluate mapping\n"));
gdth_eval_mapping(capacity,&ip[2],&ip[0],&ip[1]);
} else {
ip[0] = ha->hdr[t].heads;
ip[1] = ha->hdr[t].secs;
ip[2] = capacity / ip[0] / ip[1];
}
TRACE2(("gdth_bios_param(): %d heads, %d secs, %d cyls\n",
ip[0],ip[1],ip[2]));
return 0;
}
static int gdth_queuecommand(Scsi_Cmnd *scp,void (*done)(Scsi_Cmnd *))
{
int hanum;
int priority;
TRACE(("gdth_queuecommand() cmd 0x%x\n", scp->cmnd[0]));
scp->scsi_done = (void *)done;
scp->SCp.have_data_in = 1;
scp->SCp.phase = -1;
scp->SCp.sent_command = -1;
scp->SCp.Status = GDTH_MAP_NONE;
scp->SCp.buffer = (struct scatterlist *)NULL;
hanum = NUMDATA(scp->device->host)->hanum;
#ifdef GDTH_STATISTICS
++act_ios;
#endif
priority = DEFAULT_PRI;
if (scp->done == gdth_scsi_done)
priority = scp->SCp.this_residual;
else
gdth_update_timeout(hanum, scp, scp->timeout_per_command * 6);
gdth_putq( hanum, scp, priority );
gdth_next( hanum );
return 0;
}
static int gdth_open(struct inode *inode, struct file *filep)
{
gdth_ha_str *ha;
int i;
for (i = 0; i < gdth_ctr_count; i++) {
ha = HADATA(gdth_ctr_tab[i]);
if (!ha->sdev)
ha->sdev = scsi_get_host_dev(gdth_ctr_tab[i]);
}
TRACE(("gdth_open()\n"));
return 0;
}
static int gdth_close(struct inode *inode, struct file *filep)
{
TRACE(("gdth_close()\n"));
return 0;
}
static int ioc_event(void __user *arg)
{
gdth_ioctl_event evt;
gdth_ha_str *ha;
ulong flags;
if (copy_from_user(&evt, arg, sizeof(gdth_ioctl_event)) ||
evt.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[evt.ionode]);
if (evt.erase == 0xff) {
if (evt.event.event_source == ES_TEST)
evt.event.event_data.size=sizeof(evt.event.event_data.eu.test);
else if (evt.event.event_source == ES_DRIVER)
evt.event.event_data.size=sizeof(evt.event.event_data.eu.driver);
else if (evt.event.event_source == ES_SYNC)
evt.event.event_data.size=sizeof(evt.event.event_data.eu.sync);
else
evt.event.event_data.size=sizeof(evt.event.event_data.eu.async);
spin_lock_irqsave(&ha->smp_lock, flags);
gdth_store_event(ha, evt.event.event_source, evt.event.event_idx,
&evt.event.event_data);
spin_unlock_irqrestore(&ha->smp_lock, flags);
} else if (evt.erase == 0xfe) {
gdth_clear_events();
} else if (evt.erase == 0) {
evt.handle = gdth_read_event(ha, evt.handle, &evt.event);
} else {
gdth_readapp_event(ha, evt.erase, &evt.event);
}
if (copy_to_user(arg, &evt, sizeof(gdth_ioctl_event)))
return -EFAULT;
return 0;
}
static int ioc_lockdrv(void __user *arg)
{
gdth_ioctl_lockdrv ldrv;
unchar i, j;
ulong flags;
gdth_ha_str *ha;
if (copy_from_user(&ldrv, arg, sizeof(gdth_ioctl_lockdrv)) ||
ldrv.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[ldrv.ionode]);
for (i = 0; i < ldrv.drive_cnt && i < MAX_HDRIVES; ++i) {
j = ldrv.drives[i];
if (j >= MAX_HDRIVES || !ha->hdr[j].present)
continue;
if (ldrv.lock) {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[j].lock = 1;
spin_unlock_irqrestore(&ha->smp_lock, flags);
gdth_wait_completion(ldrv.ionode, ha->bus_cnt, j);
gdth_stop_timeout(ldrv.ionode, ha->bus_cnt, j);
} else {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[j].lock = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
gdth_start_timeout(ldrv.ionode, ha->bus_cnt, j);
gdth_next(ldrv.ionode);
}
}
return 0;
}
static int ioc_resetdrv(void __user *arg, char *cmnd)
{
gdth_ioctl_reset res;
gdth_cmd_str cmd;
int hanum;
gdth_ha_str *ha;
int rval;
if (copy_from_user(&res, arg, sizeof(gdth_ioctl_reset)) ||
res.ionode >= gdth_ctr_count || res.number >= MAX_HDRIVES)
return -EFAULT;
hanum = res.ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
if (!ha->hdr[res.number].present)
return 0;
memset(&cmd, 0, sizeof(gdth_cmd_str));
cmd.Service = CACHESERVICE;
cmd.OpCode = GDT_CLUST_RESET;
if (ha->cache_feat & GDT_64BIT)
cmd.u.cache64.DeviceNo = res.number;
else
cmd.u.cache.DeviceNo = res.number;
rval = __gdth_execute(ha->sdev, &cmd, cmnd, 30, NULL);
if (rval < 0)
return rval;
res.status = rval;
if (copy_to_user(arg, &res, sizeof(gdth_ioctl_reset)))
return -EFAULT;
return 0;
}
static int ioc_general(void __user *arg, char *cmnd)
{
gdth_ioctl_general gen;
char *buf = NULL;
ulong64 paddr;
int hanum;
gdth_ha_str *ha;
int rval;
if (copy_from_user(&gen, arg, sizeof(gdth_ioctl_general)) ||
gen.ionode >= gdth_ctr_count)
return -EFAULT;
hanum = gen.ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
if (gen.data_len + gen.sense_len != 0) {
if (!(buf = gdth_ioctl_alloc(hanum, gen.data_len + gen.sense_len,
FALSE, &paddr)))
return -EFAULT;
if (copy_from_user(buf, arg + sizeof(gdth_ioctl_general),
gen.data_len + gen.sense_len)) {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
if (gen.command.OpCode == GDT_IOCTL) {
gen.command.u.ioctl.p_param = paddr;
} else if (gen.command.Service == CACHESERVICE) {
if (ha->cache_feat & GDT_64BIT) {
/* copy elements from 32-bit IOCTL structure */
gen.command.u.cache64.BlockCnt = gen.command.u.cache.BlockCnt;
gen.command.u.cache64.BlockNo = gen.command.u.cache.BlockNo;
gen.command.u.cache64.DeviceNo = gen.command.u.cache.DeviceNo;
/* addresses */
if (ha->cache_feat & SCATTER_GATHER) {
gen.command.u.cache64.DestAddr = (ulong64)-1;
gen.command.u.cache64.sg_canz = 1;
gen.command.u.cache64.sg_lst[0].sg_ptr = paddr;
gen.command.u.cache64.sg_lst[0].sg_len = gen.data_len;
gen.command.u.cache64.sg_lst[1].sg_len = 0;
} else {
gen.command.u.cache64.DestAddr = paddr;
gen.command.u.cache64.sg_canz = 0;
}
} else {
if (ha->cache_feat & SCATTER_GATHER) {
gen.command.u.cache.DestAddr = 0xffffffff;
gen.command.u.cache.sg_canz = 1;
gen.command.u.cache.sg_lst[0].sg_ptr = (ulong32)paddr;
gen.command.u.cache.sg_lst[0].sg_len = gen.data_len;
gen.command.u.cache.sg_lst[1].sg_len = 0;
} else {
gen.command.u.cache.DestAddr = paddr;
gen.command.u.cache.sg_canz = 0;
}
}
} else if (gen.command.Service == SCSIRAWSERVICE) {
if (ha->raw_feat & GDT_64BIT) {
/* copy elements from 32-bit IOCTL structure */
char cmd[16];
gen.command.u.raw64.sense_len = gen.command.u.raw.sense_len;
gen.command.u.raw64.bus = gen.command.u.raw.bus;
gen.command.u.raw64.lun = gen.command.u.raw.lun;
gen.command.u.raw64.target = gen.command.u.raw.target;
memcpy(cmd, gen.command.u.raw.cmd, 16);
memcpy(gen.command.u.raw64.cmd, cmd, 16);
gen.command.u.raw64.clen = gen.command.u.raw.clen;
gen.command.u.raw64.sdlen = gen.command.u.raw.sdlen;
gen.command.u.raw64.direction = gen.command.u.raw.direction;
/* addresses */
if (ha->raw_feat & SCATTER_GATHER) {
gen.command.u.raw64.sdata = (ulong64)-1;
gen.command.u.raw64.sg_ranz = 1;
gen.command.u.raw64.sg_lst[0].sg_ptr = paddr;
gen.command.u.raw64.sg_lst[0].sg_len = gen.data_len;
gen.command.u.raw64.sg_lst[1].sg_len = 0;
} else {
gen.command.u.raw64.sdata = paddr;
gen.command.u.raw64.sg_ranz = 0;
}
gen.command.u.raw64.sense_data = paddr + gen.data_len;
} else {
if (ha->raw_feat & SCATTER_GATHER) {
gen.command.u.raw.sdata = 0xffffffff;
gen.command.u.raw.sg_ranz = 1;
gen.command.u.raw.sg_lst[0].sg_ptr = (ulong32)paddr;
gen.command.u.raw.sg_lst[0].sg_len = gen.data_len;
gen.command.u.raw.sg_lst[1].sg_len = 0;
} else {
gen.command.u.raw.sdata = paddr;
gen.command.u.raw.sg_ranz = 0;
}
gen.command.u.raw.sense_data = (ulong32)paddr + gen.data_len;
}
} else {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
}
rval = __gdth_execute(ha->sdev, &gen.command, cmnd, gen.timeout, &gen.info);
if (rval < 0)
return rval;
gen.status = rval;
if (copy_to_user(arg + sizeof(gdth_ioctl_general), buf,
gen.data_len + gen.sense_len)) {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
if (copy_to_user(arg, &gen,
sizeof(gdth_ioctl_general) - sizeof(gdth_cmd_str))) {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return 0;
}
static int ioc_hdrlist(void __user *arg, char *cmnd)
{
gdth_ioctl_rescan *rsc;
gdth_cmd_str *cmd;
gdth_ha_str *ha;
unchar i;
int hanum, rc = -ENOMEM;
u32 cluster_type = 0;
rsc = kmalloc(sizeof(*rsc), GFP_KERNEL);
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!rsc || !cmd)
goto free_fail;
if (copy_from_user(rsc, arg, sizeof(gdth_ioctl_rescan)) ||
rsc->ionode >= gdth_ctr_count) {
rc = -EFAULT;
goto free_fail;
}
hanum = rsc->ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
memset(cmd, 0, sizeof(gdth_cmd_str));
for (i = 0; i < MAX_HDRIVES; ++i) {
if (!ha->hdr[i].present) {
rsc->hdr_list[i].bus = 0xff;
continue;
}
rsc->hdr_list[i].bus = ha->virt_bus;
rsc->hdr_list[i].target = i;
rsc->hdr_list[i].lun = 0;
rsc->hdr_list[i].cluster_type = ha->hdr[i].cluster_type;
if (ha->hdr[i].cluster_type & CLUSTER_DRIVE) {
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_CLUST_INFO;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
if (__gdth_execute(ha->sdev, cmd, cmnd, 30, &cluster_type) == S_OK)
rsc->hdr_list[i].cluster_type = cluster_type;
}
}
if (copy_to_user(arg, rsc, sizeof(gdth_ioctl_rescan)))
rc = -EFAULT;
else
rc = 0;
free_fail:
kfree(rsc);
kfree(cmd);
return rc;
}
static int ioc_rescan(void __user *arg, char *cmnd)
{
gdth_ioctl_rescan *rsc;
gdth_cmd_str *cmd;
ushort i, status, hdr_cnt;
ulong32 info;
int hanum, cyls, hds, secs;
int rc = -ENOMEM;
ulong flags;
gdth_ha_str *ha;
rsc = kmalloc(sizeof(*rsc), GFP_KERNEL);
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd || !rsc)
goto free_fail;
if (copy_from_user(rsc, arg, sizeof(gdth_ioctl_rescan)) ||
rsc->ionode >= gdth_ctr_count) {
rc = -EFAULT;
goto free_fail;
}
hanum = rsc->ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
memset(cmd, 0, sizeof(gdth_cmd_str));
if (rsc->flag == 0) {
/* old method: re-init. cache service */
cmd->Service = CACHESERVICE;
if (ha->cache_feat & GDT_64BIT) {
cmd->OpCode = GDT_X_INIT_HOST;
cmd->u.cache64.DeviceNo = LINUX_OS;
} else {
cmd->OpCode = GDT_INIT;
cmd->u.cache.DeviceNo = LINUX_OS;
}
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
i = 0;
hdr_cnt = (status == S_OK ? (ushort)info : 0);
} else {
i = rsc->hdr_no;
hdr_cnt = i + 1;
}
for (; i < hdr_cnt && i < MAX_HDRIVES; ++i) {
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_INFO;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
rsc->hdr_list[i].bus = ha->virt_bus;
rsc->hdr_list[i].target = i;
rsc->hdr_list[i].lun = 0;
if (status != S_OK) {
ha->hdr[i].present = FALSE;
} else {
ha->hdr[i].present = TRUE;
ha->hdr[i].size = info;
/* evaluate mapping */
ha->hdr[i].size &= ~SECS32;
gdth_eval_mapping(ha->hdr[i].size,&cyls,&hds,&secs);
ha->hdr[i].heads = hds;
ha->hdr[i].secs = secs;
/* round size */
ha->hdr[i].size = cyls * hds * secs;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
if (status != S_OK)
continue;
/* extended info, if GDT_64BIT, for drives > 2 TB */
/* but we need ha->info2, not yet stored in scp->SCp */
/* devtype, cluster info, R/W attribs */
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_DEVTYPE;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[i].devtype = (status == S_OK ? (ushort)info : 0);
spin_unlock_irqrestore(&ha->smp_lock, flags);
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_CLUST_INFO;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[i].cluster_type =
((status == S_OK && !shared_access) ? (ushort)info : 0);
spin_unlock_irqrestore(&ha->smp_lock, flags);
rsc->hdr_list[i].cluster_type = ha->hdr[i].cluster_type;
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_RW_ATTRIBS;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[i].rw_attribs = (status == S_OK ? (ushort)info : 0);
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
if (copy_to_user(arg, rsc, sizeof(gdth_ioctl_rescan)))
rc = -EFAULT;
else
rc = 0;
free_fail:
kfree(rsc);
kfree(cmd);
return rc;
}
static int gdth_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg)
{
gdth_ha_str *ha;
Scsi_Cmnd *scp;
ulong flags;
char cmnd[MAX_COMMAND_SIZE];
void __user *argp = (void __user *)arg;
memset(cmnd, 0xff, 12);
TRACE(("gdth_ioctl() cmd 0x%x\n", cmd));
switch (cmd) {
case GDTIOCTL_CTRCNT:
{
int cnt = gdth_ctr_count;
if (put_user(cnt, (int __user *)argp))
return -EFAULT;
break;
}
case GDTIOCTL_DRVERS:
{
int ver = (GDTH_VERSION<<8) | GDTH_SUBVERSION;
if (put_user(ver, (int __user *)argp))
return -EFAULT;
break;
}
case GDTIOCTL_OSVERS:
{
gdth_ioctl_osvers osv;
osv.version = (unchar)(LINUX_VERSION_CODE >> 16);
osv.subversion = (unchar)(LINUX_VERSION_CODE >> 8);
osv.revision = (ushort)(LINUX_VERSION_CODE & 0xff);
if (copy_to_user(argp, &osv, sizeof(gdth_ioctl_osvers)))
return -EFAULT;
break;
}
case GDTIOCTL_CTRTYPE:
{
gdth_ioctl_ctrtype ctrt;
if (copy_from_user(&ctrt, argp, sizeof(gdth_ioctl_ctrtype)) ||
ctrt.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[ctrt.ionode]);
if (ha->type == GDT_ISA || ha->type == GDT_EISA) {
ctrt.type = (unchar)((ha->stype>>20) - 0x10);
} else {
if (ha->type != GDT_PCIMPR) {
ctrt.type = (unchar)((ha->stype<<4) + 6);
} else {
ctrt.type =
(ha->oem_id == OEM_ID_INTEL ? 0xfd : 0xfe);
if (ha->stype >= 0x300)
ctrt.ext_type = 0x6000 | ha->subdevice_id;
else
ctrt.ext_type = 0x6000 | ha->stype;
}
ctrt.device_id = ha->stype;
ctrt.sub_device_id = ha->subdevice_id;
}
ctrt.info = ha->brd_phys;
ctrt.oem_id = ha->oem_id;
if (copy_to_user(argp, &ctrt, sizeof(gdth_ioctl_ctrtype)))
return -EFAULT;
break;
}
case GDTIOCTL_GENERAL:
return ioc_general(argp, cmnd);
case GDTIOCTL_EVENT:
return ioc_event(argp);
case GDTIOCTL_LOCKDRV:
return ioc_lockdrv(argp);
case GDTIOCTL_LOCKCHN:
{
gdth_ioctl_lockchn lchn;
unchar i, j;
if (copy_from_user(&lchn, argp, sizeof(gdth_ioctl_lockchn)) ||
lchn.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[lchn.ionode]);
i = lchn.channel;
if (i < ha->bus_cnt) {
if (lchn.lock) {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->raw[i].lock = 1;
spin_unlock_irqrestore(&ha->smp_lock, flags);
for (j = 0; j < ha->tid_cnt; ++j) {
gdth_wait_completion(lchn.ionode, i, j);
gdth_stop_timeout(lchn.ionode, i, j);
}
} else {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->raw[i].lock = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
for (j = 0; j < ha->tid_cnt; ++j) {
gdth_start_timeout(lchn.ionode, i, j);
gdth_next(lchn.ionode);
}
}
}
break;
}
case GDTIOCTL_RESCAN:
return ioc_rescan(argp, cmnd);
case GDTIOCTL_HDRLIST:
return ioc_hdrlist(argp, cmnd);
case GDTIOCTL_RESET_BUS:
{
gdth_ioctl_reset res;
int hanum, rval;
if (copy_from_user(&res, argp, sizeof(gdth_ioctl_reset)) ||
res.ionode >= gdth_ctr_count)
return -EFAULT;
hanum = res.ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
scp = kmalloc(sizeof(*scp), GFP_KERNEL);
if (!scp)
return -ENOMEM;
memset(scp, 0, sizeof(*scp));
scp->device = ha->sdev;
scp->cmd_len = 12;
scp->use_sg = 0;
scp->device->channel = virt_ctr ? 0 : res.number;
rval = gdth_eh_bus_reset(scp);
res.status = (rval == SUCCESS ? S_OK : S_GENERR);
kfree(scp);
#else
scp = scsi_allocate_device(ha->sdev, 1, FALSE);
if (!scp)
return -ENOMEM;
scp->cmd_len = 12;
scp->use_sg = 0;
scp->channel = virt_ctr ? 0 : res.number;
rval = gdth_eh_bus_reset(scp);
res.status = (rval == SUCCESS ? S_OK : S_GENERR);
scsi_release_command(scp);
#endif
if (copy_to_user(argp, &res, sizeof(gdth_ioctl_reset)))
return -EFAULT;
break;
}
case GDTIOCTL_RESET_DRV:
return ioc_resetdrv(argp, cmnd);
default:
break;
}
return 0;
}
/* flush routine */
static void gdth_flush(int hanum)
{
int i;
gdth_ha_str *ha;
gdth_cmd_str gdtcmd;
char cmnd[MAX_COMMAND_SIZE];
memset(cmnd, 0xff, MAX_COMMAND_SIZE);
TRACE2(("gdth_flush() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
for (i = 0; i < MAX_HDRIVES; ++i) {
if (ha->hdr[i].present) {
gdtcmd.BoardNode = LOCALBOARD;
gdtcmd.Service = CACHESERVICE;
gdtcmd.OpCode = GDT_FLUSH;
if (ha->cache_feat & GDT_64BIT) {
gdtcmd.u.cache64.DeviceNo = i;
gdtcmd.u.cache64.BlockNo = 1;
gdtcmd.u.cache64.sg_canz = 0;
} else {
gdtcmd.u.cache.DeviceNo = i;
gdtcmd.u.cache.BlockNo = 1;
gdtcmd.u.cache.sg_canz = 0;
}
TRACE2(("gdth_flush(): flush ha %d drive %d\n", hanum, i));
gdth_execute(gdth_ctr_tab[hanum], &gdtcmd, cmnd, 30, NULL);
}
}
}
/* shutdown routine */
static int gdth_halt(struct notifier_block *nb, ulong event, void *buf)
{
int hanum;
#ifndef __alpha__
gdth_cmd_str gdtcmd;
char cmnd[MAX_COMMAND_SIZE];
#endif
if (notifier_disabled)
return NOTIFY_OK;
TRACE2(("gdth_halt() event %d\n",(int)event));
if (event != SYS_RESTART && event != SYS_HALT && event != SYS_POWER_OFF)
return NOTIFY_DONE;
notifier_disabled = 1;
printk("GDT-HA: Flushing all host drives .. ");
for (hanum = 0; hanum < gdth_ctr_count; ++hanum) {
gdth_flush(hanum);
#ifndef __alpha__
/* controller reset */
memset(cmnd, 0xff, MAX_COMMAND_SIZE);
gdtcmd.BoardNode = LOCALBOARD;
gdtcmd.Service = CACHESERVICE;
gdtcmd.OpCode = GDT_RESET;
TRACE2(("gdth_halt(): reset controller %d\n", hanum));
gdth_execute(gdth_ctr_tab[hanum], &gdtcmd, cmnd, 10, NULL);
#endif
}
printk("Done.\n");
#ifdef GDTH_STATISTICS
del_timer(&gdth_timer);
#endif
return NOTIFY_OK;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
/* configure lun */
static int gdth_slave_configure(struct scsi_device *sdev)
{
scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
sdev->skip_ms_page_3f = 1;
sdev->skip_ms_page_8 = 1;
return 0;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static struct scsi_host_template driver_template = {
#else
static Scsi_Host_Template driver_template = {
#endif
.proc_name = "gdth",
.proc_info = gdth_proc_info,
.name = "GDT SCSI Disk Array Controller",
.detect = gdth_detect,
.release = gdth_release,
.info = gdth_info,
.queuecommand = gdth_queuecommand,
.eh_bus_reset_handler = gdth_eh_bus_reset,
.bios_param = gdth_bios_param,
.can_queue = GDTH_MAXCMDS,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
.slave_configure = gdth_slave_configure,
#endif
.this_id = -1,
.sg_tablesize = GDTH_MAXSG,
.cmd_per_lun = GDTH_MAXC_P_L,
.unchecked_isa_dma = 1,
.use_clustering = ENABLE_CLUSTERING,
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
.use_new_eh_code = 1,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20)
.highmem_io = 1,
#endif
#endif
};
#include "scsi_module.c"
#ifndef MODULE
__setup("gdth=", option_setup);
#endif