WSL2-Linux-Kernel/fs/xfs/xfs_file.c

1810 строки
46 KiB
C

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_error.h"
#include "xfs_dir2.h"
#include "xfs_dir2_priv.h"
#include "xfs_ioctl.h"
#include "xfs_trace.h"
#include "xfs_log.h"
#include "xfs_icache.h"
#include "xfs_pnfs.h"
#include "xfs_iomap.h"
#include "xfs_reflink.h"
#include <linux/dcache.h>
#include <linux/falloc.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
static const struct vm_operations_struct xfs_file_vm_ops;
/*
* Locking primitives for read and write IO paths to ensure we consistently use
* and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
*/
static inline void
xfs_rw_ilock(
struct xfs_inode *ip,
int type)
{
if (type & XFS_IOLOCK_EXCL)
inode_lock(VFS_I(ip));
xfs_ilock(ip, type);
}
static inline void
xfs_rw_iunlock(
struct xfs_inode *ip,
int type)
{
xfs_iunlock(ip, type);
if (type & XFS_IOLOCK_EXCL)
inode_unlock(VFS_I(ip));
}
static inline void
xfs_rw_ilock_demote(
struct xfs_inode *ip,
int type)
{
xfs_ilock_demote(ip, type);
if (type & XFS_IOLOCK_EXCL)
inode_unlock(VFS_I(ip));
}
/*
* Clear the specified ranges to zero through either the pagecache or DAX.
* Holes and unwritten extents will be left as-is as they already are zeroed.
*/
int
xfs_zero_range(
struct xfs_inode *ip,
xfs_off_t pos,
xfs_off_t count,
bool *did_zero)
{
return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
}
int
xfs_update_prealloc_flags(
struct xfs_inode *ip,
enum xfs_prealloc_flags flags)
{
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
0, 0, 0, &tp);
if (error)
return error;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
if (!(flags & XFS_PREALLOC_INVISIBLE)) {
VFS_I(ip)->i_mode &= ~S_ISUID;
if (VFS_I(ip)->i_mode & S_IXGRP)
VFS_I(ip)->i_mode &= ~S_ISGID;
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
}
if (flags & XFS_PREALLOC_SET)
ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
if (flags & XFS_PREALLOC_CLEAR)
ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
if (flags & XFS_PREALLOC_SYNC)
xfs_trans_set_sync(tp);
return xfs_trans_commit(tp);
}
/*
* Fsync operations on directories are much simpler than on regular files,
* as there is no file data to flush, and thus also no need for explicit
* cache flush operations, and there are no non-transaction metadata updates
* on directories either.
*/
STATIC int
xfs_dir_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct xfs_inode *ip = XFS_I(file->f_mapping->host);
struct xfs_mount *mp = ip->i_mount;
xfs_lsn_t lsn = 0;
trace_xfs_dir_fsync(ip);
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip))
lsn = ip->i_itemp->ili_last_lsn;
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!lsn)
return 0;
return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
}
STATIC int
xfs_file_fsync(
struct file *file,
loff_t start,
loff_t end,
int datasync)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
int error = 0;
int log_flushed = 0;
xfs_lsn_t lsn = 0;
trace_xfs_file_fsync(ip);
error = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (error)
return error;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
xfs_iflags_clear(ip, XFS_ITRUNCATED);
if (mp->m_flags & XFS_MOUNT_BARRIER) {
/*
* If we have an RT and/or log subvolume we need to make sure
* to flush the write cache the device used for file data
* first. This is to ensure newly written file data make
* it to disk before logging the new inode size in case of
* an extending write.
*/
if (XFS_IS_REALTIME_INODE(ip))
xfs_blkdev_issue_flush(mp->m_rtdev_targp);
else if (mp->m_logdev_targp != mp->m_ddev_targp)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
}
/*
* All metadata updates are logged, which means that we just have to
* flush the log up to the latest LSN that touched the inode. If we have
* concurrent fsync/fdatasync() calls, we need them to all block on the
* log force before we clear the ili_fsync_fields field. This ensures
* that we don't get a racing sync operation that does not wait for the
* metadata to hit the journal before returning. If we race with
* clearing the ili_fsync_fields, then all that will happen is the log
* force will do nothing as the lsn will already be on disk. We can't
* race with setting ili_fsync_fields because that is done under
* XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
* until after the ili_fsync_fields is cleared.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip)) {
if (!datasync ||
(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
lsn = ip->i_itemp->ili_last_lsn;
}
if (lsn) {
error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
ip->i_itemp->ili_fsync_fields = 0;
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
/*
* If we only have a single device, and the log force about was
* a no-op we might have to flush the data device cache here.
* This can only happen for fdatasync/O_DSYNC if we were overwriting
* an already allocated file and thus do not have any metadata to
* commit.
*/
if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
mp->m_logdev_targp == mp->m_ddev_targp &&
!XFS_IS_REALTIME_INODE(ip) &&
!log_flushed)
xfs_blkdev_issue_flush(mp->m_ddev_targp);
return error;
}
STATIC ssize_t
xfs_file_dio_aio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct address_space *mapping = iocb->ki_filp->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
loff_t isize = i_size_read(inode);
size_t count = iov_iter_count(to);
struct iov_iter data;
struct xfs_buftarg *target;
ssize_t ret = 0;
trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
if (!count)
return 0; /* skip atime */
if (XFS_IS_REALTIME_INODE(ip))
target = ip->i_mount->m_rtdev_targp;
else
target = ip->i_mount->m_ddev_targp;
/* DIO must be aligned to device logical sector size */
if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
if (iocb->ki_pos == isize)
return 0;
return -EINVAL;
}
file_accessed(iocb->ki_filp);
/*
* Locking is a bit tricky here. If we take an exclusive lock for direct
* IO, we effectively serialise all new concurrent read IO to this file
* and block it behind IO that is currently in progress because IO in
* progress holds the IO lock shared. We only need to hold the lock
* exclusive to blow away the page cache, so only take lock exclusively
* if the page cache needs invalidation. This allows the normal direct
* IO case of no page cache pages to proceeed concurrently without
* serialisation.
*/
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
if (mapping->nrpages) {
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
/*
* The generic dio code only flushes the range of the particular
* I/O. Because we take an exclusive lock here, this whole
* sequence is considerably more expensive for us. This has a
* noticeable performance impact for any file with cached pages,
* even when outside of the range of the particular I/O.
*
* Hence, amortize the cost of the lock against a full file
* flush and reduce the chances of repeated iolock cycles going
* forward.
*/
if (mapping->nrpages) {
ret = filemap_write_and_wait(mapping);
if (ret) {
xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
/*
* Invalidate whole pages. This can return an error if
* we fail to invalidate a page, but this should never
* happen on XFS. Warn if it does fail.
*/
ret = invalidate_inode_pages2(mapping);
WARN_ON_ONCE(ret);
ret = 0;
}
xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
}
data = *to;
ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
xfs_get_blocks_direct, NULL, NULL, 0);
if (ret >= 0) {
iocb->ki_pos += ret;
iov_iter_advance(to, ret);
}
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
static noinline ssize_t
xfs_file_dax_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
size_t count = iov_iter_count(to);
ssize_t ret = 0;
trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
if (!count)
return 0; /* skip atime */
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
file_accessed(iocb->ki_filp);
return ret;
}
STATIC ssize_t
xfs_file_buffered_aio_read(
struct kiocb *iocb,
struct iov_iter *to)
{
struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
ssize_t ret;
trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
ret = generic_file_read_iter(iocb, to);
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
return ret;
}
STATIC ssize_t
xfs_file_read_iter(
struct kiocb *iocb,
struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
struct xfs_mount *mp = XFS_I(inode)->i_mount;
ssize_t ret = 0;
XFS_STATS_INC(mp, xs_read_calls);
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
if (IS_DAX(inode))
ret = xfs_file_dax_read(iocb, to);
else if (iocb->ki_flags & IOCB_DIRECT)
ret = xfs_file_dio_aio_read(iocb, to);
else
ret = xfs_file_buffered_aio_read(iocb, to);
if (ret > 0)
XFS_STATS_ADD(mp, xs_read_bytes, ret);
return ret;
}
/*
* Zero any on disk space between the current EOF and the new, larger EOF.
*
* This handles the normal case of zeroing the remainder of the last block in
* the file and the unusual case of zeroing blocks out beyond the size of the
* file. This second case only happens with fixed size extents and when the
* system crashes before the inode size was updated but after blocks were
* allocated.
*
* Expects the iolock to be held exclusive, and will take the ilock internally.
*/
int /* error (positive) */
xfs_zero_eof(
struct xfs_inode *ip,
xfs_off_t offset, /* starting I/O offset */
xfs_fsize_t isize, /* current inode size */
bool *did_zeroing)
{
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(offset > isize);
trace_xfs_zero_eof(ip, isize, offset - isize);
return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
}
/*
* Common pre-write limit and setup checks.
*
* Called with the iolocked held either shared and exclusive according to
* @iolock, and returns with it held. Might upgrade the iolock to exclusive
* if called for a direct write beyond i_size.
*/
STATIC ssize_t
xfs_file_aio_write_checks(
struct kiocb *iocb,
struct iov_iter *from,
int *iolock)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t error = 0;
size_t count = iov_iter_count(from);
bool drained_dio = false;
restart:
error = generic_write_checks(iocb, from);
if (error <= 0)
return error;
error = xfs_break_layouts(inode, iolock, true);
if (error)
return error;
/* For changing security info in file_remove_privs() we need i_mutex */
if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
xfs_rw_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, *iolock);
goto restart;
}
/*
* If the offset is beyond the size of the file, we need to zero any
* blocks that fall between the existing EOF and the start of this
* write. If zeroing is needed and we are currently holding the
* iolock shared, we need to update it to exclusive which implies
* having to redo all checks before.
*
* We need to serialise against EOF updates that occur in IO
* completions here. We want to make sure that nobody is changing the
* size while we do this check until we have placed an IO barrier (i.e.
* hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
* The spinlock effectively forms a memory barrier once we have the
* XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
* and hence be able to correctly determine if we need to run zeroing.
*/
spin_lock(&ip->i_flags_lock);
if (iocb->ki_pos > i_size_read(inode)) {
bool zero = false;
spin_unlock(&ip->i_flags_lock);
if (!drained_dio) {
if (*iolock == XFS_IOLOCK_SHARED) {
xfs_rw_iunlock(ip, *iolock);
*iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, *iolock);
iov_iter_reexpand(from, count);
}
/*
* We now have an IO submission barrier in place, but
* AIO can do EOF updates during IO completion and hence
* we now need to wait for all of them to drain. Non-AIO
* DIO will have drained before we are given the
* XFS_IOLOCK_EXCL, and so for most cases this wait is a
* no-op.
*/
inode_dio_wait(inode);
drained_dio = true;
goto restart;
}
error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
if (error)
return error;
} else
spin_unlock(&ip->i_flags_lock);
/*
* Updating the timestamps will grab the ilock again from
* xfs_fs_dirty_inode, so we have to call it after dropping the
* lock above. Eventually we should look into a way to avoid
* the pointless lock roundtrip.
*/
if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
error = file_update_time(file);
if (error)
return error;
}
/*
* If we're writing the file then make sure to clear the setuid and
* setgid bits if the process is not being run by root. This keeps
* people from modifying setuid and setgid binaries.
*/
if (!IS_NOSEC(inode))
return file_remove_privs(file);
return 0;
}
/*
* xfs_file_dio_aio_write - handle direct IO writes
*
* Lock the inode appropriately to prepare for and issue a direct IO write.
* By separating it from the buffered write path we remove all the tricky to
* follow locking changes and looping.
*
* If there are cached pages or we're extending the file, we need IOLOCK_EXCL
* until we're sure the bytes at the new EOF have been zeroed and/or the cached
* pages are flushed out.
*
* In most cases the direct IO writes will be done holding IOLOCK_SHARED
* allowing them to be done in parallel with reads and other direct IO writes.
* However, if the IO is not aligned to filesystem blocks, the direct IO layer
* needs to do sub-block zeroing and that requires serialisation against other
* direct IOs to the same block. In this case we need to serialise the
* submission of the unaligned IOs so that we don't get racing block zeroing in
* the dio layer. To avoid the problem with aio, we also need to wait for
* outstanding IOs to complete so that unwritten extent conversion is completed
* before we try to map the overlapping block. This is currently implemented by
* hitting it with a big hammer (i.e. inode_dio_wait()).
*
* Returns with locks held indicated by @iolock and errors indicated by
* negative return values.
*/
STATIC ssize_t
xfs_file_dio_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t ret = 0;
int unaligned_io = 0;
int iolock;
size_t count = iov_iter_count(from);
loff_t end;
struct iov_iter data;
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
/* DIO must be aligned to device logical sector size */
if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
return -EINVAL;
/* "unaligned" here means not aligned to a filesystem block */
if ((iocb->ki_pos & mp->m_blockmask) ||
((iocb->ki_pos + count) & mp->m_blockmask))
unaligned_io = 1;
/*
* We don't need to take an exclusive lock unless there page cache needs
* to be invalidated or unaligned IO is being executed. We don't need to
* consider the EOF extension case here because
* xfs_file_aio_write_checks() will relock the inode as necessary for
* EOF zeroing cases and fill out the new inode size as appropriate.
*/
if (unaligned_io || mapping->nrpages)
iolock = XFS_IOLOCK_EXCL;
else
iolock = XFS_IOLOCK_SHARED;
xfs_rw_ilock(ip, iolock);
/*
* Recheck if there are cached pages that need invalidate after we got
* the iolock to protect against other threads adding new pages while
* we were waiting for the iolock.
*/
if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
xfs_rw_iunlock(ip, iolock);
iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
count = iov_iter_count(from);
end = iocb->ki_pos + count - 1;
/*
* See xfs_file_dio_aio_read() for why we do a full-file flush here.
*/
if (mapping->nrpages) {
ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (ret)
goto out;
/*
* Invalidate whole pages. This can return an error if we fail
* to invalidate a page, but this should never happen on XFS.
* Warn if it does fail.
*/
ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
WARN_ON_ONCE(ret);
ret = 0;
}
/*
* If we are doing unaligned IO, wait for all other IO to drain,
* otherwise demote the lock if we had to flush cached pages
*/
if (unaligned_io)
inode_dio_wait(inode);
else if (iolock == XFS_IOLOCK_EXCL) {
xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
iolock = XFS_IOLOCK_SHARED;
}
trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
/* If this is a block-aligned directio CoW, remap immediately. */
if (xfs_is_reflink_inode(ip) && !unaligned_io) {
ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
if (ret)
goto out;
}
data = *from;
ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
xfs_get_blocks_direct, xfs_end_io_direct_write,
NULL, DIO_ASYNC_EXTEND);
/* see generic_file_direct_write() for why this is necessary */
if (mapping->nrpages) {
invalidate_inode_pages2_range(mapping,
iocb->ki_pos >> PAGE_SHIFT,
end >> PAGE_SHIFT);
}
if (ret > 0) {
iocb->ki_pos += ret;
iov_iter_advance(from, ret);
}
out:
xfs_rw_iunlock(ip, iolock);
/*
* No fallback to buffered IO on errors for XFS, direct IO will either
* complete fully or fail.
*/
ASSERT(ret < 0 || ret == count);
return ret;
}
static noinline ssize_t
xfs_file_dax_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct inode *inode = iocb->ki_filp->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
int iolock = XFS_IOLOCK_EXCL;
ssize_t ret, error = 0;
size_t count;
loff_t pos;
xfs_rw_ilock(ip, iolock);
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
pos = iocb->ki_pos;
count = iov_iter_count(from);
trace_xfs_file_dax_write(ip, count, pos);
ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
i_size_write(inode, iocb->ki_pos);
error = xfs_setfilesize(ip, pos, ret);
}
out:
xfs_rw_iunlock(ip, iolock);
return error ? error : ret;
}
STATIC ssize_t
xfs_file_buffered_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
int enospc = 0;
int iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, iolock);
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
write_retry:
trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
if (likely(ret >= 0))
iocb->ki_pos += ret;
/*
* If we hit a space limit, try to free up some lingering preallocated
* space before returning an error. In the case of ENOSPC, first try to
* write back all dirty inodes to free up some of the excess reserved
* metadata space. This reduces the chances that the eofblocks scan
* waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
* also behaves as a filter to prevent too many eofblocks scans from
* running at the same time.
*/
if (ret == -EDQUOT && !enospc) {
enospc = xfs_inode_free_quota_eofblocks(ip);
if (enospc)
goto write_retry;
enospc = xfs_inode_free_quota_cowblocks(ip);
if (enospc)
goto write_retry;
} else if (ret == -ENOSPC && !enospc) {
struct xfs_eofblocks eofb = {0};
enospc = 1;
xfs_flush_inodes(ip->i_mount);
eofb.eof_scan_owner = ip->i_ino; /* for locking */
eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
xfs_icache_free_eofblocks(ip->i_mount, &eofb);
goto write_retry;
}
current->backing_dev_info = NULL;
out:
xfs_rw_iunlock(ip, iolock);
return ret;
}
STATIC ssize_t
xfs_file_write_iter(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
ssize_t ret;
size_t ocount = iov_iter_count(from);
XFS_STATS_INC(ip->i_mount, xs_write_calls);
if (ocount == 0)
return 0;
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return -EIO;
if (IS_DAX(inode))
ret = xfs_file_dax_write(iocb, from);
else if (iocb->ki_flags & IOCB_DIRECT) {
/*
* Allow a directio write to fall back to a buffered
* write *only* in the case that we're doing a reflink
* CoW. In all other directio scenarios we do not
* allow an operation to fall back to buffered mode.
*/
ret = xfs_file_dio_aio_write(iocb, from);
if (ret == -EREMCHG)
goto buffered;
} else {
buffered:
ret = xfs_file_buffered_aio_write(iocb, from);
}
if (ret > 0) {
XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
/* Handle various SYNC-type writes */
ret = generic_write_sync(iocb, ret);
}
return ret;
}
#define XFS_FALLOC_FL_SUPPORTED \
(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
STATIC long
xfs_file_fallocate(
struct file *file,
int mode,
loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct xfs_inode *ip = XFS_I(inode);
long error;
enum xfs_prealloc_flags flags = 0;
uint iolock = XFS_IOLOCK_EXCL;
loff_t new_size = 0;
bool do_file_insert = 0;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (mode & ~XFS_FALLOC_FL_SUPPORTED)
return -EOPNOTSUPP;
xfs_ilock(ip, iolock);
error = xfs_break_layouts(inode, &iolock, false);
if (error)
goto out_unlock;
xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
iolock |= XFS_MMAPLOCK_EXCL;
if (mode & FALLOC_FL_PUNCH_HOLE) {
error = xfs_free_file_space(ip, offset, len);
if (error)
goto out_unlock;
} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
if (offset & blksize_mask || len & blksize_mask) {
error = -EINVAL;
goto out_unlock;
}
/*
* There is no need to overlap collapse range with EOF,
* in which case it is effectively a truncate operation
*/
if (offset + len >= i_size_read(inode)) {
error = -EINVAL;
goto out_unlock;
}
new_size = i_size_read(inode) - len;
error = xfs_collapse_file_space(ip, offset, len);
if (error)
goto out_unlock;
} else if (mode & FALLOC_FL_INSERT_RANGE) {
unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
new_size = i_size_read(inode) + len;
if (offset & blksize_mask || len & blksize_mask) {
error = -EINVAL;
goto out_unlock;
}
/* check the new inode size does not wrap through zero */
if (new_size > inode->i_sb->s_maxbytes) {
error = -EFBIG;
goto out_unlock;
}
/* Offset should be less than i_size */
if (offset >= i_size_read(inode)) {
error = -EINVAL;
goto out_unlock;
}
do_file_insert = 1;
} else {
flags |= XFS_PREALLOC_SET;
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
offset + len > i_size_read(inode)) {
new_size = offset + len;
error = inode_newsize_ok(inode, new_size);
if (error)
goto out_unlock;
}
if (mode & FALLOC_FL_ZERO_RANGE)
error = xfs_zero_file_space(ip, offset, len);
else {
if (mode & FALLOC_FL_UNSHARE_RANGE) {
error = xfs_reflink_unshare(ip, offset, len);
if (error)
goto out_unlock;
}
error = xfs_alloc_file_space(ip, offset, len,
XFS_BMAPI_PREALLOC);
}
if (error)
goto out_unlock;
}
if (file->f_flags & O_DSYNC)
flags |= XFS_PREALLOC_SYNC;
error = xfs_update_prealloc_flags(ip, flags);
if (error)
goto out_unlock;
/* Change file size if needed */
if (new_size) {
struct iattr iattr;
iattr.ia_valid = ATTR_SIZE;
iattr.ia_size = new_size;
error = xfs_vn_setattr_size(file_dentry(file), &iattr);
if (error)
goto out_unlock;
}
/*
* Perform hole insertion now that the file size has been
* updated so that if we crash during the operation we don't
* leave shifted extents past EOF and hence losing access to
* the data that is contained within them.
*/
if (do_file_insert)
error = xfs_insert_file_space(ip, offset, len);
out_unlock:
xfs_iunlock(ip, iolock);
return error;
}
/*
* Flush all file writes out to disk.
*/
static int
xfs_file_wait_for_io(
struct inode *inode,
loff_t offset,
size_t len)
{
loff_t rounding;
loff_t ioffset;
loff_t iendoffset;
loff_t bs;
int ret;
bs = inode->i_sb->s_blocksize;
inode_dio_wait(inode);
rounding = max_t(xfs_off_t, bs, PAGE_SIZE);
ioffset = round_down(offset, rounding);
iendoffset = round_up(offset + len, rounding) - 1;
ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
iendoffset);
return ret;
}
/* Hook up to the VFS reflink function */
STATIC int
xfs_file_share_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len,
bool is_dedupe)
{
struct inode *inode_in;
struct inode *inode_out;
ssize_t ret;
loff_t bs;
loff_t isize;
int same_inode;
loff_t blen;
unsigned int flags = 0;
inode_in = file_inode(file_in);
inode_out = file_inode(file_out);
bs = inode_out->i_sb->s_blocksize;
/* Don't touch certain kinds of inodes */
if (IS_IMMUTABLE(inode_out))
return -EPERM;
if (IS_SWAPFILE(inode_in) ||
IS_SWAPFILE(inode_out))
return -ETXTBSY;
/* Reflink only works within this filesystem. */
if (inode_in->i_sb != inode_out->i_sb)
return -EXDEV;
same_inode = (inode_in->i_ino == inode_out->i_ino);
/* Don't reflink dirs, pipes, sockets... */
if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
return -EISDIR;
if (S_ISFIFO(inode_in->i_mode) || S_ISFIFO(inode_out->i_mode))
return -EINVAL;
if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
return -EINVAL;
/* Don't share DAX file data for now. */
if (IS_DAX(inode_in) || IS_DAX(inode_out))
return -EINVAL;
/* Are we going all the way to the end? */
isize = i_size_read(inode_in);
if (isize == 0)
return 0;
if (len == 0)
len = isize - pos_in;
/* Ensure offsets don't wrap and the input is inside i_size */
if (pos_in + len < pos_in || pos_out + len < pos_out ||
pos_in + len > isize)
return -EINVAL;
/* Don't allow dedupe past EOF in the dest file */
if (is_dedupe) {
loff_t disize;
disize = i_size_read(inode_out);
if (pos_out >= disize || pos_out + len > disize)
return -EINVAL;
}
/* If we're linking to EOF, continue to the block boundary. */
if (pos_in + len == isize)
blen = ALIGN(isize, bs) - pos_in;
else
blen = len;
/* Only reflink if we're aligned to block boundaries */
if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_in + blen, bs) ||
!IS_ALIGNED(pos_out, bs) || !IS_ALIGNED(pos_out + blen, bs))
return -EINVAL;
/* Don't allow overlapped reflink within the same file */
if (same_inode && pos_out + blen > pos_in && pos_out < pos_in + blen)
return -EINVAL;
/* Wait for the completion of any pending IOs on srcfile */
ret = xfs_file_wait_for_io(inode_in, pos_in, len);
if (ret)
goto out;
ret = xfs_file_wait_for_io(inode_out, pos_out, len);
if (ret)
goto out;
if (is_dedupe)
flags |= XFS_REFLINK_DEDUPE;
ret = xfs_reflink_remap_range(XFS_I(inode_in), pos_in, XFS_I(inode_out),
pos_out, len, flags);
if (ret < 0)
goto out;
out:
return ret;
}
STATIC ssize_t
xfs_file_copy_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
size_t len,
unsigned int flags)
{
int error;
error = xfs_file_share_range(file_in, pos_in, file_out, pos_out,
len, false);
if (error)
return error;
return len;
}
STATIC int
xfs_file_clone_range(
struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len)
{
return xfs_file_share_range(file_in, pos_in, file_out, pos_out,
len, false);
}
#define XFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
STATIC ssize_t
xfs_file_dedupe_range(
struct file *src_file,
u64 loff,
u64 len,
struct file *dst_file,
u64 dst_loff)
{
int error;
/*
* Limit the total length we will dedupe for each operation.
* This is intended to bound the total time spent in this
* ioctl to something sane.
*/
if (len > XFS_MAX_DEDUPE_LEN)
len = XFS_MAX_DEDUPE_LEN;
error = xfs_file_share_range(src_file, loff, dst_file, dst_loff,
len, true);
if (error)
return error;
return len;
}
STATIC int
xfs_file_open(
struct inode *inode,
struct file *file)
{
if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
return -EFBIG;
if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
return -EIO;
return 0;
}
STATIC int
xfs_dir_open(
struct inode *inode,
struct file *file)
{
struct xfs_inode *ip = XFS_I(inode);
int mode;
int error;
error = xfs_file_open(inode, file);
if (error)
return error;
/*
* If there are any blocks, read-ahead block 0 as we're almost
* certain to have the next operation be a read there.
*/
mode = xfs_ilock_data_map_shared(ip);
if (ip->i_d.di_nextents > 0)
xfs_dir3_data_readahead(ip, 0, -1);
xfs_iunlock(ip, mode);
return 0;
}
STATIC int
xfs_file_release(
struct inode *inode,
struct file *filp)
{
return xfs_release(XFS_I(inode));
}
STATIC int
xfs_file_readdir(
struct file *file,
struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
xfs_inode_t *ip = XFS_I(inode);
size_t bufsize;
/*
* The Linux API doesn't pass down the total size of the buffer
* we read into down to the filesystem. With the filldir concept
* it's not needed for correct information, but the XFS dir2 leaf
* code wants an estimate of the buffer size to calculate it's
* readahead window and size the buffers used for mapping to
* physical blocks.
*
* Try to give it an estimate that's good enough, maybe at some
* point we can change the ->readdir prototype to include the
* buffer size. For now we use the current glibc buffer size.
*/
bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
return xfs_readdir(ip, ctx, bufsize);
}
/*
* This type is designed to indicate the type of offset we would like
* to search from page cache for xfs_seek_hole_data().
*/
enum {
HOLE_OFF = 0,
DATA_OFF,
};
/*
* Lookup the desired type of offset from the given page.
*
* On success, return true and the offset argument will point to the
* start of the region that was found. Otherwise this function will
* return false and keep the offset argument unchanged.
*/
STATIC bool
xfs_lookup_buffer_offset(
struct page *page,
loff_t *offset,
unsigned int type)
{
loff_t lastoff = page_offset(page);
bool found = false;
struct buffer_head *bh, *head;
bh = head = page_buffers(page);
do {
/*
* Unwritten extents that have data in the page
* cache covering them can be identified by the
* BH_Unwritten state flag. Pages with multiple
* buffers might have a mix of holes, data and
* unwritten extents - any buffer with valid
* data in it should have BH_Uptodate flag set
* on it.
*/
if (buffer_unwritten(bh) ||
buffer_uptodate(bh)) {
if (type == DATA_OFF)
found = true;
} else {
if (type == HOLE_OFF)
found = true;
}
if (found) {
*offset = lastoff;
break;
}
lastoff += bh->b_size;
} while ((bh = bh->b_this_page) != head);
return found;
}
/*
* This routine is called to find out and return a data or hole offset
* from the page cache for unwritten extents according to the desired
* type for xfs_seek_hole_data().
*
* The argument offset is used to tell where we start to search from the
* page cache. Map is used to figure out the end points of the range to
* lookup pages.
*
* Return true if the desired type of offset was found, and the argument
* offset is filled with that address. Otherwise, return false and keep
* offset unchanged.
*/
STATIC bool
xfs_find_get_desired_pgoff(
struct inode *inode,
struct xfs_bmbt_irec *map,
unsigned int type,
loff_t *offset)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct pagevec pvec;
pgoff_t index;
pgoff_t end;
loff_t endoff;
loff_t startoff = *offset;
loff_t lastoff = startoff;
bool found = false;
pagevec_init(&pvec, 0);
index = startoff >> PAGE_SHIFT;
endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
end = endoff >> PAGE_SHIFT;
do {
int want;
unsigned nr_pages;
unsigned int i;
want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
want);
/*
* No page mapped into given range. If we are searching holes
* and if this is the first time we got into the loop, it means
* that the given offset is landed in a hole, return it.
*
* If we have already stepped through some block buffers to find
* holes but they all contains data. In this case, the last
* offset is already updated and pointed to the end of the last
* mapped page, if it does not reach the endpoint to search,
* that means there should be a hole between them.
*/
if (nr_pages == 0) {
/* Data search found nothing */
if (type == DATA_OFF)
break;
ASSERT(type == HOLE_OFF);
if (lastoff == startoff || lastoff < endoff) {
found = true;
*offset = lastoff;
}
break;
}
/*
* At lease we found one page. If this is the first time we
* step into the loop, and if the first page index offset is
* greater than the given search offset, a hole was found.
*/
if (type == HOLE_OFF && lastoff == startoff &&
lastoff < page_offset(pvec.pages[0])) {
found = true;
break;
}
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
loff_t b_offset;
/*
* At this point, the page may be truncated or
* invalidated (changing page->mapping to NULL),
* or even swizzled back from swapper_space to tmpfs
* file mapping. However, page->index will not change
* because we have a reference on the page.
*
* Searching done if the page index is out of range.
* If the current offset is not reaches the end of
* the specified search range, there should be a hole
* between them.
*/
if (page->index > end) {
if (type == HOLE_OFF && lastoff < endoff) {
*offset = lastoff;
found = true;
}
goto out;
}
lock_page(page);
/*
* Page truncated or invalidated(page->mapping == NULL).
* We can freely skip it and proceed to check the next
* page.
*/
if (unlikely(page->mapping != inode->i_mapping)) {
unlock_page(page);
continue;
}
if (!page_has_buffers(page)) {
unlock_page(page);
continue;
}
found = xfs_lookup_buffer_offset(page, &b_offset, type);
if (found) {
/*
* The found offset may be less than the start
* point to search if this is the first time to
* come here.
*/
*offset = max_t(loff_t, startoff, b_offset);
unlock_page(page);
goto out;
}
/*
* We either searching data but nothing was found, or
* searching hole but found a data buffer. In either
* case, probably the next page contains the desired
* things, update the last offset to it so.
*/
lastoff = page_offset(page) + PAGE_SIZE;
unlock_page(page);
}
/*
* The number of returned pages less than our desired, search
* done. In this case, nothing was found for searching data,
* but we found a hole behind the last offset.
*/
if (nr_pages < want) {
if (type == HOLE_OFF) {
*offset = lastoff;
found = true;
}
break;
}
index = pvec.pages[i - 1]->index + 1;
pagevec_release(&pvec);
} while (index <= end);
out:
pagevec_release(&pvec);
return found;
}
/*
* caller must lock inode with xfs_ilock_data_map_shared,
* can we craft an appropriate ASSERT?
*
* end is because the VFS-level lseek interface is defined such that any
* offset past i_size shall return -ENXIO, but we use this for quota code
* which does not maintain i_size, and we want to SEEK_DATA past i_size.
*/
loff_t
__xfs_seek_hole_data(
struct inode *inode,
loff_t start,
loff_t end,
int whence)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
loff_t uninitialized_var(offset);
xfs_fileoff_t fsbno;
xfs_filblks_t lastbno;
int error;
if (start >= end) {
error = -ENXIO;
goto out_error;
}
/*
* Try to read extents from the first block indicated
* by fsbno to the end block of the file.
*/
fsbno = XFS_B_TO_FSBT(mp, start);
lastbno = XFS_B_TO_FSB(mp, end);
for (;;) {
struct xfs_bmbt_irec map[2];
int nmap = 2;
unsigned int i;
error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
XFS_BMAPI_ENTIRE);
if (error)
goto out_error;
/* No extents at given offset, must be beyond EOF */
if (nmap == 0) {
error = -ENXIO;
goto out_error;
}
for (i = 0; i < nmap; i++) {
offset = max_t(loff_t, start,
XFS_FSB_TO_B(mp, map[i].br_startoff));
/* Landed in the hole we wanted? */
if (whence == SEEK_HOLE &&
map[i].br_startblock == HOLESTARTBLOCK)
goto out;
/* Landed in the data extent we wanted? */
if (whence == SEEK_DATA &&
(map[i].br_startblock == DELAYSTARTBLOCK ||
(map[i].br_state == XFS_EXT_NORM &&
!isnullstartblock(map[i].br_startblock))))
goto out;
/*
* Landed in an unwritten extent, try to search
* for hole or data from page cache.
*/
if (map[i].br_state == XFS_EXT_UNWRITTEN) {
if (xfs_find_get_desired_pgoff(inode, &map[i],
whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
&offset))
goto out;
}
}
/*
* We only received one extent out of the two requested. This
* means we've hit EOF and didn't find what we are looking for.
*/
if (nmap == 1) {
/*
* If we were looking for a hole, set offset to
* the end of the file (i.e., there is an implicit
* hole at the end of any file).
*/
if (whence == SEEK_HOLE) {
offset = end;
break;
}
/*
* If we were looking for data, it's nowhere to be found
*/
ASSERT(whence == SEEK_DATA);
error = -ENXIO;
goto out_error;
}
ASSERT(i > 1);
/*
* Nothing was found, proceed to the next round of search
* if the next reading offset is not at or beyond EOF.
*/
fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
start = XFS_FSB_TO_B(mp, fsbno);
if (start >= end) {
if (whence == SEEK_HOLE) {
offset = end;
break;
}
ASSERT(whence == SEEK_DATA);
error = -ENXIO;
goto out_error;
}
}
out:
/*
* If at this point we have found the hole we wanted, the returned
* offset may be bigger than the file size as it may be aligned to
* page boundary for unwritten extents. We need to deal with this
* situation in particular.
*/
if (whence == SEEK_HOLE)
offset = min_t(loff_t, offset, end);
return offset;
out_error:
return error;
}
STATIC loff_t
xfs_seek_hole_data(
struct file *file,
loff_t start,
int whence)
{
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
uint lock;
loff_t offset, end;
int error = 0;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
lock = xfs_ilock_data_map_shared(ip);
end = i_size_read(inode);
offset = __xfs_seek_hole_data(inode, start, end, whence);
if (offset < 0) {
error = offset;
goto out_unlock;
}
offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
out_unlock:
xfs_iunlock(ip, lock);
if (error)
return error;
return offset;
}
STATIC loff_t
xfs_file_llseek(
struct file *file,
loff_t offset,
int whence)
{
switch (whence) {
case SEEK_END:
case SEEK_CUR:
case SEEK_SET:
return generic_file_llseek(file, offset, whence);
case SEEK_HOLE:
case SEEK_DATA:
return xfs_seek_hole_data(file, offset, whence);
default:
return -EINVAL;
}
}
/*
* Locking for serialisation of IO during page faults. This results in a lock
* ordering of:
*
* mmap_sem (MM)
* sb_start_pagefault(vfs, freeze)
* i_mmaplock (XFS - truncate serialisation)
* page_lock (MM)
* i_lock (XFS - extent map serialisation)
*/
/*
* mmap()d file has taken write protection fault and is being made writable. We
* can set the page state up correctly for a writable page, which means we can
* do correct delalloc accounting (ENOSPC checking!) and unwritten extent
* mapping.
*/
STATIC int
xfs_filemap_page_mkwrite(
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
struct inode *inode = file_inode(vma->vm_file);
int ret;
trace_xfs_filemap_page_mkwrite(XFS_I(inode));
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (IS_DAX(inode)) {
ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
} else {
ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
ret = block_page_mkwrite_return(ret);
}
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
sb_end_pagefault(inode->i_sb);
return ret;
}
STATIC int
xfs_filemap_fault(
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
struct inode *inode = file_inode(vma->vm_file);
int ret;
trace_xfs_filemap_fault(XFS_I(inode));
/* DAX can shortcut the normal fault path on write faults! */
if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
return xfs_filemap_page_mkwrite(vma, vmf);
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (IS_DAX(inode)) {
/*
* we do not want to trigger unwritten extent conversion on read
* faults - that is unnecessary overhead and would also require
* changes to xfs_get_blocks_direct() to map unwritten extent
* ioend for conversion on read-only mappings.
*/
ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
} else
ret = filemap_fault(vma, vmf);
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
return ret;
}
/*
* Similar to xfs_filemap_fault(), the DAX fault path can call into here on
* both read and write faults. Hence we need to handle both cases. There is no
* ->pmd_mkwrite callout for huge pages, so we have a single function here to
* handle both cases here. @flags carries the information on the type of fault
* occuring.
*/
STATIC int
xfs_filemap_pmd_fault(
struct vm_area_struct *vma,
unsigned long addr,
pmd_t *pmd,
unsigned int flags)
{
struct inode *inode = file_inode(vma->vm_file);
struct xfs_inode *ip = XFS_I(inode);
int ret;
if (!IS_DAX(inode))
return VM_FAULT_FALLBACK;
trace_xfs_filemap_pmd_fault(ip);
if (flags & FAULT_FLAG_WRITE) {
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
}
xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
if (flags & FAULT_FLAG_WRITE)
sb_end_pagefault(inode->i_sb);
return ret;
}
/*
* pfn_mkwrite was originally inteneded to ensure we capture time stamp
* updates on write faults. In reality, it's need to serialise against
* truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
* to ensure we serialise the fault barrier in place.
*/
static int
xfs_filemap_pfn_mkwrite(
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
struct inode *inode = file_inode(vma->vm_file);
struct xfs_inode *ip = XFS_I(inode);
int ret = VM_FAULT_NOPAGE;
loff_t size;
trace_xfs_filemap_pfn_mkwrite(ip);
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
/* check if the faulting page hasn't raced with truncate */
xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
if (vmf->pgoff >= size)
ret = VM_FAULT_SIGBUS;
else if (IS_DAX(inode))
ret = dax_pfn_mkwrite(vma, vmf);
xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
sb_end_pagefault(inode->i_sb);
return ret;
}
static const struct vm_operations_struct xfs_file_vm_ops = {
.fault = xfs_filemap_fault,
.pmd_fault = xfs_filemap_pmd_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = xfs_filemap_page_mkwrite,
.pfn_mkwrite = xfs_filemap_pfn_mkwrite,
};
STATIC int
xfs_file_mmap(
struct file *filp,
struct vm_area_struct *vma)
{
file_accessed(filp);
vma->vm_ops = &xfs_file_vm_ops;
if (IS_DAX(file_inode(filp)))
vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
return 0;
}
const struct file_operations xfs_file_operations = {
.llseek = xfs_file_llseek,
.read_iter = xfs_file_read_iter,
.write_iter = xfs_file_write_iter,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.mmap = xfs_file_mmap,
.open = xfs_file_open,
.release = xfs_file_release,
.fsync = xfs_file_fsync,
.get_unmapped_area = thp_get_unmapped_area,
.fallocate = xfs_file_fallocate,
.copy_file_range = xfs_file_copy_range,
.clone_file_range = xfs_file_clone_range,
.dedupe_file_range = xfs_file_dedupe_range,
};
const struct file_operations xfs_dir_file_operations = {
.open = xfs_dir_open,
.read = generic_read_dir,
.iterate_shared = xfs_file_readdir,
.llseek = generic_file_llseek,
.unlocked_ioctl = xfs_file_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = xfs_file_compat_ioctl,
#endif
.fsync = xfs_dir_fsync,
};