WSL2-Linux-Kernel/drivers/net/ethernet/qlogic/qede/qede_main.c

2450 строки
62 KiB
C

/* QLogic qede NIC Driver
* Copyright (c) 2015 QLogic Corporation
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/version.h>
#include <linux/device.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <asm/byteorder.h>
#include <asm/param.h>
#include <linux/io.h>
#include <linux/netdev_features.h>
#include <linux/udp.h>
#include <linux/tcp.h>
#include <net/vxlan.h>
#include <linux/ip.h>
#include <net/ipv6.h>
#include <net/tcp.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/pkt_sched.h>
#include <linux/ethtool.h>
#include <linux/in.h>
#include <linux/random.h>
#include <net/ip6_checksum.h>
#include <linux/bitops.h>
#include "qede.h"
static const char version[] = "QLogic QL4xxx 40G/100G Ethernet Driver qede "
DRV_MODULE_VERSION "\n";
MODULE_DESCRIPTION("QLogic 40G/100G Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
static uint debug;
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, " Default debug msglevel");
static const struct qed_eth_ops *qed_ops;
#define CHIP_NUM_57980S_40 0x1634
#define CHIP_NUM_57980S_10 0x1635
#define CHIP_NUM_57980S_MF 0x1636
#define CHIP_NUM_57980S_100 0x1644
#define CHIP_NUM_57980S_50 0x1654
#define CHIP_NUM_57980S_25 0x1656
#ifndef PCI_DEVICE_ID_NX2_57980E
#define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
#define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
#define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
#define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
#define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
#define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
#endif
static const struct pci_device_id qede_pci_tbl[] = {
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
{ PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
#define TX_TIMEOUT (5 * HZ)
static void qede_remove(struct pci_dev *pdev);
static int qede_alloc_rx_buffer(struct qede_dev *edev,
struct qede_rx_queue *rxq);
static void qede_link_update(void *dev, struct qed_link_output *link);
static struct pci_driver qede_pci_driver = {
.name = "qede",
.id_table = qede_pci_tbl,
.probe = qede_probe,
.remove = qede_remove,
};
static struct qed_eth_cb_ops qede_ll_ops = {
{
.link_update = qede_link_update,
},
};
static int qede_netdev_event(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
struct ethtool_drvinfo drvinfo;
struct qede_dev *edev;
/* Currently only support name change */
if (event != NETDEV_CHANGENAME)
goto done;
/* Check whether this is a qede device */
if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
goto done;
memset(&drvinfo, 0, sizeof(drvinfo));
ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
if (strcmp(drvinfo.driver, "qede"))
goto done;
edev = netdev_priv(ndev);
/* Notify qed of the name change */
if (!edev->ops || !edev->ops->common)
goto done;
edev->ops->common->set_id(edev->cdev, edev->ndev->name,
"qede");
done:
return NOTIFY_DONE;
}
static struct notifier_block qede_netdev_notifier = {
.notifier_call = qede_netdev_event,
};
static
int __init qede_init(void)
{
int ret;
u32 qed_ver;
pr_notice("qede_init: %s\n", version);
qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
if (qed_ver != QEDE_ETH_INTERFACE_VERSION) {
pr_notice("Version mismatch [%08x != %08x]\n",
qed_ver,
QEDE_ETH_INTERFACE_VERSION);
return -EINVAL;
}
qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
if (!qed_ops) {
pr_notice("Failed to get qed ethtool operations\n");
return -EINVAL;
}
/* Must register notifier before pci ops, since we might miss
* interface rename after pci probe and netdev registeration.
*/
ret = register_netdevice_notifier(&qede_netdev_notifier);
if (ret) {
pr_notice("Failed to register netdevice_notifier\n");
qed_put_eth_ops();
return -EINVAL;
}
ret = pci_register_driver(&qede_pci_driver);
if (ret) {
pr_notice("Failed to register driver\n");
unregister_netdevice_notifier(&qede_netdev_notifier);
qed_put_eth_ops();
return -EINVAL;
}
return 0;
}
static void __exit qede_cleanup(void)
{
pr_notice("qede_cleanup called\n");
unregister_netdevice_notifier(&qede_netdev_notifier);
pci_unregister_driver(&qede_pci_driver);
qed_put_eth_ops();
}
module_init(qede_init);
module_exit(qede_cleanup);
/* -------------------------------------------------------------------------
* START OF FAST-PATH
* -------------------------------------------------------------------------
*/
/* Unmap the data and free skb */
static int qede_free_tx_pkt(struct qede_dev *edev,
struct qede_tx_queue *txq,
int *len)
{
u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_bd *tx_data_bd;
int bds_consumed = 0;
int nbds;
bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
int i, split_bd_len = 0;
if (unlikely(!skb)) {
DP_ERR(edev,
"skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
idx, txq->sw_tx_cons, txq->sw_tx_prod);
return -1;
}
*len = skb->len;
first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
bds_consumed++;
nbds = first_bd->data.nbds;
if (data_split) {
struct eth_tx_bd *split = (struct eth_tx_bd *)
qed_chain_consume(&txq->tx_pbl);
split_bd_len = BD_UNMAP_LEN(split);
bds_consumed++;
}
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
/* Unmap the data of the skb frags */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_consume(&txq->tx_pbl);
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
}
while (bds_consumed++ < nbds)
qed_chain_consume(&txq->tx_pbl);
/* Free skb */
dev_kfree_skb_any(skb);
txq->sw_tx_ring[idx].skb = NULL;
txq->sw_tx_ring[idx].flags = 0;
return 0;
}
/* Unmap the data and free skb when mapping failed during start_xmit */
static void qede_free_failed_tx_pkt(struct qede_dev *edev,
struct qede_tx_queue *txq,
struct eth_tx_1st_bd *first_bd,
int nbd,
bool data_split)
{
u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
struct eth_tx_bd *tx_data_bd;
int i, split_bd_len = 0;
/* Return prod to its position before this skb was handled */
qed_chain_set_prod(&txq->tx_pbl,
le16_to_cpu(txq->tx_db.data.bd_prod),
first_bd);
first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
if (data_split) {
struct eth_tx_bd *split = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
split_bd_len = BD_UNMAP_LEN(split);
nbd--;
}
dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
/* Unmap the data of the skb frags */
for (i = 0; i < nbd; i++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
if (tx_data_bd->nbytes)
dma_unmap_page(&edev->pdev->dev,
BD_UNMAP_ADDR(tx_data_bd),
BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
}
/* Return again prod to its position before this skb was handled */
qed_chain_set_prod(&txq->tx_pbl,
le16_to_cpu(txq->tx_db.data.bd_prod),
first_bd);
/* Free skb */
dev_kfree_skb_any(skb);
txq->sw_tx_ring[idx].skb = NULL;
txq->sw_tx_ring[idx].flags = 0;
}
static u32 qede_xmit_type(struct qede_dev *edev,
struct sk_buff *skb,
int *ipv6_ext)
{
u32 rc = XMIT_L4_CSUM;
__be16 l3_proto;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return XMIT_PLAIN;
l3_proto = vlan_get_protocol(skb);
if (l3_proto == htons(ETH_P_IPV6) &&
(ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
*ipv6_ext = 1;
if (skb_is_gso(skb))
rc |= XMIT_LSO;
return rc;
}
static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
struct eth_tx_2nd_bd *second_bd,
struct eth_tx_3rd_bd *third_bd)
{
u8 l4_proto;
u16 bd2_bits = 0, bd2_bits2 = 0;
bd2_bits2 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
bd2_bits |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
<< ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
bd2_bits2 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
l4_proto = ipv6_hdr(skb)->nexthdr;
else
l4_proto = ip_hdr(skb)->protocol;
if (l4_proto == IPPROTO_UDP)
bd2_bits2 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
if (third_bd) {
third_bd->data.bitfields |=
((tcp_hdrlen(skb) / 4) &
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT;
}
second_bd->data.bitfields = cpu_to_le16(bd2_bits);
second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
}
static int map_frag_to_bd(struct qede_dev *edev,
skb_frag_t *frag,
struct eth_tx_bd *bd)
{
dma_addr_t mapping;
/* Map skb non-linear frag data for DMA */
mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
return -ENOMEM;
}
/* Setup the data pointer of the frag data */
BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
return 0;
}
/* Main transmit function */
static
netdev_tx_t qede_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
struct netdev_queue *netdev_txq;
struct qede_tx_queue *txq;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_2nd_bd *second_bd = NULL;
struct eth_tx_3rd_bd *third_bd = NULL;
struct eth_tx_bd *tx_data_bd = NULL;
u16 txq_index;
u8 nbd = 0;
dma_addr_t mapping;
int rc, frag_idx = 0, ipv6_ext = 0;
u8 xmit_type;
u16 idx;
u16 hlen;
bool data_split;
/* Get tx-queue context and netdev index */
txq_index = skb_get_queue_mapping(skb);
WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
txq = QEDE_TX_QUEUE(edev, txq_index);
netdev_txq = netdev_get_tx_queue(ndev, txq_index);
/* Current code doesn't support SKB linearization, since the max number
* of skb frags can be passed in the FW HSI.
*/
BUILD_BUG_ON(MAX_SKB_FRAGS > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET);
WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
(MAX_SKB_FRAGS + 1));
xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
txq->sw_tx_ring[idx].skb = skb;
first_bd = (struct eth_tx_1st_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(first_bd, 0, sizeof(*first_bd));
first_bd->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* Map skb linear data for DMA and set in the first BD */
mapping = dma_map_single(&edev->pdev->dev, skb->data,
skb_headlen(skb), DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
DP_NOTICE(edev, "SKB mapping failed\n");
qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
return NETDEV_TX_OK;
}
nbd++;
BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
/* In case there is IPv6 with extension headers or LSO we need 2nd and
* 3rd BDs.
*/
if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
second_bd = (struct eth_tx_2nd_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(second_bd, 0, sizeof(*second_bd));
nbd++;
third_bd = (struct eth_tx_3rd_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(third_bd, 0, sizeof(*third_bd));
nbd++;
/* We need to fill in additional data in second_bd... */
tx_data_bd = (struct eth_tx_bd *)second_bd;
}
if (skb_vlan_tag_present(skb)) {
first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Fill the parsing flags & params according to the requested offload */
if (xmit_type & XMIT_L4_CSUM) {
/* We don't re-calculate IP checksum as it is already done by
* the upper stack
*/
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
/* If the packet is IPv6 with extension header, indicate that
* to FW and pass few params, since the device cracker doesn't
* support parsing IPv6 with extension header/s.
*/
if (unlikely(ipv6_ext))
qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
}
if (xmit_type & XMIT_LSO) {
first_bd->data.bd_flags.bitfields |=
(1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
third_bd->data.lso_mss =
cpu_to_le16(skb_shinfo(skb)->gso_size);
first_bd->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
hlen = skb_transport_header(skb) +
tcp_hdrlen(skb) - skb->data;
/* @@@TBD - if will not be removed need to check */
third_bd->data.bitfields |=
(1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
/* Make life easier for FW guys who can't deal with header and
* data on same BD. If we need to split, use the second bd...
*/
if (unlikely(skb_headlen(skb) > hlen)) {
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"TSO split header size is %d (%x:%x)\n",
first_bd->nbytes, first_bd->addr.hi,
first_bd->addr.lo);
mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
le32_to_cpu(first_bd->addr.lo)) +
hlen;
BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
le16_to_cpu(first_bd->nbytes) -
hlen);
/* this marks the BD as one that has no
* individual mapping
*/
txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
first_bd->nbytes = cpu_to_le16(hlen);
tx_data_bd = (struct eth_tx_bd *)third_bd;
data_split = true;
}
}
/* Handle fragmented skb */
/* special handle for frags inside 2nd and 3rd bds.. */
while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
rc = map_frag_to_bd(edev,
&skb_shinfo(skb)->frags[frag_idx],
tx_data_bd);
if (rc) {
qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
data_split);
return NETDEV_TX_OK;
}
if (tx_data_bd == (struct eth_tx_bd *)second_bd)
tx_data_bd = (struct eth_tx_bd *)third_bd;
else
tx_data_bd = NULL;
frag_idx++;
}
/* map last frags into 4th, 5th .... */
for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
tx_data_bd = (struct eth_tx_bd *)
qed_chain_produce(&txq->tx_pbl);
memset(tx_data_bd, 0, sizeof(*tx_data_bd));
rc = map_frag_to_bd(edev,
&skb_shinfo(skb)->frags[frag_idx],
tx_data_bd);
if (rc) {
qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
data_split);
return NETDEV_TX_OK;
}
}
/* update the first BD with the actual num BDs */
first_bd->data.nbds = nbd;
netdev_tx_sent_queue(netdev_txq, skb->len);
skb_tx_timestamp(skb);
/* Advance packet producer only before sending the packet since mapping
* of pages may fail.
*/
txq->sw_tx_prod++;
/* 'next page' entries are counted in the producer value */
txq->tx_db.data.bd_prod =
cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
/* wmb makes sure that the BDs data is updated before updating the
* producer, otherwise FW may read old data from the BDs.
*/
wmb();
barrier();
writel(txq->tx_db.raw, txq->doorbell_addr);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the queue lock is released and another start_xmit is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
mmiowb();
if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
< (MAX_SKB_FRAGS + 1))) {
netif_tx_stop_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"Stop queue was called\n");
/* paired memory barrier is in qede_tx_int(), we have to keep
* ordering of set_bit() in netif_tx_stop_queue() and read of
* fp->bd_tx_cons
*/
smp_mb();
if (qed_chain_get_elem_left(&txq->tx_pbl)
>= (MAX_SKB_FRAGS + 1) &&
(edev->state == QEDE_STATE_OPEN)) {
netif_tx_wake_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
"Wake queue was called\n");
}
}
return NETDEV_TX_OK;
}
static int qede_txq_has_work(struct qede_tx_queue *txq)
{
u16 hw_bd_cons;
/* Tell compiler that consumer and producer can change */
barrier();
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
return 0;
return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
}
static int qede_tx_int(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
struct netdev_queue *netdev_txq;
u16 hw_bd_cons;
unsigned int pkts_compl = 0, bytes_compl = 0;
int rc;
netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
barrier();
while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
int len = 0;
rc = qede_free_tx_pkt(edev, txq, &len);
if (rc) {
DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
hw_bd_cons,
qed_chain_get_cons_idx(&txq->tx_pbl));
break;
}
bytes_compl += len;
pkts_compl++;
txq->sw_tx_cons++;
}
netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
/* Need to make the tx_bd_cons update visible to start_xmit()
* before checking for netif_tx_queue_stopped(). Without the
* memory barrier, there is a small possibility that
* start_xmit() will miss it and cause the queue to be stopped
* forever.
* On the other hand we need an rmb() here to ensure the proper
* ordering of bit testing in the following
* netif_tx_queue_stopped(txq) call.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
/* Taking tx_lock is needed to prevent reenabling the queue
* while it's empty. This could have happen if rx_action() gets
* suspended in qede_tx_int() after the condition before
* netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
*
* stops the queue->sees fresh tx_bd_cons->releases the queue->
* sends some packets consuming the whole queue again->
* stops the queue
*/
__netif_tx_lock(netdev_txq, smp_processor_id());
if ((netif_tx_queue_stopped(netdev_txq)) &&
(edev->state == QEDE_STATE_OPEN) &&
(qed_chain_get_elem_left(&txq->tx_pbl)
>= (MAX_SKB_FRAGS + 1))) {
netif_tx_wake_queue(netdev_txq);
DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
"Wake queue was called\n");
}
__netif_tx_unlock(netdev_txq);
}
return 0;
}
static bool qede_has_rx_work(struct qede_rx_queue *rxq)
{
u16 hw_comp_cons, sw_comp_cons;
/* Tell compiler that status block fields can change */
barrier();
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
return hw_comp_cons != sw_comp_cons;
}
static bool qede_has_tx_work(struct qede_fastpath *fp)
{
u8 tc;
for (tc = 0; tc < fp->edev->num_tc; tc++)
if (qede_txq_has_work(&fp->txqs[tc]))
return true;
return false;
}
/* This function copies the Rx buffer from the CONS position to the PROD
* position, since we failed to allocate a new Rx buffer.
*/
static void qede_reuse_rx_data(struct qede_rx_queue *rxq)
{
struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
struct sw_rx_data *sw_rx_data_cons =
&rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
struct sw_rx_data *sw_rx_data_prod =
&rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
dma_unmap_addr_set(sw_rx_data_prod, mapping,
dma_unmap_addr(sw_rx_data_cons, mapping));
sw_rx_data_prod->data = sw_rx_data_cons->data;
memcpy(rx_bd_prod, rx_bd_cons, sizeof(struct eth_rx_bd));
rxq->sw_rx_cons++;
rxq->sw_rx_prod++;
}
static inline void qede_update_rx_prod(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
struct eth_rx_prod_data rx_prods = {0};
/* Update producers */
rx_prods.bd_prod = cpu_to_le16(bd_prod);
rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
/* Make sure that the BD and SGE data is updated before updating the
* producers since FW might read the BD/SGE right after the producer
* is updated.
*/
wmb();
internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
(u32 *)&rx_prods);
/* mmiowb is needed to synchronize doorbell writes from more than one
* processor. It guarantees that the write arrives to the device before
* the napi lock is released and another qede_poll is called (possibly
* on another CPU). Without this barrier, the next doorbell can bypass
* this doorbell. This is applicable to IA64/Altix systems.
*/
mmiowb();
}
static u32 qede_get_rxhash(struct qede_dev *edev,
u8 bitfields,
__le32 rss_hash,
enum pkt_hash_types *rxhash_type)
{
enum rss_hash_type htype;
htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
*rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
(htype == RSS_HASH_TYPE_IPV6)) ?
PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
return le32_to_cpu(rss_hash);
}
*rxhash_type = PKT_HASH_TYPE_NONE;
return 0;
}
static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
{
skb_checksum_none_assert(skb);
if (csum_flag & QEDE_CSUM_UNNECESSARY)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
static inline void qede_skb_receive(struct qede_dev *edev,
struct qede_fastpath *fp,
struct sk_buff *skb,
u16 vlan_tag)
{
if (vlan_tag)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
vlan_tag);
napi_gro_receive(&fp->napi, skb);
}
static u8 qede_check_csum(u16 flag)
{
u16 csum_flag = 0;
u8 csum = 0;
if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
csum = QEDE_CSUM_UNNECESSARY;
}
csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
if (csum_flag & flag)
return QEDE_CSUM_ERROR;
return csum;
}
static int qede_rx_int(struct qede_fastpath *fp, int budget)
{
struct qede_dev *edev = fp->edev;
struct qede_rx_queue *rxq = fp->rxq;
u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
int rx_pkt = 0;
u8 csum_flag;
hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
/* Memory barrier to prevent the CPU from doing speculative reads of CQE
* / BD in the while-loop before reading hw_comp_cons. If the CQE is
* read before it is written by FW, then FW writes CQE and SB, and then
* the CPU reads the hw_comp_cons, it will use an old CQE.
*/
rmb();
/* Loop to complete all indicated BDs */
while (sw_comp_cons != hw_comp_cons) {
struct eth_fast_path_rx_reg_cqe *fp_cqe;
enum pkt_hash_types rxhash_type;
enum eth_rx_cqe_type cqe_type;
struct sw_rx_data *sw_rx_data;
union eth_rx_cqe *cqe;
struct sk_buff *skb;
u16 len, pad;
u32 rx_hash;
u8 *data;
/* Get the CQE from the completion ring */
cqe = (union eth_rx_cqe *)
qed_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
edev->ops->eth_cqe_completion(
edev->cdev, fp->rss_id,
(struct eth_slow_path_rx_cqe *)cqe);
goto next_cqe;
}
/* Get the data from the SW ring */
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
data = sw_rx_data->data;
fp_cqe = &cqe->fast_path_regular;
len = le16_to_cpu(fp_cqe->pkt_len);
pad = fp_cqe->placement_offset;
/* For every Rx BD consumed, we allocate a new BD so the BD ring
* is always with a fixed size. If allocation fails, we take the
* consumed BD and return it to the ring in the PROD position.
* The packet that was received on that BD will be dropped (and
* not passed to the upper stack).
*/
if (likely(qede_alloc_rx_buffer(edev, rxq) == 0)) {
dma_unmap_single(&edev->pdev->dev,
dma_unmap_addr(sw_rx_data, mapping),
rxq->rx_buf_size, DMA_FROM_DEVICE);
/* If this is an error packet then drop it */
parse_flag =
le16_to_cpu(cqe->fast_path_regular.pars_flags.flags);
csum_flag = qede_check_csum(parse_flag);
if (csum_flag == QEDE_CSUM_ERROR) {
DP_NOTICE(edev,
"CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
sw_comp_cons, parse_flag);
rxq->rx_hw_errors++;
kfree(data);
goto next_rx;
}
skb = build_skb(data, 0);
if (unlikely(!skb)) {
DP_NOTICE(edev,
"Build_skb failed, dropping incoming packet\n");
kfree(data);
rxq->rx_alloc_errors++;
goto next_rx;
}
skb_reserve(skb, pad);
} else {
DP_NOTICE(edev,
"New buffer allocation failed, dropping incoming packet and reusing its buffer\n");
qede_reuse_rx_data(rxq);
rxq->rx_alloc_errors++;
goto next_cqe;
}
sw_rx_data->data = NULL;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, edev->ndev);
rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
fp_cqe->rss_hash,
&rxhash_type);
skb_set_hash(skb, rx_hash, rxhash_type);
qede_set_skb_csum(skb, csum_flag);
skb_record_rx_queue(skb, fp->rss_id);
qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
qed_chain_consume(&rxq->rx_bd_ring);
next_rx:
rxq->sw_rx_cons++;
rx_pkt++;
next_cqe: /* don't consume bd rx buffer */
qed_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
/* CR TPA - revisit how to handle budget in TPA perhaps
* increase on "end"
*/
if (rx_pkt == budget)
break;
} /* repeat while sw_comp_cons != hw_comp_cons... */
/* Update producers */
qede_update_rx_prod(edev, rxq);
return rx_pkt;
}
static int qede_poll(struct napi_struct *napi, int budget)
{
int work_done = 0;
struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
napi);
struct qede_dev *edev = fp->edev;
while (1) {
u8 tc;
for (tc = 0; tc < edev->num_tc; tc++)
if (qede_txq_has_work(&fp->txqs[tc]))
qede_tx_int(edev, &fp->txqs[tc]);
if (qede_has_rx_work(fp->rxq)) {
work_done += qede_rx_int(fp, budget - work_done);
/* must not complete if we consumed full budget */
if (work_done >= budget)
break;
}
/* Fall out from the NAPI loop if needed */
if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
qed_sb_update_sb_idx(fp->sb_info);
/* *_has_*_work() reads the status block,
* thus we need to ensure that status block indices
* have been actually read (qed_sb_update_sb_idx)
* prior to this check (*_has_*_work) so that
* we won't write the "newer" value of the status block
* to HW (if there was a DMA right after
* qede_has_rx_work and if there is no rmb, the memory
* reading (qed_sb_update_sb_idx) may be postponed
* to right before *_ack_sb). In this case there
* will never be another interrupt until there is
* another update of the status block, while there
* is still unhandled work.
*/
rmb();
if (!(qede_has_rx_work(fp->rxq) ||
qede_has_tx_work(fp))) {
napi_complete(napi);
/* Update and reenable interrupts */
qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1 /*update*/);
break;
}
}
}
return work_done;
}
static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
{
struct qede_fastpath *fp = fp_cookie;
qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
napi_schedule_irqoff(&fp->napi);
return IRQ_HANDLED;
}
/* -------------------------------------------------------------------------
* END OF FAST-PATH
* -------------------------------------------------------------------------
*/
static int qede_open(struct net_device *ndev);
static int qede_close(struct net_device *ndev);
static int qede_set_mac_addr(struct net_device *ndev, void *p);
static void qede_set_rx_mode(struct net_device *ndev);
static void qede_config_rx_mode(struct net_device *ndev);
static int qede_set_ucast_rx_mac(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
unsigned char mac[ETH_ALEN])
{
struct qed_filter_params filter_cmd;
memset(&filter_cmd, 0, sizeof(filter_cmd));
filter_cmd.type = QED_FILTER_TYPE_UCAST;
filter_cmd.filter.ucast.type = opcode;
filter_cmd.filter.ucast.mac_valid = 1;
ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
return edev->ops->filter_config(edev->cdev, &filter_cmd);
}
static const struct net_device_ops qede_netdev_ops = {
.ndo_open = qede_open,
.ndo_stop = qede_close,
.ndo_start_xmit = qede_start_xmit,
.ndo_set_rx_mode = qede_set_rx_mode,
.ndo_set_mac_address = qede_set_mac_addr,
.ndo_validate_addr = eth_validate_addr,
};
/* -------------------------------------------------------------------------
* START OF PROBE / REMOVE
* -------------------------------------------------------------------------
*/
static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
struct pci_dev *pdev,
struct qed_dev_eth_info *info,
u32 dp_module,
u8 dp_level)
{
struct net_device *ndev;
struct qede_dev *edev;
ndev = alloc_etherdev_mqs(sizeof(*edev),
info->num_queues,
info->num_queues);
if (!ndev) {
pr_err("etherdev allocation failed\n");
return NULL;
}
edev = netdev_priv(ndev);
edev->ndev = ndev;
edev->cdev = cdev;
edev->pdev = pdev;
edev->dp_module = dp_module;
edev->dp_level = dp_level;
edev->ops = qed_ops;
edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
SET_NETDEV_DEV(ndev, &pdev->dev);
memcpy(&edev->dev_info, info, sizeof(*info));
edev->num_tc = edev->dev_info.num_tc;
return edev;
}
static void qede_init_ndev(struct qede_dev *edev)
{
struct net_device *ndev = edev->ndev;
struct pci_dev *pdev = edev->pdev;
u32 hw_features;
pci_set_drvdata(pdev, ndev);
ndev->mem_start = edev->dev_info.common.pci_mem_start;
ndev->base_addr = ndev->mem_start;
ndev->mem_end = edev->dev_info.common.pci_mem_end;
ndev->irq = edev->dev_info.common.pci_irq;
ndev->watchdog_timeo = TX_TIMEOUT;
ndev->netdev_ops = &qede_netdev_ops;
/* user-changeble features */
hw_features = NETIF_F_GRO | NETIF_F_SG |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6;
ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
NETIF_F_HIGHDMA;
ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
NETIF_F_HW_VLAN_CTAG_TX;
ndev->hw_features = hw_features;
/* Set network device HW mac */
ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
}
/* This function converts from 32b param to two params of level and module
* Input 32b decoding:
* b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
* 'happy' flow, e.g. memory allocation failed.
* b30 - enable all INFO prints. INFO prints are for major steps in the flow
* and provide important parameters.
* b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
* module. VERBOSE prints are for tracking the specific flow in low level.
*
* Notice that the level should be that of the lowest required logs.
*/
static void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
{
*p_dp_level = QED_LEVEL_NOTICE;
*p_dp_module = 0;
if (debug & QED_LOG_VERBOSE_MASK) {
*p_dp_level = QED_LEVEL_VERBOSE;
*p_dp_module = (debug & 0x3FFFFFFF);
} else if (debug & QED_LOG_INFO_MASK) {
*p_dp_level = QED_LEVEL_INFO;
} else if (debug & QED_LOG_NOTICE_MASK) {
*p_dp_level = QED_LEVEL_NOTICE;
}
}
static void qede_free_fp_array(struct qede_dev *edev)
{
if (edev->fp_array) {
struct qede_fastpath *fp;
int i;
for_each_rss(i) {
fp = &edev->fp_array[i];
kfree(fp->sb_info);
kfree(fp->rxq);
kfree(fp->txqs);
}
kfree(edev->fp_array);
}
edev->num_rss = 0;
}
static int qede_alloc_fp_array(struct qede_dev *edev)
{
struct qede_fastpath *fp;
int i;
edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
sizeof(*edev->fp_array), GFP_KERNEL);
if (!edev->fp_array) {
DP_NOTICE(edev, "fp array allocation failed\n");
goto err;
}
for_each_rss(i) {
fp = &edev->fp_array[i];
fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
if (!fp->sb_info) {
DP_NOTICE(edev, "sb info struct allocation failed\n");
goto err;
}
fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
if (!fp->rxq) {
DP_NOTICE(edev, "RXQ struct allocation failed\n");
goto err;
}
fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
if (!fp->txqs) {
DP_NOTICE(edev, "TXQ array allocation failed\n");
goto err;
}
}
return 0;
err:
qede_free_fp_array(edev);
return -ENOMEM;
}
static void qede_sp_task(struct work_struct *work)
{
struct qede_dev *edev = container_of(work, struct qede_dev,
sp_task.work);
mutex_lock(&edev->qede_lock);
if (edev->state == QEDE_STATE_OPEN) {
if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
qede_config_rx_mode(edev->ndev);
}
mutex_unlock(&edev->qede_lock);
}
static void qede_update_pf_params(struct qed_dev *cdev)
{
struct qed_pf_params pf_params;
/* 16 rx + 16 tx */
memset(&pf_params, 0, sizeof(struct qed_pf_params));
pf_params.eth_pf_params.num_cons = 32;
qed_ops->common->update_pf_params(cdev, &pf_params);
}
enum qede_probe_mode {
QEDE_PROBE_NORMAL,
};
static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
enum qede_probe_mode mode)
{
struct qed_slowpath_params params;
struct qed_dev_eth_info dev_info;
struct qede_dev *edev;
struct qed_dev *cdev;
int rc;
if (unlikely(dp_level & QED_LEVEL_INFO))
pr_notice("Starting qede probe\n");
cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
dp_module, dp_level);
if (!cdev) {
rc = -ENODEV;
goto err0;
}
qede_update_pf_params(cdev);
/* Start the Slowpath-process */
memset(&params, 0, sizeof(struct qed_slowpath_params));
params.int_mode = QED_INT_MODE_MSIX;
params.drv_major = QEDE_MAJOR_VERSION;
params.drv_minor = QEDE_MINOR_VERSION;
params.drv_rev = QEDE_REVISION_VERSION;
params.drv_eng = QEDE_ENGINEERING_VERSION;
strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
rc = qed_ops->common->slowpath_start(cdev, &params);
if (rc) {
pr_notice("Cannot start slowpath\n");
goto err1;
}
/* Learn information crucial for qede to progress */
rc = qed_ops->fill_dev_info(cdev, &dev_info);
if (rc)
goto err2;
edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
dp_level);
if (!edev) {
rc = -ENOMEM;
goto err2;
}
qede_init_ndev(edev);
rc = register_netdev(edev->ndev);
if (rc) {
DP_NOTICE(edev, "Cannot register net-device\n");
goto err3;
}
edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
edev->ops->register_ops(cdev, &qede_ll_ops, edev);
INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
mutex_init(&edev->qede_lock);
DP_INFO(edev, "Ending successfully qede probe\n");
return 0;
err3:
free_netdev(edev->ndev);
err2:
qed_ops->common->slowpath_stop(cdev);
err1:
qed_ops->common->remove(cdev);
err0:
return rc;
}
static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
u32 dp_module = 0;
u8 dp_level = 0;
qede_config_debug(debug, &dp_module, &dp_level);
return __qede_probe(pdev, dp_module, dp_level,
QEDE_PROBE_NORMAL);
}
enum qede_remove_mode {
QEDE_REMOVE_NORMAL,
};
static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct qede_dev *edev = netdev_priv(ndev);
struct qed_dev *cdev = edev->cdev;
DP_INFO(edev, "Starting qede_remove\n");
cancel_delayed_work_sync(&edev->sp_task);
unregister_netdev(ndev);
edev->ops->common->set_power_state(cdev, PCI_D0);
pci_set_drvdata(pdev, NULL);
free_netdev(ndev);
/* Use global ops since we've freed edev */
qed_ops->common->slowpath_stop(cdev);
qed_ops->common->remove(cdev);
pr_notice("Ending successfully qede_remove\n");
}
static void qede_remove(struct pci_dev *pdev)
{
__qede_remove(pdev, QEDE_REMOVE_NORMAL);
}
/* -------------------------------------------------------------------------
* START OF LOAD / UNLOAD
* -------------------------------------------------------------------------
*/
static int qede_set_num_queues(struct qede_dev *edev)
{
int rc;
u16 rss_num;
/* Setup queues according to possible resources*/
rss_num = netif_get_num_default_rss_queues() *
edev->dev_info.common.num_hwfns;
rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
if (rc > 0) {
/* Managed to request interrupts for our queues */
edev->num_rss = rc;
DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
QEDE_RSS_CNT(edev), rss_num);
rc = 0;
}
return rc;
}
static void qede_free_mem_sb(struct qede_dev *edev,
struct qed_sb_info *sb_info)
{
if (sb_info->sb_virt)
dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
(void *)sb_info->sb_virt, sb_info->sb_phys);
}
/* This function allocates fast-path status block memory */
static int qede_alloc_mem_sb(struct qede_dev *edev,
struct qed_sb_info *sb_info,
u16 sb_id)
{
struct status_block *sb_virt;
dma_addr_t sb_phys;
int rc;
sb_virt = dma_alloc_coherent(&edev->pdev->dev,
sizeof(*sb_virt),
&sb_phys, GFP_KERNEL);
if (!sb_virt) {
DP_ERR(edev, "Status block allocation failed\n");
return -ENOMEM;
}
rc = edev->ops->common->sb_init(edev->cdev, sb_info,
sb_virt, sb_phys, sb_id,
QED_SB_TYPE_L2_QUEUE);
if (rc) {
DP_ERR(edev, "Status block initialization failed\n");
dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
sb_virt, sb_phys);
return rc;
}
return 0;
}
static void qede_free_rx_buffers(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
u16 i;
for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
struct sw_rx_data *rx_buf;
u8 *data;
rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
data = rx_buf->data;
dma_unmap_single(&edev->pdev->dev,
dma_unmap_addr(rx_buf, mapping),
rxq->rx_buf_size, DMA_FROM_DEVICE);
rx_buf->data = NULL;
kfree(data);
}
}
static void qede_free_mem_rxq(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
/* Free rx buffers */
qede_free_rx_buffers(edev, rxq);
/* Free the parallel SW ring */
kfree(rxq->sw_rx_ring);
/* Free the real RQ ring used by FW */
edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
}
static int qede_alloc_rx_buffer(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
struct sw_rx_data *sw_rx_data;
struct eth_rx_bd *rx_bd;
dma_addr_t mapping;
u16 rx_buf_size;
u8 *data;
rx_buf_size = rxq->rx_buf_size;
data = kmalloc(rx_buf_size, GFP_ATOMIC);
if (unlikely(!data)) {
DP_NOTICE(edev, "Failed to allocate Rx data\n");
return -ENOMEM;
}
mapping = dma_map_single(&edev->pdev->dev, data,
rx_buf_size, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
kfree(data);
DP_NOTICE(edev, "Failed to map Rx buffer\n");
return -ENOMEM;
}
sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
sw_rx_data->data = data;
dma_unmap_addr_set(sw_rx_data, mapping, mapping);
/* Advance PROD and get BD pointer */
rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
WARN_ON(!rx_bd);
rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
rxq->sw_rx_prod++;
return 0;
}
/* This function allocates all memory needed per Rx queue */
static int qede_alloc_mem_rxq(struct qede_dev *edev,
struct qede_rx_queue *rxq)
{
int i, rc, size, num_allocated;
rxq->num_rx_buffers = edev->q_num_rx_buffers;
rxq->rx_buf_size = NET_IP_ALIGN +
ETH_OVERHEAD +
edev->ndev->mtu +
QEDE_FW_RX_ALIGN_END;
/* Allocate the parallel driver ring for Rx buffers */
size = sizeof(*rxq->sw_rx_ring) * NUM_RX_BDS_MAX;
rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
if (!rxq->sw_rx_ring) {
DP_ERR(edev, "Rx buffers ring allocation failed\n");
goto err;
}
/* Allocate FW Rx ring */
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME_PRODUCE,
QED_CHAIN_MODE_NEXT_PTR,
NUM_RX_BDS_MAX,
sizeof(struct eth_rx_bd),
&rxq->rx_bd_ring);
if (rc)
goto err;
/* Allocate FW completion ring */
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME,
QED_CHAIN_MODE_PBL,
NUM_RX_BDS_MAX,
sizeof(union eth_rx_cqe),
&rxq->rx_comp_ring);
if (rc)
goto err;
/* Allocate buffers for the Rx ring */
for (i = 0; i < rxq->num_rx_buffers; i++) {
rc = qede_alloc_rx_buffer(edev, rxq);
if (rc)
break;
}
num_allocated = i;
if (!num_allocated) {
DP_ERR(edev, "Rx buffers allocation failed\n");
goto err;
} else if (num_allocated < rxq->num_rx_buffers) {
DP_NOTICE(edev,
"Allocated less buffers than desired (%d allocated)\n",
num_allocated);
}
return 0;
err:
qede_free_mem_rxq(edev, rxq);
return -ENOMEM;
}
static void qede_free_mem_txq(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
/* Free the parallel SW ring */
kfree(txq->sw_tx_ring);
/* Free the real RQ ring used by FW */
edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
}
/* This function allocates all memory needed per Tx queue */
static int qede_alloc_mem_txq(struct qede_dev *edev,
struct qede_tx_queue *txq)
{
int size, rc;
union eth_tx_bd_types *p_virt;
txq->num_tx_buffers = edev->q_num_tx_buffers;
/* Allocate the parallel driver ring for Tx buffers */
size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
if (!txq->sw_tx_ring) {
DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
goto err;
}
rc = edev->ops->common->chain_alloc(edev->cdev,
QED_CHAIN_USE_TO_CONSUME_PRODUCE,
QED_CHAIN_MODE_PBL,
NUM_TX_BDS_MAX,
sizeof(*p_virt),
&txq->tx_pbl);
if (rc)
goto err;
return 0;
err:
qede_free_mem_txq(edev, txq);
return -ENOMEM;
}
/* This function frees all memory of a single fp */
static void qede_free_mem_fp(struct qede_dev *edev,
struct qede_fastpath *fp)
{
int tc;
qede_free_mem_sb(edev, fp->sb_info);
qede_free_mem_rxq(edev, fp->rxq);
for (tc = 0; tc < edev->num_tc; tc++)
qede_free_mem_txq(edev, &fp->txqs[tc]);
}
/* This function allocates all memory needed for a single fp (i.e. an entity
* which contains status block, one rx queue and multiple per-TC tx queues.
*/
static int qede_alloc_mem_fp(struct qede_dev *edev,
struct qede_fastpath *fp)
{
int rc, tc;
rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
if (rc)
goto err;
rc = qede_alloc_mem_rxq(edev, fp->rxq);
if (rc)
goto err;
for (tc = 0; tc < edev->num_tc; tc++) {
rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
if (rc)
goto err;
}
return 0;
err:
qede_free_mem_fp(edev, fp);
return -ENOMEM;
}
static void qede_free_mem_load(struct qede_dev *edev)
{
int i;
for_each_rss(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
qede_free_mem_fp(edev, fp);
}
}
/* This function allocates all qede memory at NIC load. */
static int qede_alloc_mem_load(struct qede_dev *edev)
{
int rc = 0, rss_id;
for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
struct qede_fastpath *fp = &edev->fp_array[rss_id];
rc = qede_alloc_mem_fp(edev, fp);
if (rc)
break;
}
if (rss_id != QEDE_RSS_CNT(edev)) {
/* Failed allocating memory for all the queues */
if (!rss_id) {
DP_ERR(edev,
"Failed to allocate memory for the leading queue\n");
rc = -ENOMEM;
} else {
DP_NOTICE(edev,
"Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
QEDE_RSS_CNT(edev), rss_id);
}
edev->num_rss = rss_id;
}
return 0;
}
/* This function inits fp content and resets the SB, RXQ and TXQ structures */
static void qede_init_fp(struct qede_dev *edev)
{
int rss_id, txq_index, tc;
struct qede_fastpath *fp;
for_each_rss(rss_id) {
fp = &edev->fp_array[rss_id];
fp->edev = edev;
fp->rss_id = rss_id;
memset((void *)&fp->napi, 0, sizeof(fp->napi));
memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
fp->rxq->rxq_id = rss_id;
memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
for (tc = 0; tc < edev->num_tc; tc++) {
txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
fp->txqs[tc].index = txq_index;
}
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
edev->ndev->name, rss_id);
}
}
static int qede_set_real_num_queues(struct qede_dev *edev)
{
int rc = 0;
rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
if (rc) {
DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
return rc;
}
rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
if (rc) {
DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
return rc;
}
return 0;
}
static void qede_napi_disable_remove(struct qede_dev *edev)
{
int i;
for_each_rss(i) {
napi_disable(&edev->fp_array[i].napi);
netif_napi_del(&edev->fp_array[i].napi);
}
}
static void qede_napi_add_enable(struct qede_dev *edev)
{
int i;
/* Add NAPI objects */
for_each_rss(i) {
netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
qede_poll, NAPI_POLL_WEIGHT);
napi_enable(&edev->fp_array[i].napi);
}
}
static void qede_sync_free_irqs(struct qede_dev *edev)
{
int i;
for (i = 0; i < edev->int_info.used_cnt; i++) {
if (edev->int_info.msix_cnt) {
synchronize_irq(edev->int_info.msix[i].vector);
free_irq(edev->int_info.msix[i].vector,
&edev->fp_array[i]);
} else {
edev->ops->common->simd_handler_clean(edev->cdev, i);
}
}
edev->int_info.used_cnt = 0;
}
static int qede_req_msix_irqs(struct qede_dev *edev)
{
int i, rc;
/* Sanitize number of interrupts == number of prepared RSS queues */
if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
DP_ERR(edev,
"Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
return -EINVAL;
}
for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
rc = request_irq(edev->int_info.msix[i].vector,
qede_msix_fp_int, 0, edev->fp_array[i].name,
&edev->fp_array[i]);
if (rc) {
DP_ERR(edev, "Request fp %d irq failed\n", i);
qede_sync_free_irqs(edev);
return rc;
}
DP_VERBOSE(edev, NETIF_MSG_INTR,
"Requested fp irq for %s [entry %d]. Cookie is at %p\n",
edev->fp_array[i].name, i,
&edev->fp_array[i]);
edev->int_info.used_cnt++;
}
return 0;
}
static void qede_simd_fp_handler(void *cookie)
{
struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
napi_schedule_irqoff(&fp->napi);
}
static int qede_setup_irqs(struct qede_dev *edev)
{
int i, rc = 0;
/* Learn Interrupt configuration */
rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
if (rc)
return rc;
if (edev->int_info.msix_cnt) {
rc = qede_req_msix_irqs(edev);
if (rc)
return rc;
edev->ndev->irq = edev->int_info.msix[0].vector;
} else {
const struct qed_common_ops *ops;
/* qed should learn receive the RSS ids and callbacks */
ops = edev->ops->common;
for (i = 0; i < QEDE_RSS_CNT(edev); i++)
ops->simd_handler_config(edev->cdev,
&edev->fp_array[i], i,
qede_simd_fp_handler);
edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
}
return 0;
}
static int qede_drain_txq(struct qede_dev *edev,
struct qede_tx_queue *txq,
bool allow_drain)
{
int rc, cnt = 1000;
while (txq->sw_tx_cons != txq->sw_tx_prod) {
if (!cnt) {
if (allow_drain) {
DP_NOTICE(edev,
"Tx queue[%d] is stuck, requesting MCP to drain\n",
txq->index);
rc = edev->ops->common->drain(edev->cdev);
if (rc)
return rc;
return qede_drain_txq(edev, txq, false);
}
DP_NOTICE(edev,
"Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
txq->index, txq->sw_tx_prod,
txq->sw_tx_cons);
return -ENODEV;
}
cnt--;
usleep_range(1000, 2000);
barrier();
}
/* FW finished processing, wait for HW to transmit all tx packets */
usleep_range(1000, 2000);
return 0;
}
static int qede_stop_queues(struct qede_dev *edev)
{
struct qed_update_vport_params vport_update_params;
struct qed_dev *cdev = edev->cdev;
int rc, tc, i;
/* Disable the vport */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = 0;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 0;
vport_update_params.update_rss_flg = 0;
rc = edev->ops->vport_update(cdev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Failed to update vport\n");
return rc;
}
/* Flush Tx queues. If needed, request drain from MCP */
for_each_rss(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
for (tc = 0; tc < edev->num_tc; tc++) {
struct qede_tx_queue *txq = &fp->txqs[tc];
rc = qede_drain_txq(edev, txq, true);
if (rc)
return rc;
}
}
/* Stop all Queues in reverse order*/
for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
struct qed_stop_rxq_params rx_params;
/* Stop the Tx Queue(s)*/
for (tc = 0; tc < edev->num_tc; tc++) {
struct qed_stop_txq_params tx_params;
tx_params.rss_id = i;
tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
rc = edev->ops->q_tx_stop(cdev, &tx_params);
if (rc) {
DP_ERR(edev, "Failed to stop TXQ #%d\n",
tx_params.tx_queue_id);
return rc;
}
}
/* Stop the Rx Queue*/
memset(&rx_params, 0, sizeof(rx_params));
rx_params.rss_id = i;
rx_params.rx_queue_id = i;
rc = edev->ops->q_rx_stop(cdev, &rx_params);
if (rc) {
DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
return rc;
}
}
/* Stop the vport */
rc = edev->ops->vport_stop(cdev, 0);
if (rc)
DP_ERR(edev, "Failed to stop VPORT\n");
return rc;
}
static int qede_start_queues(struct qede_dev *edev)
{
int rc, tc, i;
int vport_id = 0, drop_ttl0_flg = 1, vlan_removal_en = 1;
struct qed_dev *cdev = edev->cdev;
struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
struct qed_update_vport_params vport_update_params;
struct qed_queue_start_common_params q_params;
if (!edev->num_rss) {
DP_ERR(edev,
"Cannot update V-VPORT as active as there are no Rx queues\n");
return -EINVAL;
}
rc = edev->ops->vport_start(cdev, vport_id,
edev->ndev->mtu,
drop_ttl0_flg,
vlan_removal_en);
if (rc) {
DP_ERR(edev, "Start V-PORT failed %d\n", rc);
return rc;
}
DP_VERBOSE(edev, NETIF_MSG_IFUP,
"Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
for_each_rss(i) {
struct qede_fastpath *fp = &edev->fp_array[i];
dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
memset(&q_params, 0, sizeof(q_params));
q_params.rss_id = i;
q_params.queue_id = i;
q_params.vport_id = 0;
q_params.sb = fp->sb_info->igu_sb_id;
q_params.sb_idx = RX_PI;
rc = edev->ops->q_rx_start(cdev, &q_params,
fp->rxq->rx_buf_size,
fp->rxq->rx_bd_ring.p_phys_addr,
phys_table,
fp->rxq->rx_comp_ring.page_cnt,
&fp->rxq->hw_rxq_prod_addr);
if (rc) {
DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
return rc;
}
fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
qede_update_rx_prod(edev, fp->rxq);
for (tc = 0; tc < edev->num_tc; tc++) {
struct qede_tx_queue *txq = &fp->txqs[tc];
int txq_index = tc * QEDE_RSS_CNT(edev) + i;
memset(&q_params, 0, sizeof(q_params));
q_params.rss_id = i;
q_params.queue_id = txq_index;
q_params.vport_id = 0;
q_params.sb = fp->sb_info->igu_sb_id;
q_params.sb_idx = TX_PI(tc);
rc = edev->ops->q_tx_start(cdev, &q_params,
txq->tx_pbl.pbl.p_phys_table,
txq->tx_pbl.page_cnt,
&txq->doorbell_addr);
if (rc) {
DP_ERR(edev, "Start TXQ #%d failed %d\n",
txq_index, rc);
return rc;
}
txq->hw_cons_ptr =
&fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
DB_AGG_CMD_SET);
SET_FIELD(txq->tx_db.data.params,
ETH_DB_DATA_AGG_VAL_SEL,
DQ_XCM_ETH_TX_BD_PROD_CMD);
txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
}
}
/* Prepare and send the vport enable */
memset(&vport_update_params, 0, sizeof(vport_update_params));
vport_update_params.vport_id = vport_id;
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 1;
/* Fill struct with RSS params */
if (QEDE_RSS_CNT(edev) > 1) {
vport_update_params.update_rss_flg = 1;
for (i = 0; i < 128; i++)
rss_params->rss_ind_table[i] =
ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
netdev_rss_key_fill(rss_params->rss_key,
sizeof(rss_params->rss_key));
} else {
memset(rss_params, 0, sizeof(*rss_params));
}
memcpy(&vport_update_params.rss_params, rss_params,
sizeof(*rss_params));
rc = edev->ops->vport_update(cdev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Update V-PORT failed %d\n", rc);
return rc;
}
return 0;
}
static int qede_set_mcast_rx_mac(struct qede_dev *edev,
enum qed_filter_xcast_params_type opcode,
unsigned char *mac, int num_macs)
{
struct qed_filter_params filter_cmd;
int i;
memset(&filter_cmd, 0, sizeof(filter_cmd));
filter_cmd.type = QED_FILTER_TYPE_MCAST;
filter_cmd.filter.mcast.type = opcode;
filter_cmd.filter.mcast.num = num_macs;
for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
return edev->ops->filter_config(edev->cdev, &filter_cmd);
}
enum qede_unload_mode {
QEDE_UNLOAD_NORMAL,
};
static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
{
struct qed_link_params link_params;
int rc;
DP_INFO(edev, "Starting qede unload\n");
mutex_lock(&edev->qede_lock);
edev->state = QEDE_STATE_CLOSED;
/* Close OS Tx */
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
/* Reset the link */
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = false;
edev->ops->common->set_link(edev->cdev, &link_params);
rc = qede_stop_queues(edev);
if (rc) {
qede_sync_free_irqs(edev);
goto out;
}
DP_INFO(edev, "Stopped Queues\n");
edev->ops->fastpath_stop(edev->cdev);
/* Release the interrupts */
qede_sync_free_irqs(edev);
edev->ops->common->set_fp_int(edev->cdev, 0);
qede_napi_disable_remove(edev);
qede_free_mem_load(edev);
qede_free_fp_array(edev);
out:
mutex_unlock(&edev->qede_lock);
DP_INFO(edev, "Ending qede unload\n");
}
enum qede_load_mode {
QEDE_LOAD_NORMAL,
};
static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
{
struct qed_link_params link_params;
struct qed_link_output link_output;
int rc;
DP_INFO(edev, "Starting qede load\n");
rc = qede_set_num_queues(edev);
if (rc)
goto err0;
rc = qede_alloc_fp_array(edev);
if (rc)
goto err0;
qede_init_fp(edev);
rc = qede_alloc_mem_load(edev);
if (rc)
goto err1;
DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
QEDE_RSS_CNT(edev), edev->num_tc);
rc = qede_set_real_num_queues(edev);
if (rc)
goto err2;
qede_napi_add_enable(edev);
DP_INFO(edev, "Napi added and enabled\n");
rc = qede_setup_irqs(edev);
if (rc)
goto err3;
DP_INFO(edev, "Setup IRQs succeeded\n");
rc = qede_start_queues(edev);
if (rc)
goto err4;
DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
/* Add primary mac and set Rx filters */
ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
mutex_lock(&edev->qede_lock);
edev->state = QEDE_STATE_OPEN;
mutex_unlock(&edev->qede_lock);
/* Ask for link-up using current configuration */
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = true;
edev->ops->common->set_link(edev->cdev, &link_params);
/* Query whether link is already-up */
memset(&link_output, 0, sizeof(link_output));
edev->ops->common->get_link(edev->cdev, &link_output);
qede_link_update(edev, &link_output);
DP_INFO(edev, "Ending successfully qede load\n");
return 0;
err4:
qede_sync_free_irqs(edev);
memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
err3:
qede_napi_disable_remove(edev);
err2:
qede_free_mem_load(edev);
err1:
edev->ops->common->set_fp_int(edev->cdev, 0);
qede_free_fp_array(edev);
edev->num_rss = 0;
err0:
return rc;
}
/* called with rtnl_lock */
static int qede_open(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
netif_carrier_off(ndev);
edev->ops->common->set_power_state(edev->cdev, PCI_D0);
return qede_load(edev, QEDE_LOAD_NORMAL);
}
static int qede_close(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
qede_unload(edev, QEDE_UNLOAD_NORMAL);
return 0;
}
static void qede_link_update(void *dev, struct qed_link_output *link)
{
struct qede_dev *edev = dev;
if (!netif_running(edev->ndev)) {
DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
return;
}
if (link->link_up) {
DP_NOTICE(edev, "Link is up\n");
netif_tx_start_all_queues(edev->ndev);
netif_carrier_on(edev->ndev);
} else {
DP_NOTICE(edev, "Link is down\n");
netif_tx_disable(edev->ndev);
netif_carrier_off(edev->ndev);
}
}
static int qede_set_mac_addr(struct net_device *ndev, void *p)
{
struct qede_dev *edev = netdev_priv(ndev);
struct sockaddr *addr = p;
int rc;
ASSERT_RTNL(); /* @@@TBD To be removed */
DP_INFO(edev, "Set_mac_addr called\n");
if (!is_valid_ether_addr(addr->sa_data)) {
DP_NOTICE(edev, "The MAC address is not valid\n");
return -EFAULT;
}
ether_addr_copy(ndev->dev_addr, addr->sa_data);
if (!netif_running(ndev)) {
DP_NOTICE(edev, "The device is currently down\n");
return 0;
}
/* Remove the previous primary mac */
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
edev->primary_mac);
if (rc)
return rc;
/* Add MAC filter according to the new unicast HW MAC address */
ether_addr_copy(edev->primary_mac, ndev->dev_addr);
return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
edev->primary_mac);
}
static int
qede_configure_mcast_filtering(struct net_device *ndev,
enum qed_filter_rx_mode_type *accept_flags)
{
struct qede_dev *edev = netdev_priv(ndev);
unsigned char *mc_macs, *temp;
struct netdev_hw_addr *ha;
int rc = 0, mc_count;
size_t size;
size = 64 * ETH_ALEN;
mc_macs = kzalloc(size, GFP_KERNEL);
if (!mc_macs) {
DP_NOTICE(edev,
"Failed to allocate memory for multicast MACs\n");
rc = -ENOMEM;
goto exit;
}
temp = mc_macs;
/* Remove all previously configured MAC filters */
rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
mc_macs, 1);
if (rc)
goto exit;
netif_addr_lock_bh(ndev);
mc_count = netdev_mc_count(ndev);
if (mc_count < 64) {
netdev_for_each_mc_addr(ha, ndev) {
ether_addr_copy(temp, ha->addr);
temp += ETH_ALEN;
}
}
netif_addr_unlock_bh(ndev);
/* Check for all multicast @@@TBD resource allocation */
if ((ndev->flags & IFF_ALLMULTI) ||
(mc_count > 64)) {
if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
*accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
} else {
/* Add all multicast MAC filters */
rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
mc_macs, mc_count);
}
exit:
kfree(mc_macs);
return rc;
}
static void qede_set_rx_mode(struct net_device *ndev)
{
struct qede_dev *edev = netdev_priv(ndev);
DP_INFO(edev, "qede_set_rx_mode called\n");
if (edev->state != QEDE_STATE_OPEN) {
DP_INFO(edev,
"qede_set_rx_mode called while interface is down\n");
} else {
set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
schedule_delayed_work(&edev->sp_task, 0);
}
}
/* Must be called with qede_lock held */
static void qede_config_rx_mode(struct net_device *ndev)
{
enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
struct qede_dev *edev = netdev_priv(ndev);
struct qed_filter_params rx_mode;
unsigned char *uc_macs, *temp;
struct netdev_hw_addr *ha;
int rc, uc_count;
size_t size;
netif_addr_lock_bh(ndev);
uc_count = netdev_uc_count(ndev);
size = uc_count * ETH_ALEN;
uc_macs = kzalloc(size, GFP_ATOMIC);
if (!uc_macs) {
DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
netif_addr_unlock_bh(ndev);
return;
}
temp = uc_macs;
netdev_for_each_uc_addr(ha, ndev) {
ether_addr_copy(temp, ha->addr);
temp += ETH_ALEN;
}
netif_addr_unlock_bh(ndev);
/* Configure the struct for the Rx mode */
memset(&rx_mode, 0, sizeof(struct qed_filter_params));
rx_mode.type = QED_FILTER_TYPE_RX_MODE;
/* Remove all previous unicast secondary macs and multicast macs
* (configrue / leave the primary mac)
*/
rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
edev->primary_mac);
if (rc)
goto out;
/* Check for promiscuous */
if ((ndev->flags & IFF_PROMISC) ||
(uc_count > 15)) { /* @@@TBD resource allocation - 1 */
accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
} else {
/* Add MAC filters according to the unicast secondary macs */
int i;
temp = uc_macs;
for (i = 0; i < uc_count; i++) {
rc = qede_set_ucast_rx_mac(edev,
QED_FILTER_XCAST_TYPE_ADD,
temp);
if (rc)
goto out;
temp += ETH_ALEN;
}
rc = qede_configure_mcast_filtering(ndev, &accept_flags);
if (rc)
goto out;
}
rx_mode.filter.accept_flags = accept_flags;
edev->ops->filter_config(edev->cdev, &rx_mode);
out:
kfree(uc_macs);
}