WSL2-Linux-Kernel/Documentation/arm
Linus Torvalds 8d648aad05 ARM: SoC platform updates
SoC platform changes (arch/arm/mach-*). This merge window, the bulk is
 for a few platforms:
 
 * Gemini:
  - Legacy platform that Linus Walleij has converted to multiplatform
    and DT, so a handful of various tweaks there, removal of some old
    stale support, etc.
 
 * Atmel AT91:
  - Fixup of various power management related pieces
  - Move of SoC detection to a drivers/soc driver instead
 
 * ST Micro STM32:
  - New SoC support: STM32H743
 
 * TI platforms:
  - More driver support for Davinci (SATA in particular)
  - Removal of some old stale hwmod files (linkspace platform)
 
 * Misc:
  - A couple of smaller patches for i.MX, sunxi, hisi
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJZEANUAAoJEIwa5zzehBx3XS8P/0qIIbAW2UvPMTN7ONVAarQL
 Ri+ZfmxxUmgWBkXEV6XICrwGwwH8l87o8+TLvQZbPmSnZa9gxT8/OF8smQhYhGqr
 5hpmRpg2yhssLgxMaL9YQtwl7Au/EvYHgvVPaE6UxI/DEN1QzDiI4x0gsEu5f4oz
 3cLh1JqFnP5X0j0wdtsn4B21dQGbqQsUVbqysq48NYHuDOlbwfUj2f8y8TMmCVBP
 gn736jHUxinQd4vDUFiSmVflNPS2ApaIaVs1KTedmkFA3yZMJUNVp6QqDc+Xpk8l
 tIMcrSdATckgIIgbs2bCBQr4Ji4jkyWnlR1rqsg1GKCP+OQdnnTyEEzWOwW2KXRF
 faSr+CKB9mM79TZkRdjV494uwbc8Xg+JnfTHLAaO8fmMmNE8z5pnTNw2RBnS6BIk
 wpgUVEcCJWEzUodNhuByB328qUXhQ716N3jYb+IN9vEv1MbjuGpsH/DC9EkMv0+k
 cLuhiNmLVbIfHX3u6xTsqtVWjipV0D0cb7WI1a4SZHx/hTmlKc7Q4/wQXH1IykDA
 Y/36NG+jxIjx7a3sFc59LoIvuZOkuGf3EaSSxsrbt3/mFdKXjdq0vNCiluVpSakZ
 2rzzKePktKr//PxYVB7tvpSs9f/IBpsiy47NDxVvH2DvtohfhEnVxTIKZQiA01U4
 sjVToA5ovDHJAne9sIAB
 =ZdtJ
 -----END PGP SIGNATURE-----

Merge tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc

Pull ARM SoC platform updates from Olof Johansson:
 "SoC platform changes (arch/arm/mach-*). This merge window, the bulk is
  for a few platforms:

  Gemini:
   - Legacy platform that Linus Walleij has converted to multiplatform
     and DT, so a handful of various tweaks there, removal of some old
     stale support, etc.

  Atmel AT91:
   - Fixup of various power management related pieces
   - Move of SoC detection to a drivers/soc driver instead

  ST Micro STM32:
   - New SoC support: STM32H743

  TI platforms:
   - More driver support for Davinci (SATA in particular)
   - Removal of some old stale hwmod files (linkspace platform)

  Misc:
   - A couple of smaller patches for i.MX, sunxi, hisi"

* tag 'armsoc-soc' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (57 commits)
  ARM: davinci: Add clock for CPPI 4.1 DMA engine
  ARM: mxs: add support for I2SE Duckbill 2 boards
  MAINTAINERS: Update the Allwinner sunXi entry
  ARM: i.MX25: globally disable supervisor protect
  ARM: at91: move SoC detection to its own driver
  ARM: at91: pm: correct typo
  ARM: at91: pm: Remove at91_pm_set_standby
  ARM: at91: pm: Merge all at91sam9*_pm_init
  ARM: at91: pm: Tie the USB clock mask to the pmc
  ARM: at91: pm: Tie the memory controller type to the ramc id
  ARM: at91: pm: Workaround DDRSDRC self-refresh bug with LPDDR1 memories.
  ARM: at91: pm: Simplify at91rm9200_standby
  ARM: at91: pm: Use struct at91_pm_data in pm_suspend.S
  ARM: at91: pm: Move global variables into at91_pm_data
  ARM: at91: pm: Move at91_ramc_read/write to pm.c
  ARM: at91: pm: Cleanup headers
  MAINTAINERS: Add memory drivers to AT91 entry
  MAINTAINERS: Update AT91 entry
  ARM: davinci: add pata_bk3710 libata driver support
  ARM: OMAP2+: mark omap_init_rng as __init
  ...
2017-05-09 09:49:36 -07:00
..
Atmel ARM: at91: Documentation: update the sama5d2 entry 2016-06-21 17:09:34 +02:00
Marvell Documentation: arm: add Marvell Armada 7K and 8K families 2016-02-19 14:07:54 +01:00
OMAP Documentation: ARM: List new omap MMC requirements 2015-10-12 16:23:34 -07:00
SA1100 Documentation: fix common spelling mistakes 2016-04-28 07:51:59 -06:00
SH-Mobile
SPEAr Update Viresh Kumar's email address 2015-07-17 16:39:53 -07:00
Samsung Doc: ARM: Fix a typo in clksrc-change-registers.awk 2016-02-17 14:11:59 -07:00
Samsung-S3C24XX
VFP
keystone ARM: dts: keystone: k2l: fix kernel crash when clk_ignore_unused is not in bootargs 2015-11-23 10:36:27 -08:00
nwfpe
pxa ARM: pxa: make more mach/*.h files local 2015-12-01 21:52:50 +01:00
sti
stm32 ARM: stm32: Add a new SOC - STM32H743 2017-03-24 11:37:24 +01:00
sunxi arm: sunxi: add support for V3s SoC 2017-01-20 21:31:34 +01:00
00-INDEX Doc: update 00-INDEX files to reflect the runnable code move 2016-10-10 07:12:09 -06:00
Booting docs: fix locations of several documents that got moved 2016-10-24 08:12:35 -02:00
CCN.txt bus: arm-ccn: Correct required arguments for XP PMU events 2016-08-17 11:42:40 +01:00
IXP4xx
Interrupts
Netwinder
Porting
README
Setup
cluster-pm-race-avoidance.txt
firmware.txt
kernel_mode_neon.txt
kernel_user_helpers.txt
mem_alignment arm: Documentation: update a path name 2017-04-20 14:06:55 -06:00
memory.txt ARM: 8432/1: move VMALLOC_END from 0xff000000 to 0xff800000 2015-09-22 08:13:57 +01:00
swp_emulation
tcm.txt
uefi.txt arm64 updates for 4.4: 2015-11-04 14:47:13 -08:00
vlocks.txt Doc: Change wikipedia's URL from http to https 2015-06-22 10:14:05 -06:00

README

			   ARM Linux 2.6
			   =============

    Please check <ftp://ftp.arm.linux.org.uk/pub/armlinux> for
    updates.

Compilation of kernel
---------------------

  In order to compile ARM Linux, you will need a compiler capable of
  generating ARM ELF code with GNU extensions.  GCC 3.3 is known to be
  a good compiler.  Fortunately, you needn't guess.  The kernel will report
  an error if your compiler is a recognized offender.

  To build ARM Linux natively, you shouldn't have to alter the ARCH = line
  in the top level Makefile.  However, if you don't have the ARM Linux ELF
  tools installed as default, then you should change the CROSS_COMPILE
  line as detailed below.

  If you wish to cross-compile, then alter the following lines in the top
  level make file:

    ARCH = <whatever>
	with
    ARCH = arm

	and

    CROSS_COMPILE=
	to
    CROSS_COMPILE=<your-path-to-your-compiler-without-gcc>
	eg.
    CROSS_COMPILE=arm-linux-

  Do a 'make config', followed by 'make Image' to build the kernel 
  (arch/arm/boot/Image).  A compressed image can be built by doing a 
  'make zImage' instead of 'make Image'.


Bug reports etc
---------------

  Please send patches to the patch system.  For more information, see
  http://www.arm.linux.org.uk/developer/patches/info.php Always include some
  explanation as to what the patch does and why it is needed.

  Bug reports should be sent to linux-arm-kernel@lists.arm.linux.org.uk,
  or submitted through the web form at
  http://www.arm.linux.org.uk/developer/ 

  When sending bug reports, please ensure that they contain all relevant
  information, eg. the kernel messages that were printed before/during
  the problem, what you were doing, etc.


Include files
-------------

  Several new include directories have been created under include/asm-arm,
  which are there to reduce the clutter in the top-level directory.  These
  directories, and their purpose is listed below:

   arch-*	machine/platform specific header files
   hardware	driver-internal ARM specific data structures/definitions
   mach		descriptions of generic ARM to specific machine interfaces
   proc-*	processor dependent header files (currently only two
		categories)


Machine/Platform support
------------------------

  The ARM tree contains support for a lot of different machine types.  To
  continue supporting these differences, it has become necessary to split
  machine-specific parts by directory.  For this, the machine category is
  used to select which directories and files get included (we will use
  $(MACHINE) to refer to the category)

  To this end, we now have arch/arm/mach-$(MACHINE) directories which are
  designed to house the non-driver files for a particular machine (eg, PCI,
  memory management, architecture definitions etc).  For all future
  machines, there should be a corresponding arch/arm/mach-$(MACHINE)/include/mach
  directory.


Modules
-------

  Although modularisation is supported (and required for the FP emulator),
  each module on an ARM2/ARM250/ARM3 machine when is loaded will take
  memory up to the next 32k boundary due to the size of the pages.
  Therefore, is modularisation on these machines really worth it?

  However, ARM6 and up machines allow modules to take multiples of 4k, and
  as such Acorn RiscPCs and other architectures using these processors can
  make good use of modularisation.


ADFS Image files
----------------

  You can access image files on your ADFS partitions by mounting the ADFS
  partition, and then using the loopback device driver.  You must have
  losetup installed.

  Please note that the PCEmulator DOS partitions have a partition table at
  the start, and as such, you will have to give '-o offset' to losetup.


Request to developers
---------------------

  When writing device drivers which include a separate assembler file, please
  include it in with the C file, and not the arch/arm/lib directory.  This
  allows the driver to be compiled as a loadable module without requiring
  half the code to be compiled into the kernel image.

  In general, try to avoid using assembler unless it is really necessary.  It
  makes drivers far less easy to port to other hardware.


ST506 hard drives
-----------------

  The ST506 hard drive controllers seem to be working fine (if a little
  slowly).  At the moment they will only work off the controllers on an
  A4x0's motherboard, but for it to work off a Podule just requires
  someone with a podule to add the addresses for the IRQ mask and the
  HDC base to the source.

  As of 31/3/96 it works with two drives (you should get the ADFS
  *configure harddrive set to 2). I've got an internal 20MB and a great
  big external 5.25" FH 64MB drive (who could ever want more :-) ).

  I've just got 240K/s off it (a dd with bs=128k); thats about half of what
  RiscOS gets; but it's a heck of a lot better than the 50K/s I was getting
  last week :-)

  Known bug: Drive data errors can cause a hang; including cases where
  the controller has fixed the error using ECC. (Possibly ONLY
  in that case...hmm).


1772 Floppy
-----------
  This also seems to work OK, but hasn't been stressed much lately.  It
  hasn't got any code for disc change detection in there at the moment which
  could be a bit of a problem!  Suggestions on the correct way to do this
  are welcome.


CONFIG_MACH_ and CONFIG_ARCH_
-----------------------------
  A change was made in 2003 to the macro names for new machines.
  Historically, CONFIG_ARCH_ was used for the bonafide architecture,
  e.g. SA1100, as well as implementations of the architecture,
  e.g. Assabet.  It was decided to change the implementation macros
  to read CONFIG_MACH_ for clarity.  Moreover, a retroactive fixup has
  not been made because it would complicate patching.

  Previous registrations may be found online.

    <http://www.arm.linux.org.uk/developer/machines/>

Kernel entry (head.S)
--------------------------
  The initial entry into the kernel is via head.S, which uses machine
  independent code.  The machine is selected by the value of 'r1' on
  entry, which must be kept unique.

  Due to the large number of machines which the ARM port of Linux provides
  for, we have a method to manage this which ensures that we don't end up
  duplicating large amounts of code.

  We group machine (or platform) support code into machine classes.  A
  class typically based around one or more system on a chip devices, and
  acts as a natural container around the actual implementations.  These
  classes are given directories - arch/arm/mach-<class> and
  arch/arm/mach-<class> - which contain the source files to/include/mach
  support the machine class.  This directories also contain any machine
  specific supporting code.

  For example, the SA1100 class is based upon the SA1100 and SA1110 SoC
  devices, and contains the code to support the way the on-board and off-
  board devices are used, or the device is setup, and provides that
  machine specific "personality."

  For platforms that support device tree (DT), the machine selection is
  controlled at runtime by passing the device tree blob to the kernel.  At
  compile-time, support for the machine type must be selected.  This allows for
  a single multiplatform kernel build to be used for several machine types.

  For platforms that do not use device tree, this machine selection is
  controlled by the machine type ID, which acts both as a run-time and a
  compile-time code selection method.  You can register a new machine via the
  web site at:

    <http://www.arm.linux.org.uk/developer/machines/>

  Note: Please do not register a machine type for DT-only platforms.  If your
  platform is DT-only, you do not need a registered machine type.

---
Russell King (15/03/2004)