WSL2-Linux-Kernel/drivers/ata/sata_mv.c

4539 строки
123 KiB
C

/*
* sata_mv.c - Marvell SATA support
*
* Copyright 2008-2009: Marvell Corporation, all rights reserved.
* Copyright 2005: EMC Corporation, all rights reserved.
* Copyright 2005 Red Hat, Inc. All rights reserved.
*
* Originally written by Brett Russ.
* Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
*
* Please ALWAYS copy linux-ide@vger.kernel.org on emails.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*
* sata_mv TODO list:
*
* --> Develop a low-power-consumption strategy, and implement it.
*
* --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
*
* --> [Experiment, Marvell value added] Is it possible to use target
* mode to cross-connect two Linux boxes with Marvell cards? If so,
* creating LibATA target mode support would be very interesting.
*
* Target mode, for those without docs, is the ability to directly
* connect two SATA ports.
*/
/*
* 80x1-B2 errata PCI#11:
*
* Users of the 6041/6081 Rev.B2 chips (current is C0)
* should be careful to insert those cards only onto PCI-X bus #0,
* and only in device slots 0..7, not higher. The chips may not
* work correctly otherwise (note: this is a pretty rare condition).
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dmapool.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <linux/clk.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/ata_platform.h>
#include <linux/mbus.h>
#include <linux/bitops.h>
#include <linux/gfp.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <linux/libata.h>
#define DRV_NAME "sata_mv"
#define DRV_VERSION "1.28"
/*
* module options
*/
#ifdef CONFIG_PCI
static int msi;
module_param(msi, int, S_IRUGO);
MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
#endif
static int irq_coalescing_io_count;
module_param(irq_coalescing_io_count, int, S_IRUGO);
MODULE_PARM_DESC(irq_coalescing_io_count,
"IRQ coalescing I/O count threshold (0..255)");
static int irq_coalescing_usecs;
module_param(irq_coalescing_usecs, int, S_IRUGO);
MODULE_PARM_DESC(irq_coalescing_usecs,
"IRQ coalescing time threshold in usecs");
enum {
/* BAR's are enumerated in terms of pci_resource_start() terms */
MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
MV_IO_BAR = 2, /* offset 0x18: IO space */
MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
MAX_COAL_IO_COUNT = 255, /* completed I/O count */
MV_PCI_REG_BASE = 0,
/*
* Per-chip ("all ports") interrupt coalescing feature.
* This is only for GEN_II / GEN_IIE hardware.
*
* Coalescing defers the interrupt until either the IO_THRESHOLD
* (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
*/
COAL_REG_BASE = 0x18000,
IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
/*
* Registers for the (unused here) transaction coalescing feature:
*/
TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
SATAHC0_REG_BASE = 0x20000,
FLASH_CTL = 0x1046c,
GPIO_PORT_CTL = 0x104f0,
RESET_CFG = 0x180d8,
MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
MV_MAX_Q_DEPTH = 32,
MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
/* CRQB needs alignment on a 1KB boundary. Size == 1KB
* CRPB needs alignment on a 256B boundary. Size == 256B
* ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
*/
MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
MV_MAX_SG_CT = 256,
MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
MV_PORT_HC_SHIFT = 2,
MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
/* Host Flags */
MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
CRQB_FLAG_READ = (1 << 0),
CRQB_TAG_SHIFT = 1,
CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
CRQB_CMD_ADDR_SHIFT = 8,
CRQB_CMD_CS = (0x2 << 11),
CRQB_CMD_LAST = (1 << 15),
CRPB_FLAG_STATUS_SHIFT = 8,
CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
EPRD_FLAG_END_OF_TBL = (1 << 31),
/* PCI interface registers */
MV_PCI_COMMAND = 0xc00,
MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
PCI_MAIN_CMD_STS = 0xd30,
STOP_PCI_MASTER = (1 << 2),
PCI_MASTER_EMPTY = (1 << 3),
GLOB_SFT_RST = (1 << 4),
MV_PCI_MODE = 0xd00,
MV_PCI_MODE_MASK = 0x30,
MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
MV_PCI_DISC_TIMER = 0xd04,
MV_PCI_MSI_TRIGGER = 0xc38,
MV_PCI_SERR_MASK = 0xc28,
MV_PCI_XBAR_TMOUT = 0x1d04,
MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
MV_PCI_ERR_ATTRIBUTE = 0x1d48,
MV_PCI_ERR_COMMAND = 0x1d50,
PCI_IRQ_CAUSE = 0x1d58,
PCI_IRQ_MASK = 0x1d5c,
PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
PCIE_IRQ_CAUSE = 0x1900,
PCIE_IRQ_MASK = 0x1910,
PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
PCI_HC_MAIN_IRQ_MASK = 0x1d64,
SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
SOC_HC_MAIN_IRQ_MASK = 0x20024,
ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
PCI_ERR = (1 << 18),
TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
GPIO_INT = (1 << 22),
SELF_INT = (1 << 23),
TWSI_INT = (1 << 24),
HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
/* SATAHC registers */
HC_CFG = 0x00,
HC_IRQ_CAUSE = 0x14,
DMA_IRQ = (1 << 0), /* shift by port # */
HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
DEV_IRQ = (1 << 8), /* shift by port # */
/*
* Per-HC (Host-Controller) interrupt coalescing feature.
* This is present on all chip generations.
*
* Coalescing defers the interrupt until either the IO_THRESHOLD
* (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
*/
HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
SOC_LED_CTRL = 0x2c,
SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
/* with dev activity LED */
/* Shadow block registers */
SHD_BLK = 0x100,
SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
/* SATA registers */
SATA_STATUS = 0x300, /* ctrl, err regs follow status */
SATA_ACTIVE = 0x350,
FIS_IRQ_CAUSE = 0x364,
FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
LTMODE = 0x30c, /* requires read-after-write */
LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
PHY_MODE2 = 0x330,
PHY_MODE3 = 0x310,
PHY_MODE4 = 0x314, /* requires read-after-write */
PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
SATA_IFCTL = 0x344,
SATA_TESTCTL = 0x348,
SATA_IFSTAT = 0x34c,
VENDOR_UNIQUE_FIS = 0x35c,
FISCFG = 0x360,
FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
PHY_MODE9_GEN2 = 0x398,
PHY_MODE9_GEN1 = 0x39c,
PHYCFG_OFS = 0x3a0, /* only in 65n devices */
MV5_PHY_MODE = 0x74,
MV5_LTMODE = 0x30,
MV5_PHY_CTL = 0x0C,
SATA_IFCFG = 0x050,
LP_PHY_CTL = 0x058,
LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
LP_PHY_CTL_PIN_PU_RX = (1 << 1),
LP_PHY_CTL_PIN_PU_TX = (1 << 2),
LP_PHY_CTL_GEN_TX_3G = (1 << 5),
LP_PHY_CTL_GEN_RX_3G = (1 << 9),
MV_M2_PREAMP_MASK = 0x7e0,
/* Port registers */
EDMA_CFG = 0,
EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
EDMA_ERR_IRQ_CAUSE = 0x8,
EDMA_ERR_IRQ_MASK = 0xc,
EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
EDMA_ERR_DEV = (1 << 2), /* device error */
EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
EDMA_ERR_OVERRUN_5 = (1 << 5),
EDMA_ERR_UNDERRUN_5 = (1 << 6),
EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
EDMA_ERR_LNK_CTRL_RX_1 |
EDMA_ERR_LNK_CTRL_RX_3 |
EDMA_ERR_LNK_CTRL_TX,
EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
EDMA_ERR_PRD_PAR |
EDMA_ERR_DEV_DCON |
EDMA_ERR_DEV_CON |
EDMA_ERR_SERR |
EDMA_ERR_SELF_DIS |
EDMA_ERR_CRQB_PAR |
EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY |
EDMA_ERR_LNK_CTRL_RX_2 |
EDMA_ERR_LNK_DATA_RX |
EDMA_ERR_LNK_DATA_TX |
EDMA_ERR_TRANS_PROTO,
EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
EDMA_ERR_PRD_PAR |
EDMA_ERR_DEV_DCON |
EDMA_ERR_DEV_CON |
EDMA_ERR_OVERRUN_5 |
EDMA_ERR_UNDERRUN_5 |
EDMA_ERR_SELF_DIS_5 |
EDMA_ERR_CRQB_PAR |
EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR |
EDMA_ERR_IORDY,
EDMA_REQ_Q_BASE_HI = 0x10,
EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
EDMA_REQ_Q_OUT_PTR = 0x18,
EDMA_REQ_Q_PTR_SHIFT = 5,
EDMA_RSP_Q_BASE_HI = 0x1c,
EDMA_RSP_Q_IN_PTR = 0x20,
EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
EDMA_RSP_Q_PTR_SHIFT = 3,
EDMA_CMD = 0x28, /* EDMA command register */
EDMA_EN = (1 << 0), /* enable EDMA */
EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
EDMA_STATUS = 0x30, /* EDMA engine status */
EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
EDMA_IORDY_TMOUT = 0x34,
EDMA_ARB_CFG = 0x38,
EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
BMDMA_CMD = 0x224, /* bmdma command register */
BMDMA_STATUS = 0x228, /* bmdma status register */
BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
/* Host private flags (hp_flags) */
MV_HP_FLAG_MSI = (1 << 0),
MV_HP_ERRATA_50XXB0 = (1 << 1),
MV_HP_ERRATA_50XXB2 = (1 << 2),
MV_HP_ERRATA_60X1B2 = (1 << 3),
MV_HP_ERRATA_60X1C0 = (1 << 4),
MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
/* Port private flags (pp_flags) */
MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
};
#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
#define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
#define WINDOW_BASE(i) (0x20034 + ((i) << 4))
enum {
/* DMA boundary 0xffff is required by the s/g splitting
* we need on /length/ in mv_fill-sg().
*/
MV_DMA_BOUNDARY = 0xffffU,
/* mask of register bits containing lower 32 bits
* of EDMA request queue DMA address
*/
EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
/* ditto, for response queue */
EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
};
enum chip_type {
chip_504x,
chip_508x,
chip_5080,
chip_604x,
chip_608x,
chip_6042,
chip_7042,
chip_soc,
};
/* Command ReQuest Block: 32B */
struct mv_crqb {
__le32 sg_addr;
__le32 sg_addr_hi;
__le16 ctrl_flags;
__le16 ata_cmd[11];
};
struct mv_crqb_iie {
__le32 addr;
__le32 addr_hi;
__le32 flags;
__le32 len;
__le32 ata_cmd[4];
};
/* Command ResPonse Block: 8B */
struct mv_crpb {
__le16 id;
__le16 flags;
__le32 tmstmp;
};
/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
struct mv_sg {
__le32 addr;
__le32 flags_size;
__le32 addr_hi;
__le32 reserved;
};
/*
* We keep a local cache of a few frequently accessed port
* registers here, to avoid having to read them (very slow)
* when switching between EDMA and non-EDMA modes.
*/
struct mv_cached_regs {
u32 fiscfg;
u32 ltmode;
u32 haltcond;
u32 unknown_rsvd;
};
struct mv_port_priv {
struct mv_crqb *crqb;
dma_addr_t crqb_dma;
struct mv_crpb *crpb;
dma_addr_t crpb_dma;
struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
unsigned int req_idx;
unsigned int resp_idx;
u32 pp_flags;
struct mv_cached_regs cached;
unsigned int delayed_eh_pmp_map;
};
struct mv_port_signal {
u32 amps;
u32 pre;
};
struct mv_host_priv {
u32 hp_flags;
unsigned int board_idx;
u32 main_irq_mask;
struct mv_port_signal signal[8];
const struct mv_hw_ops *ops;
int n_ports;
void __iomem *base;
void __iomem *main_irq_cause_addr;
void __iomem *main_irq_mask_addr;
u32 irq_cause_offset;
u32 irq_mask_offset;
u32 unmask_all_irqs;
/*
* Needed on some devices that require their clocks to be enabled.
* These are optional: if the platform device does not have any
* clocks, they won't be used. Also, if the underlying hardware
* does not support the common clock framework (CONFIG_HAVE_CLK=n),
* all the clock operations become no-ops (see clk.h).
*/
struct clk *clk;
struct clk **port_clks;
/*
* Some devices have a SATA PHY which can be enabled/disabled
* in order to save power. These are optional: if the platform
* devices does not have any phy, they won't be used.
*/
struct phy **port_phys;
/*
* These consistent DMA memory pools give us guaranteed
* alignment for hardware-accessed data structures,
* and less memory waste in accomplishing the alignment.
*/
struct dma_pool *crqb_pool;
struct dma_pool *crpb_pool;
struct dma_pool *sg_tbl_pool;
};
struct mv_hw_ops {
void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
};
static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
static int mv_port_start(struct ata_port *ap);
static void mv_port_stop(struct ata_port *ap);
static int mv_qc_defer(struct ata_queued_cmd *qc);
static void mv_qc_prep(struct ata_queued_cmd *qc);
static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
static int mv_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static void mv_eh_freeze(struct ata_port *ap);
static void mv_eh_thaw(struct ata_port *ap);
static void mv6_dev_config(struct ata_device *dev);
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port);
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc);
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
void __iomem *mmio);
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio);
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int n_hc);
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
void __iomem *mmio);
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int port);
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port_no);
static int mv_stop_edma(struct ata_port *ap);
static int mv_stop_edma_engine(void __iomem *port_mmio);
static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
static void mv_pmp_select(struct ata_port *ap, int pmp);
static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static int mv_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline);
static void mv_pmp_error_handler(struct ata_port *ap);
static void mv_process_crpb_entries(struct ata_port *ap,
struct mv_port_priv *pp);
static void mv_sff_irq_clear(struct ata_port *ap);
static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
static void mv_bmdma_setup(struct ata_queued_cmd *qc);
static void mv_bmdma_start(struct ata_queued_cmd *qc);
static void mv_bmdma_stop(struct ata_queued_cmd *qc);
static u8 mv_bmdma_status(struct ata_port *ap);
static u8 mv_sff_check_status(struct ata_port *ap);
/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
* because we have to allow room for worst case splitting of
* PRDs for 64K boundaries in mv_fill_sg().
*/
#ifdef CONFIG_PCI
static struct scsi_host_template mv5_sht = {
ATA_BASE_SHT(DRV_NAME),
.sg_tablesize = MV_MAX_SG_CT / 2,
.dma_boundary = MV_DMA_BOUNDARY,
};
#endif
static struct scsi_host_template mv6_sht = {
ATA_NCQ_SHT(DRV_NAME),
.can_queue = MV_MAX_Q_DEPTH - 1,
.sg_tablesize = MV_MAX_SG_CT / 2,
.dma_boundary = MV_DMA_BOUNDARY,
};
static struct ata_port_operations mv5_ops = {
.inherits = &ata_sff_port_ops,
.lost_interrupt = ATA_OP_NULL,
.qc_defer = mv_qc_defer,
.qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue,
.freeze = mv_eh_freeze,
.thaw = mv_eh_thaw,
.hardreset = mv_hardreset,
.scr_read = mv5_scr_read,
.scr_write = mv5_scr_write,
.port_start = mv_port_start,
.port_stop = mv_port_stop,
};
static struct ata_port_operations mv6_ops = {
.inherits = &ata_bmdma_port_ops,
.lost_interrupt = ATA_OP_NULL,
.qc_defer = mv_qc_defer,
.qc_prep = mv_qc_prep,
.qc_issue = mv_qc_issue,
.dev_config = mv6_dev_config,
.freeze = mv_eh_freeze,
.thaw = mv_eh_thaw,
.hardreset = mv_hardreset,
.softreset = mv_softreset,
.pmp_hardreset = mv_pmp_hardreset,
.pmp_softreset = mv_softreset,
.error_handler = mv_pmp_error_handler,
.scr_read = mv_scr_read,
.scr_write = mv_scr_write,
.sff_check_status = mv_sff_check_status,
.sff_irq_clear = mv_sff_irq_clear,
.check_atapi_dma = mv_check_atapi_dma,
.bmdma_setup = mv_bmdma_setup,
.bmdma_start = mv_bmdma_start,
.bmdma_stop = mv_bmdma_stop,
.bmdma_status = mv_bmdma_status,
.port_start = mv_port_start,
.port_stop = mv_port_stop,
};
static struct ata_port_operations mv_iie_ops = {
.inherits = &mv6_ops,
.dev_config = ATA_OP_NULL,
.qc_prep = mv_qc_prep_iie,
};
static const struct ata_port_info mv_port_info[] = {
{ /* chip_504x */
.flags = MV_GEN_I_FLAGS,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv5_ops,
},
{ /* chip_508x */
.flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv5_ops,
},
{ /* chip_5080 */
.flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv5_ops,
},
{ /* chip_604x */
.flags = MV_GEN_II_FLAGS,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv6_ops,
},
{ /* chip_608x */
.flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv6_ops,
},
{ /* chip_6042 */
.flags = MV_GEN_IIE_FLAGS,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv_iie_ops,
},
{ /* chip_7042 */
.flags = MV_GEN_IIE_FLAGS,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv_iie_ops,
},
{ /* chip_soc */
.flags = MV_GEN_IIE_FLAGS,
.pio_mask = ATA_PIO4,
.udma_mask = ATA_UDMA6,
.port_ops = &mv_iie_ops,
},
};
static const struct pci_device_id mv_pci_tbl[] = {
{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
/* RocketRAID 1720/174x have different identifiers */
{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
/* Adaptec 1430SA */
{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
/* Marvell 7042 support */
{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
/* Highpoint RocketRAID PCIe series */
{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
{ } /* terminate list */
};
static const struct mv_hw_ops mv5xxx_ops = {
.phy_errata = mv5_phy_errata,
.enable_leds = mv5_enable_leds,
.read_preamp = mv5_read_preamp,
.reset_hc = mv5_reset_hc,
.reset_flash = mv5_reset_flash,
.reset_bus = mv5_reset_bus,
};
static const struct mv_hw_ops mv6xxx_ops = {
.phy_errata = mv6_phy_errata,
.enable_leds = mv6_enable_leds,
.read_preamp = mv6_read_preamp,
.reset_hc = mv6_reset_hc,
.reset_flash = mv6_reset_flash,
.reset_bus = mv_reset_pci_bus,
};
static const struct mv_hw_ops mv_soc_ops = {
.phy_errata = mv6_phy_errata,
.enable_leds = mv_soc_enable_leds,
.read_preamp = mv_soc_read_preamp,
.reset_hc = mv_soc_reset_hc,
.reset_flash = mv_soc_reset_flash,
.reset_bus = mv_soc_reset_bus,
};
static const struct mv_hw_ops mv_soc_65n_ops = {
.phy_errata = mv_soc_65n_phy_errata,
.enable_leds = mv_soc_enable_leds,
.reset_hc = mv_soc_reset_hc,
.reset_flash = mv_soc_reset_flash,
.reset_bus = mv_soc_reset_bus,
};
/*
* Functions
*/
static inline void writelfl(unsigned long data, void __iomem *addr)
{
writel(data, addr);
(void) readl(addr); /* flush to avoid PCI posted write */
}
static inline unsigned int mv_hc_from_port(unsigned int port)
{
return port >> MV_PORT_HC_SHIFT;
}
static inline unsigned int mv_hardport_from_port(unsigned int port)
{
return port & MV_PORT_MASK;
}
/*
* Consolidate some rather tricky bit shift calculations.
* This is hot-path stuff, so not a function.
* Simple code, with two return values, so macro rather than inline.
*
* port is the sole input, in range 0..7.
* shift is one output, for use with main_irq_cause / main_irq_mask registers.
* hardport is the other output, in range 0..3.
*
* Note that port and hardport may be the same variable in some cases.
*/
#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
{ \
shift = mv_hc_from_port(port) * HC_SHIFT; \
hardport = mv_hardport_from_port(port); \
shift += hardport * 2; \
}
static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
{
return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
}
static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
unsigned int port)
{
return mv_hc_base(base, mv_hc_from_port(port));
}
static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
{
return mv_hc_base_from_port(base, port) +
MV_SATAHC_ARBTR_REG_SZ +
(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
}
static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
{
void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
return hc_mmio + ofs;
}
static inline void __iomem *mv_host_base(struct ata_host *host)
{
struct mv_host_priv *hpriv = host->private_data;
return hpriv->base;
}
static inline void __iomem *mv_ap_base(struct ata_port *ap)
{
return mv_port_base(mv_host_base(ap->host), ap->port_no);
}
static inline int mv_get_hc_count(unsigned long port_flags)
{
return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
}
/**
* mv_save_cached_regs - (re-)initialize cached port registers
* @ap: the port whose registers we are caching
*
* Initialize the local cache of port registers,
* so that reading them over and over again can
* be avoided on the hotter paths of this driver.
* This saves a few microseconds each time we switch
* to/from EDMA mode to perform (eg.) a drive cache flush.
*/
static void mv_save_cached_regs(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
pp->cached.fiscfg = readl(port_mmio + FISCFG);
pp->cached.ltmode = readl(port_mmio + LTMODE);
pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
}
/**
* mv_write_cached_reg - write to a cached port register
* @addr: hardware address of the register
* @old: pointer to cached value of the register
* @new: new value for the register
*
* Write a new value to a cached register,
* but only if the value is different from before.
*/
static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
{
if (new != *old) {
unsigned long laddr;
*old = new;
/*
* Workaround for 88SX60x1-B2 FEr SATA#13:
* Read-after-write is needed to prevent generating 64-bit
* write cycles on the PCI bus for SATA interface registers
* at offsets ending in 0x4 or 0xc.
*
* Looks like a lot of fuss, but it avoids an unnecessary
* +1 usec read-after-write delay for unaffected registers.
*/
laddr = (unsigned long)addr & 0xffff;
if (laddr >= 0x300 && laddr <= 0x33c) {
laddr &= 0x000f;
if (laddr == 0x4 || laddr == 0xc) {
writelfl(new, addr); /* read after write */
return;
}
}
writel(new, addr); /* unaffected by the errata */
}
}
static void mv_set_edma_ptrs(void __iomem *port_mmio,
struct mv_host_priv *hpriv,
struct mv_port_priv *pp)
{
u32 index;
/*
* initialize request queue
*/
pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
WARN_ON(pp->crqb_dma & 0x3ff);
writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
port_mmio + EDMA_REQ_Q_IN_PTR);
writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
/*
* initialize response queue
*/
pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
WARN_ON(pp->crpb_dma & 0xff);
writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
port_mmio + EDMA_RSP_Q_OUT_PTR);
}
static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
{
/*
* When writing to the main_irq_mask in hardware,
* we must ensure exclusivity between the interrupt coalescing bits
* and the corresponding individual port DONE_IRQ bits.
*
* Note that this register is really an "IRQ enable" register,
* not an "IRQ mask" register as Marvell's naming might suggest.
*/
if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
mask &= ~DONE_IRQ_0_3;
if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
mask &= ~DONE_IRQ_4_7;
writelfl(mask, hpriv->main_irq_mask_addr);
}
static void mv_set_main_irq_mask(struct ata_host *host,
u32 disable_bits, u32 enable_bits)
{
struct mv_host_priv *hpriv = host->private_data;
u32 old_mask, new_mask;
old_mask = hpriv->main_irq_mask;
new_mask = (old_mask & ~disable_bits) | enable_bits;
if (new_mask != old_mask) {
hpriv->main_irq_mask = new_mask;
mv_write_main_irq_mask(new_mask, hpriv);
}
}
static void mv_enable_port_irqs(struct ata_port *ap,
unsigned int port_bits)
{
unsigned int shift, hardport, port = ap->port_no;
u32 disable_bits, enable_bits;
MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
enable_bits = port_bits << shift;
mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
}
static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
void __iomem *port_mmio,
unsigned int port_irqs)
{
struct mv_host_priv *hpriv = ap->host->private_data;
int hardport = mv_hardport_from_port(ap->port_no);
void __iomem *hc_mmio = mv_hc_base_from_port(
mv_host_base(ap->host), ap->port_no);
u32 hc_irq_cause;
/* clear EDMA event indicators, if any */
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
/* clear pending irq events */
hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
/* clear FIS IRQ Cause */
if (IS_GEN_IIE(hpriv))
writelfl(0, port_mmio + FIS_IRQ_CAUSE);
mv_enable_port_irqs(ap, port_irqs);
}
static void mv_set_irq_coalescing(struct ata_host *host,
unsigned int count, unsigned int usecs)
{
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base, *hc_mmio;
u32 coal_enable = 0;
unsigned long flags;
unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
ALL_PORTS_COAL_DONE;
/* Disable IRQ coalescing if either threshold is zero */
if (!usecs || !count) {
clks = count = 0;
} else {
/* Respect maximum limits of the hardware */
clks = usecs * COAL_CLOCKS_PER_USEC;
if (clks > MAX_COAL_TIME_THRESHOLD)
clks = MAX_COAL_TIME_THRESHOLD;
if (count > MAX_COAL_IO_COUNT)
count = MAX_COAL_IO_COUNT;
}
spin_lock_irqsave(&host->lock, flags);
mv_set_main_irq_mask(host, coal_disable, 0);
if (is_dual_hc && !IS_GEN_I(hpriv)) {
/*
* GEN_II/GEN_IIE with dual host controllers:
* one set of global thresholds for the entire chip.
*/
writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
/* clear leftover coal IRQ bit */
writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
if (count)
coal_enable = ALL_PORTS_COAL_DONE;
clks = count = 0; /* force clearing of regular regs below */
}
/*
* All chips: independent thresholds for each HC on the chip.
*/
hc_mmio = mv_hc_base_from_port(mmio, 0);
writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
if (count)
coal_enable |= PORTS_0_3_COAL_DONE;
if (is_dual_hc) {
hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
if (count)
coal_enable |= PORTS_4_7_COAL_DONE;
}
mv_set_main_irq_mask(host, 0, coal_enable);
spin_unlock_irqrestore(&host->lock, flags);
}
/**
* mv_start_edma - Enable eDMA engine
* @base: port base address
* @pp: port private data
*
* Verify the local cache of the eDMA state is accurate with a
* WARN_ON.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
struct mv_port_priv *pp, u8 protocol)
{
int want_ncq = (protocol == ATA_PROT_NCQ);
if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
if (want_ncq != using_ncq)
mv_stop_edma(ap);
}
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
struct mv_host_priv *hpriv = ap->host->private_data;
mv_edma_cfg(ap, want_ncq, 1);
mv_set_edma_ptrs(port_mmio, hpriv, pp);
mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
writelfl(EDMA_EN, port_mmio + EDMA_CMD);
pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
}
}
static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
const int per_loop = 5, timeout = (15 * 1000 / per_loop);
int i;
/*
* Wait for the EDMA engine to finish transactions in progress.
* No idea what a good "timeout" value might be, but measurements
* indicate that it often requires hundreds of microseconds
* with two drives in-use. So we use the 15msec value above
* as a rough guess at what even more drives might require.
*/
for (i = 0; i < timeout; ++i) {
u32 edma_stat = readl(port_mmio + EDMA_STATUS);
if ((edma_stat & empty_idle) == empty_idle)
break;
udelay(per_loop);
}
/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
}
/**
* mv_stop_edma_engine - Disable eDMA engine
* @port_mmio: io base address
*
* LOCKING:
* Inherited from caller.
*/
static int mv_stop_edma_engine(void __iomem *port_mmio)
{
int i;
/* Disable eDMA. The disable bit auto clears. */
writelfl(EDMA_DS, port_mmio + EDMA_CMD);
/* Wait for the chip to confirm eDMA is off. */
for (i = 10000; i > 0; i--) {
u32 reg = readl(port_mmio + EDMA_CMD);
if (!(reg & EDMA_EN))
return 0;
udelay(10);
}
return -EIO;
}
static int mv_stop_edma(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
int err = 0;
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
return 0;
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
mv_wait_for_edma_empty_idle(ap);
if (mv_stop_edma_engine(port_mmio)) {
ata_port_err(ap, "Unable to stop eDMA\n");
err = -EIO;
}
mv_edma_cfg(ap, 0, 0);
return err;
}
#ifdef ATA_DEBUG
static void mv_dump_mem(void __iomem *start, unsigned bytes)
{
int b, w;
for (b = 0; b < bytes; ) {
DPRINTK("%p: ", start + b);
for (w = 0; b < bytes && w < 4; w++) {
printk("%08x ", readl(start + b));
b += sizeof(u32);
}
printk("\n");
}
}
#endif
#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
{
#ifdef ATA_DEBUG
int b, w;
u32 dw;
for (b = 0; b < bytes; ) {
DPRINTK("%02x: ", b);
for (w = 0; b < bytes && w < 4; w++) {
(void) pci_read_config_dword(pdev, b, &dw);
printk("%08x ", dw);
b += sizeof(u32);
}
printk("\n");
}
#endif
}
#endif
static void mv_dump_all_regs(void __iomem *mmio_base, int port,
struct pci_dev *pdev)
{
#ifdef ATA_DEBUG
void __iomem *hc_base = mv_hc_base(mmio_base,
port >> MV_PORT_HC_SHIFT);
void __iomem *port_base;
int start_port, num_ports, p, start_hc, num_hcs, hc;
if (0 > port) {
start_hc = start_port = 0;
num_ports = 8; /* shld be benign for 4 port devs */
num_hcs = 2;
} else {
start_hc = port >> MV_PORT_HC_SHIFT;
start_port = port;
num_ports = num_hcs = 1;
}
DPRINTK("All registers for port(s) %u-%u:\n", start_port,
num_ports > 1 ? num_ports - 1 : start_port);
if (NULL != pdev) {
DPRINTK("PCI config space regs:\n");
mv_dump_pci_cfg(pdev, 0x68);
}
DPRINTK("PCI regs:\n");
mv_dump_mem(mmio_base+0xc00, 0x3c);
mv_dump_mem(mmio_base+0xd00, 0x34);
mv_dump_mem(mmio_base+0xf00, 0x4);
mv_dump_mem(mmio_base+0x1d00, 0x6c);
for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
hc_base = mv_hc_base(mmio_base, hc);
DPRINTK("HC regs (HC %i):\n", hc);
mv_dump_mem(hc_base, 0x1c);
}
for (p = start_port; p < start_port + num_ports; p++) {
port_base = mv_port_base(mmio_base, p);
DPRINTK("EDMA regs (port %i):\n", p);
mv_dump_mem(port_base, 0x54);
DPRINTK("SATA regs (port %i):\n", p);
mv_dump_mem(port_base+0x300, 0x60);
}
#endif
}
static unsigned int mv_scr_offset(unsigned int sc_reg_in)
{
unsigned int ofs;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_CONTROL:
case SCR_ERROR:
ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
break;
case SCR_ACTIVE:
ofs = SATA_ACTIVE; /* active is not with the others */
break;
default:
ofs = 0xffffffffU;
break;
}
return ofs;
}
static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
{
unsigned int ofs = mv_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
*val = readl(mv_ap_base(link->ap) + ofs);
return 0;
} else
return -EINVAL;
}
static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
{
unsigned int ofs = mv_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
void __iomem *addr = mv_ap_base(link->ap) + ofs;
struct mv_host_priv *hpriv = link->ap->host->private_data;
if (sc_reg_in == SCR_CONTROL) {
/*
* Workaround for 88SX60x1 FEr SATA#26:
*
* COMRESETs have to take care not to accidentally
* put the drive to sleep when writing SCR_CONTROL.
* Setting bits 12..15 prevents this problem.
*
* So if we see an outbound COMMRESET, set those bits.
* Ditto for the followup write that clears the reset.
*
* The proprietary driver does this for
* all chip versions, and so do we.
*/
if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
val |= 0xf000;
if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
void __iomem *lp_phy_addr =
mv_ap_base(link->ap) + LP_PHY_CTL;
/*
* Set PHY speed according to SControl speed.
*/
u32 lp_phy_val =
LP_PHY_CTL_PIN_PU_PLL |
LP_PHY_CTL_PIN_PU_RX |
LP_PHY_CTL_PIN_PU_TX;
if ((val & 0xf0) != 0x10)
lp_phy_val |=
LP_PHY_CTL_GEN_TX_3G |
LP_PHY_CTL_GEN_RX_3G;
writelfl(lp_phy_val, lp_phy_addr);
}
}
writelfl(val, addr);
return 0;
} else
return -EINVAL;
}
static void mv6_dev_config(struct ata_device *adev)
{
/*
* Deal with Gen-II ("mv6") hardware quirks/restrictions:
*
* Gen-II does not support NCQ over a port multiplier
* (no FIS-based switching).
*/
if (adev->flags & ATA_DFLAG_NCQ) {
if (sata_pmp_attached(adev->link->ap)) {
adev->flags &= ~ATA_DFLAG_NCQ;
ata_dev_info(adev,
"NCQ disabled for command-based switching\n");
}
}
}
static int mv_qc_defer(struct ata_queued_cmd *qc)
{
struct ata_link *link = qc->dev->link;
struct ata_port *ap = link->ap;
struct mv_port_priv *pp = ap->private_data;
/*
* Don't allow new commands if we're in a delayed EH state
* for NCQ and/or FIS-based switching.
*/
if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
return ATA_DEFER_PORT;
/* PIO commands need exclusive link: no other commands [DMA or PIO]
* can run concurrently.
* set excl_link when we want to send a PIO command in DMA mode
* or a non-NCQ command in NCQ mode.
* When we receive a command from that link, and there are no
* outstanding commands, mark a flag to clear excl_link and let
* the command go through.
*/
if (unlikely(ap->excl_link)) {
if (link == ap->excl_link) {
if (ap->nr_active_links)
return ATA_DEFER_PORT;
qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
return 0;
} else
return ATA_DEFER_PORT;
}
/*
* If the port is completely idle, then allow the new qc.
*/
if (ap->nr_active_links == 0)
return 0;
/*
* The port is operating in host queuing mode (EDMA) with NCQ
* enabled, allow multiple NCQ commands. EDMA also allows
* queueing multiple DMA commands but libata core currently
* doesn't allow it.
*/
if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
(pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
if (ata_is_ncq(qc->tf.protocol))
return 0;
else {
ap->excl_link = link;
return ATA_DEFER_PORT;
}
}
return ATA_DEFER_PORT;
}
static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
{
struct mv_port_priv *pp = ap->private_data;
void __iomem *port_mmio;
u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
u32 ltmode, *old_ltmode = &pp->cached.ltmode;
u32 haltcond, *old_haltcond = &pp->cached.haltcond;
ltmode = *old_ltmode & ~LTMODE_BIT8;
haltcond = *old_haltcond | EDMA_ERR_DEV;
if (want_fbs) {
fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
ltmode = *old_ltmode | LTMODE_BIT8;
if (want_ncq)
haltcond &= ~EDMA_ERR_DEV;
else
fiscfg |= FISCFG_WAIT_DEV_ERR;
} else {
fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
}
port_mmio = mv_ap_base(ap);
mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
}
static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
{
struct mv_host_priv *hpriv = ap->host->private_data;
u32 old, new;
/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
old = readl(hpriv->base + GPIO_PORT_CTL);
if (want_ncq)
new = old | (1 << 22);
else
new = old & ~(1 << 22);
if (new != old)
writel(new, hpriv->base + GPIO_PORT_CTL);
}
/**
* mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
* @ap: Port being initialized
*
* There are two DMA modes on these chips: basic DMA, and EDMA.
*
* Bit-0 of the "EDMA RESERVED" register enables/disables use
* of basic DMA on the GEN_IIE versions of the chips.
*
* This bit survives EDMA resets, and must be set for basic DMA
* to function, and should be cleared when EDMA is active.
*/
static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
{
struct mv_port_priv *pp = ap->private_data;
u32 new, *old = &pp->cached.unknown_rsvd;
if (enable_bmdma)
new = *old | 1;
else
new = *old & ~1;
mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
}
/*
* SOC chips have an issue whereby the HDD LEDs don't always blink
* during I/O when NCQ is enabled. Enabling a special "LED blink" mode
* of the SOC takes care of it, generating a steady blink rate when
* any drive on the chip is active.
*
* Unfortunately, the blink mode is a global hardware setting for the SOC,
* so we must use it whenever at least one port on the SOC has NCQ enabled.
*
* We turn "LED blink" off when NCQ is not in use anywhere, because the normal
* LED operation works then, and provides better (more accurate) feedback.
*
* Note that this code assumes that an SOC never has more than one HC onboard.
*/
static void mv_soc_led_blink_enable(struct ata_port *ap)
{
struct ata_host *host = ap->host;
struct mv_host_priv *hpriv = host->private_data;
void __iomem *hc_mmio;
u32 led_ctrl;
if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
return;
hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
}
static void mv_soc_led_blink_disable(struct ata_port *ap)
{
struct ata_host *host = ap->host;
struct mv_host_priv *hpriv = host->private_data;
void __iomem *hc_mmio;
u32 led_ctrl;
unsigned int port;
if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
return;
/* disable led-blink only if no ports are using NCQ */
for (port = 0; port < hpriv->n_ports; port++) {
struct ata_port *this_ap = host->ports[port];
struct mv_port_priv *pp = this_ap->private_data;
if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
return;
}
hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
}
static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
{
u32 cfg;
struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data;
void __iomem *port_mmio = mv_ap_base(ap);
/* set up non-NCQ EDMA configuration */
cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
pp->pp_flags &=
~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
if (IS_GEN_I(hpriv))
cfg |= (1 << 8); /* enab config burst size mask */
else if (IS_GEN_II(hpriv)) {
cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
mv_60x1_errata_sata25(ap, want_ncq);
} else if (IS_GEN_IIE(hpriv)) {
int want_fbs = sata_pmp_attached(ap);
/*
* Possible future enhancement:
*
* The chip can use FBS with non-NCQ, if we allow it,
* But first we need to have the error handling in place
* for this mode (datasheet section 7.3.15.4.2.3).
* So disallow non-NCQ FBS for now.
*/
want_fbs &= want_ncq;
mv_config_fbs(ap, want_ncq, want_fbs);
if (want_fbs) {
pp->pp_flags |= MV_PP_FLAG_FBS_EN;
cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
}
cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
if (want_edma) {
cfg |= (1 << 22); /* enab 4-entry host queue cache */
if (!IS_SOC(hpriv))
cfg |= (1 << 18); /* enab early completion */
}
if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
mv_bmdma_enable_iie(ap, !want_edma);
if (IS_SOC(hpriv)) {
if (want_ncq)
mv_soc_led_blink_enable(ap);
else
mv_soc_led_blink_disable(ap);
}
}
if (want_ncq) {
cfg |= EDMA_CFG_NCQ;
pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
}
writelfl(cfg, port_mmio + EDMA_CFG);
}
static void mv_port_free_dma_mem(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp = ap->private_data;
int tag;
if (pp->crqb) {
dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
pp->crqb = NULL;
}
if (pp->crpb) {
dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
pp->crpb = NULL;
}
/*
* For GEN_I, there's no NCQ, so we have only a single sg_tbl.
* For later hardware, we have one unique sg_tbl per NCQ tag.
*/
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
if (pp->sg_tbl[tag]) {
if (tag == 0 || !IS_GEN_I(hpriv))
dma_pool_free(hpriv->sg_tbl_pool,
pp->sg_tbl[tag],
pp->sg_tbl_dma[tag]);
pp->sg_tbl[tag] = NULL;
}
}
}
/**
* mv_port_start - Port specific init/start routine.
* @ap: ATA channel to manipulate
*
* Allocate and point to DMA memory, init port private memory,
* zero indices.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_port_start(struct ata_port *ap)
{
struct device *dev = ap->host->dev;
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp;
unsigned long flags;
int tag;
pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
if (!pp)
return -ENOMEM;
ap->private_data = pp;
pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
if (!pp->crqb)
return -ENOMEM;
pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
if (!pp->crpb)
goto out_port_free_dma_mem;
/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
ap->flags |= ATA_FLAG_AN;
/*
* For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
* For later hardware, we need one unique sg_tbl per NCQ tag.
*/
for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
if (tag == 0 || !IS_GEN_I(hpriv)) {
pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
GFP_KERNEL, &pp->sg_tbl_dma[tag]);
if (!pp->sg_tbl[tag])
goto out_port_free_dma_mem;
} else {
pp->sg_tbl[tag] = pp->sg_tbl[0];
pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
}
}
spin_lock_irqsave(ap->lock, flags);
mv_save_cached_regs(ap);
mv_edma_cfg(ap, 0, 0);
spin_unlock_irqrestore(ap->lock, flags);
return 0;
out_port_free_dma_mem:
mv_port_free_dma_mem(ap);
return -ENOMEM;
}
/**
* mv_port_stop - Port specific cleanup/stop routine.
* @ap: ATA channel to manipulate
*
* Stop DMA, cleanup port memory.
*
* LOCKING:
* This routine uses the host lock to protect the DMA stop.
*/
static void mv_port_stop(struct ata_port *ap)
{
unsigned long flags;
spin_lock_irqsave(ap->lock, flags);
mv_stop_edma(ap);
mv_enable_port_irqs(ap, 0);
spin_unlock_irqrestore(ap->lock, flags);
mv_port_free_dma_mem(ap);
}
/**
* mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
* @qc: queued command whose SG list to source from
*
* Populate the SG list and mark the last entry.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_fill_sg(struct ata_queued_cmd *qc)
{
struct mv_port_priv *pp = qc->ap->private_data;
struct scatterlist *sg;
struct mv_sg *mv_sg, *last_sg = NULL;
unsigned int si;
mv_sg = pp->sg_tbl[qc->tag];
for_each_sg(qc->sg, sg, qc->n_elem, si) {
dma_addr_t addr = sg_dma_address(sg);
u32 sg_len = sg_dma_len(sg);
while (sg_len) {
u32 offset = addr & 0xffff;
u32 len = sg_len;
if (offset + len > 0x10000)
len = 0x10000 - offset;
mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
mv_sg->flags_size = cpu_to_le32(len & 0xffff);
mv_sg->reserved = 0;
sg_len -= len;
addr += len;
last_sg = mv_sg;
mv_sg++;
}
}
if (likely(last_sg))
last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
mb(); /* ensure data structure is visible to the chipset */
}
static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
{
u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
(last ? CRQB_CMD_LAST : 0);
*cmdw = cpu_to_le16(tmp);
}
/**
* mv_sff_irq_clear - Clear hardware interrupt after DMA.
* @ap: Port associated with this ATA transaction.
*
* We need this only for ATAPI bmdma transactions,
* as otherwise we experience spurious interrupts
* after libata-sff handles the bmdma interrupts.
*/
static void mv_sff_irq_clear(struct ata_port *ap)
{
mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
}
/**
* mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
* @qc: queued command to check for chipset/DMA compatibility.
*
* The bmdma engines cannot handle speculative data sizes
* (bytecount under/over flow). So only allow DMA for
* data transfer commands with known data sizes.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
{
struct scsi_cmnd *scmd = qc->scsicmd;
if (scmd) {
switch (scmd->cmnd[0]) {
case READ_6:
case READ_10:
case READ_12:
case WRITE_6:
case WRITE_10:
case WRITE_12:
case GPCMD_READ_CD:
case GPCMD_SEND_DVD_STRUCTURE:
case GPCMD_SEND_CUE_SHEET:
return 0; /* DMA is safe */
}
}
return -EOPNOTSUPP; /* use PIO instead */
}
/**
* mv_bmdma_setup - Set up BMDMA transaction
* @qc: queued command to prepare DMA for.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_bmdma_setup(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
mv_fill_sg(qc);
/* clear all DMA cmd bits */
writel(0, port_mmio + BMDMA_CMD);
/* load PRD table addr. */
writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
port_mmio + BMDMA_PRD_HIGH);
writelfl(pp->sg_tbl_dma[qc->tag],
port_mmio + BMDMA_PRD_LOW);
/* issue r/w command */
ap->ops->sff_exec_command(ap, &qc->tf);
}
/**
* mv_bmdma_start - Start a BMDMA transaction
* @qc: queued command to start DMA on.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_bmdma_start(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
void __iomem *port_mmio = mv_ap_base(ap);
unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
/* start host DMA transaction */
writelfl(cmd, port_mmio + BMDMA_CMD);
}
/**
* mv_bmdma_stop - Stop BMDMA transfer
* @qc: queued command to stop DMA on.
*
* Clears the ATA_DMA_START flag in the bmdma control register
*
* LOCKING:
* Inherited from caller.
*/
static void mv_bmdma_stop_ap(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 cmd;
/* clear start/stop bit */
cmd = readl(port_mmio + BMDMA_CMD);
if (cmd & ATA_DMA_START) {
cmd &= ~ATA_DMA_START;
writelfl(cmd, port_mmio + BMDMA_CMD);
/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
ata_sff_dma_pause(ap);
}
}
static void mv_bmdma_stop(struct ata_queued_cmd *qc)
{
mv_bmdma_stop_ap(qc->ap);
}
/**
* mv_bmdma_status - Read BMDMA status
* @ap: port for which to retrieve DMA status.
*
* Read and return equivalent of the sff BMDMA status register.
*
* LOCKING:
* Inherited from caller.
*/
static u8 mv_bmdma_status(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 reg, status;
/*
* Other bits are valid only if ATA_DMA_ACTIVE==0,
* and the ATA_DMA_INTR bit doesn't exist.
*/
reg = readl(port_mmio + BMDMA_STATUS);
if (reg & ATA_DMA_ACTIVE)
status = ATA_DMA_ACTIVE;
else if (reg & ATA_DMA_ERR)
status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
else {
/*
* Just because DMA_ACTIVE is 0 (DMA completed),
* this does _not_ mean the device is "done".
* So we should not yet be signalling ATA_DMA_INTR
* in some cases. Eg. DSM/TRIM, and perhaps others.
*/
mv_bmdma_stop_ap(ap);
if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
status = 0;
else
status = ATA_DMA_INTR;
}
return status;
}
static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
{
struct ata_taskfile *tf = &qc->tf;
/*
* Workaround for 88SX60x1 FEr SATA#24.
*
* Chip may corrupt WRITEs if multi_count >= 4kB.
* Note that READs are unaffected.
*
* It's not clear if this errata really means "4K bytes",
* or if it always happens for multi_count > 7
* regardless of device sector_size.
*
* So, for safety, any write with multi_count > 7
* gets converted here into a regular PIO write instead:
*/
if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
if (qc->dev->multi_count > 7) {
switch (tf->command) {
case ATA_CMD_WRITE_MULTI:
tf->command = ATA_CMD_PIO_WRITE;
break;
case ATA_CMD_WRITE_MULTI_FUA_EXT:
tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
/* fall through */
case ATA_CMD_WRITE_MULTI_EXT:
tf->command = ATA_CMD_PIO_WRITE_EXT;
break;
}
}
}
}
/**
* mv_qc_prep - Host specific command preparation.
* @qc: queued command to prepare
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it handles prep of the CRQB
* (command request block), does some sanity checking, and calls
* the SG load routine.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_qc_prep(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
__le16 *cw;
struct ata_taskfile *tf = &qc->tf;
u16 flags = 0;
unsigned in_index;
switch (tf->protocol) {
case ATA_PROT_DMA:
if (tf->command == ATA_CMD_DSM)
return;
/* fall-thru */
case ATA_PROT_NCQ:
break; /* continue below */
case ATA_PROT_PIO:
mv_rw_multi_errata_sata24(qc);
return;
default:
return;
}
/* Fill in command request block
*/
if (!(tf->flags & ATA_TFLAG_WRITE))
flags |= CRQB_FLAG_READ;
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
flags |= qc->tag << CRQB_TAG_SHIFT;
flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
/* get current queue index from software */
in_index = pp->req_idx;
pp->crqb[in_index].sg_addr =
cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
pp->crqb[in_index].sg_addr_hi =
cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
cw = &pp->crqb[in_index].ata_cmd[0];
/* Sadly, the CRQB cannot accommodate all registers--there are
* only 11 bytes...so we must pick and choose required
* registers based on the command. So, we drop feature and
* hob_feature for [RW] DMA commands, but they are needed for
* NCQ. NCQ will drop hob_nsect, which is not needed there
* (nsect is used only for the tag; feat/hob_feat hold true nsect).
*/
switch (tf->command) {
case ATA_CMD_READ:
case ATA_CMD_READ_EXT:
case ATA_CMD_WRITE:
case ATA_CMD_WRITE_EXT:
case ATA_CMD_WRITE_FUA_EXT:
mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
break;
case ATA_CMD_FPDMA_READ:
case ATA_CMD_FPDMA_WRITE:
mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
break;
default:
/* The only other commands EDMA supports in non-queued and
* non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
* of which are defined/used by Linux. If we get here, this
* driver needs work.
*
* FIXME: modify libata to give qc_prep a return value and
* return error here.
*/
BUG_ON(tf->command);
break;
}
mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
mv_fill_sg(qc);
}
/**
* mv_qc_prep_iie - Host specific command preparation.
* @qc: queued command to prepare
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it handles prep of the CRQB
* (command request block), does some sanity checking, and calls
* the SG load routine.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
struct mv_crqb_iie *crqb;
struct ata_taskfile *tf = &qc->tf;
unsigned in_index;
u32 flags = 0;
if ((tf->protocol != ATA_PROT_DMA) &&
(tf->protocol != ATA_PROT_NCQ))
return;
if (tf->command == ATA_CMD_DSM)
return; /* use bmdma for this */
/* Fill in Gen IIE command request block */
if (!(tf->flags & ATA_TFLAG_WRITE))
flags |= CRQB_FLAG_READ;
WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
flags |= qc->tag << CRQB_TAG_SHIFT;
flags |= qc->tag << CRQB_HOSTQ_SHIFT;
flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
/* get current queue index from software */
in_index = pp->req_idx;
crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
crqb->flags = cpu_to_le32(flags);
crqb->ata_cmd[0] = cpu_to_le32(
(tf->command << 16) |
(tf->feature << 24)
);
crqb->ata_cmd[1] = cpu_to_le32(
(tf->lbal << 0) |
(tf->lbam << 8) |
(tf->lbah << 16) |
(tf->device << 24)
);
crqb->ata_cmd[2] = cpu_to_le32(
(tf->hob_lbal << 0) |
(tf->hob_lbam << 8) |
(tf->hob_lbah << 16) |
(tf->hob_feature << 24)
);
crqb->ata_cmd[3] = cpu_to_le32(
(tf->nsect << 0) |
(tf->hob_nsect << 8)
);
if (!(qc->flags & ATA_QCFLAG_DMAMAP))
return;
mv_fill_sg(qc);
}
/**
* mv_sff_check_status - fetch device status, if valid
* @ap: ATA port to fetch status from
*
* When using command issue via mv_qc_issue_fis(),
* the initial ATA_BUSY state does not show up in the
* ATA status (shadow) register. This can confuse libata!
*
* So we have a hook here to fake ATA_BUSY for that situation,
* until the first time a BUSY, DRQ, or ERR bit is seen.
*
* The rest of the time, it simply returns the ATA status register.
*/
static u8 mv_sff_check_status(struct ata_port *ap)
{
u8 stat = ioread8(ap->ioaddr.status_addr);
struct mv_port_priv *pp = ap->private_data;
if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
else
stat = ATA_BUSY;
}
return stat;
}
/**
* mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
* @fis: fis to be sent
* @nwords: number of 32-bit words in the fis
*/
static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 ifctl, old_ifctl, ifstat;
int i, timeout = 200, final_word = nwords - 1;
/* Initiate FIS transmission mode */
old_ifctl = readl(port_mmio + SATA_IFCTL);
ifctl = 0x100 | (old_ifctl & 0xf);
writelfl(ifctl, port_mmio + SATA_IFCTL);
/* Send all words of the FIS except for the final word */
for (i = 0; i < final_word; ++i)
writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
/* Flag end-of-transmission, and then send the final word */
writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
/*
* Wait for FIS transmission to complete.
* This typically takes just a single iteration.
*/
do {
ifstat = readl(port_mmio + SATA_IFSTAT);
} while (!(ifstat & 0x1000) && --timeout);
/* Restore original port configuration */
writelfl(old_ifctl, port_mmio + SATA_IFCTL);
/* See if it worked */
if ((ifstat & 0x3000) != 0x1000) {
ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
__func__, ifstat);
return AC_ERR_OTHER;
}
return 0;
}
/**
* mv_qc_issue_fis - Issue a command directly as a FIS
* @qc: queued command to start
*
* Note that the ATA shadow registers are not updated
* after command issue, so the device will appear "READY"
* if polled, even while it is BUSY processing the command.
*
* So we use a status hook to fake ATA_BUSY until the drive changes state.
*
* Note: we don't get updated shadow regs on *completion*
* of non-data commands. So avoid sending them via this function,
* as they will appear to have completed immediately.
*
* GEN_IIE has special registers that we could get the result tf from,
* but earlier chipsets do not. For now, we ignore those registers.
*/
static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct mv_port_priv *pp = ap->private_data;
struct ata_link *link = qc->dev->link;
u32 fis[5];
int err = 0;
ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
if (err)
return err;
switch (qc->tf.protocol) {
case ATAPI_PROT_PIO:
pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
/* fall through */
case ATAPI_PROT_NODATA:
ap->hsm_task_state = HSM_ST_FIRST;
break;
case ATA_PROT_PIO:
pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
if (qc->tf.flags & ATA_TFLAG_WRITE)
ap->hsm_task_state = HSM_ST_FIRST;
else
ap->hsm_task_state = HSM_ST;
break;
default:
ap->hsm_task_state = HSM_ST_LAST;
break;
}
if (qc->tf.flags & ATA_TFLAG_POLLING)
ata_sff_queue_pio_task(link, 0);
return 0;
}
/**
* mv_qc_issue - Initiate a command to the host
* @qc: queued command to start
*
* This routine simply redirects to the general purpose routine
* if command is not DMA. Else, it sanity checks our local
* caches of the request producer/consumer indices then enables
* DMA and bumps the request producer index.
*
* LOCKING:
* Inherited from caller.
*/
static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
{
static int limit_warnings = 10;
struct ata_port *ap = qc->ap;
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_port_priv *pp = ap->private_data;
u32 in_index;
unsigned int port_irqs;
pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
if (qc->tf.command == ATA_CMD_DSM) {
if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
return AC_ERR_OTHER;
break; /* use bmdma for this */
}
/* fall thru */
case ATA_PROT_NCQ:
mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
/* Write the request in pointer to kick the EDMA to life */
writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
port_mmio + EDMA_REQ_Q_IN_PTR);
return 0;
case ATA_PROT_PIO:
/*
* Errata SATA#16, SATA#24: warn if multiple DRQs expected.
*
* Someday, we might implement special polling workarounds
* for these, but it all seems rather unnecessary since we
* normally use only DMA for commands which transfer more
* than a single block of data.
*
* Much of the time, this could just work regardless.
* So for now, just log the incident, and allow the attempt.
*/
if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
--limit_warnings;
ata_link_warn(qc->dev->link, DRV_NAME
": attempting PIO w/multiple DRQ: "
"this may fail due to h/w errata\n");
}
/* drop through */
case ATA_PROT_NODATA:
case ATAPI_PROT_PIO:
case ATAPI_PROT_NODATA:
if (ap->flags & ATA_FLAG_PIO_POLLING)
qc->tf.flags |= ATA_TFLAG_POLLING;
break;
}
if (qc->tf.flags & ATA_TFLAG_POLLING)
port_irqs = ERR_IRQ; /* mask device interrupt when polling */
else
port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
/*
* We're about to send a non-EDMA capable command to the
* port. Turn off EDMA so there won't be problems accessing
* shadow block, etc registers.
*/
mv_stop_edma(ap);
mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
mv_pmp_select(ap, qc->dev->link->pmp);
if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
struct mv_host_priv *hpriv = ap->host->private_data;
/*
* Workaround for 88SX60x1 FEr SATA#25 (part 2).
*
* After any NCQ error, the READ_LOG_EXT command
* from libata-eh *must* use mv_qc_issue_fis().
* Otherwise it might fail, due to chip errata.
*
* Rather than special-case it, we'll just *always*
* use this method here for READ_LOG_EXT, making for
* easier testing.
*/
if (IS_GEN_II(hpriv))
return mv_qc_issue_fis(qc);
}
return ata_bmdma_qc_issue(qc);
}
static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
{
struct mv_port_priv *pp = ap->private_data;
struct ata_queued_cmd *qc;
if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
return NULL;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
return qc;
return NULL;
}
static void mv_pmp_error_handler(struct ata_port *ap)
{
unsigned int pmp, pmp_map;
struct mv_port_priv *pp = ap->private_data;
if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
/*
* Perform NCQ error analysis on failed PMPs
* before we freeze the port entirely.
*
* The failed PMPs are marked earlier by mv_pmp_eh_prep().
*/
pmp_map = pp->delayed_eh_pmp_map;
pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
for (pmp = 0; pmp_map != 0; pmp++) {
unsigned int this_pmp = (1 << pmp);
if (pmp_map & this_pmp) {
struct ata_link *link = &ap->pmp_link[pmp];
pmp_map &= ~this_pmp;
ata_eh_analyze_ncq_error(link);
}
}
ata_port_freeze(ap);
}
sata_pmp_error_handler(ap);
}
static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
return readl(port_mmio + SATA_TESTCTL) >> 16;
}
static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
{
struct ata_eh_info *ehi;
unsigned int pmp;
/*
* Initialize EH info for PMPs which saw device errors
*/
ehi = &ap->link.eh_info;
for (pmp = 0; pmp_map != 0; pmp++) {
unsigned int this_pmp = (1 << pmp);
if (pmp_map & this_pmp) {
struct ata_link *link = &ap->pmp_link[pmp];
pmp_map &= ~this_pmp;
ehi = &link->eh_info;
ata_ehi_clear_desc(ehi);
ata_ehi_push_desc(ehi, "dev err");
ehi->err_mask |= AC_ERR_DEV;
ehi->action |= ATA_EH_RESET;
ata_link_abort(link);
}
}
}
static int mv_req_q_empty(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 in_ptr, out_ptr;
in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
return (in_ptr == out_ptr); /* 1 == queue_is_empty */
}
static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
{
struct mv_port_priv *pp = ap->private_data;
int failed_links;
unsigned int old_map, new_map;
/*
* Device error during FBS+NCQ operation:
*
* Set a port flag to prevent further I/O being enqueued.
* Leave the EDMA running to drain outstanding commands from this port.
* Perform the post-mortem/EH only when all responses are complete.
* Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
*/
if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
pp->delayed_eh_pmp_map = 0;
}
old_map = pp->delayed_eh_pmp_map;
new_map = old_map | mv_get_err_pmp_map(ap);
if (old_map != new_map) {
pp->delayed_eh_pmp_map = new_map;
mv_pmp_eh_prep(ap, new_map & ~old_map);
}
failed_links = hweight16(new_map);
ata_port_info(ap,
"%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
__func__, pp->delayed_eh_pmp_map,
ap->qc_active, failed_links,
ap->nr_active_links);
if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
mv_process_crpb_entries(ap, pp);
mv_stop_edma(ap);
mv_eh_freeze(ap);
ata_port_info(ap, "%s: done\n", __func__);
return 1; /* handled */
}
ata_port_info(ap, "%s: waiting\n", __func__);
return 1; /* handled */
}
static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
{
/*
* Possible future enhancement:
*
* FBS+non-NCQ operation is not yet implemented.
* See related notes in mv_edma_cfg().
*
* Device error during FBS+non-NCQ operation:
*
* We need to snapshot the shadow registers for each failed command.
* Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
*/
return 0; /* not handled */
}
static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
{
struct mv_port_priv *pp = ap->private_data;
if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
return 0; /* EDMA was not active: not handled */
if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
return 0; /* FBS was not active: not handled */
if (!(edma_err_cause & EDMA_ERR_DEV))
return 0; /* non DEV error: not handled */
edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
return 0; /* other problems: not handled */
if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
/*
* EDMA should NOT have self-disabled for this case.
* If it did, then something is wrong elsewhere,
* and we cannot handle it here.
*/
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
__func__, edma_err_cause, pp->pp_flags);
return 0; /* not handled */
}
return mv_handle_fbs_ncq_dev_err(ap);
} else {
/*
* EDMA should have self-disabled for this case.
* If it did not, then something is wrong elsewhere,
* and we cannot handle it here.
*/
if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
__func__, edma_err_cause, pp->pp_flags);
return 0; /* not handled */
}
return mv_handle_fbs_non_ncq_dev_err(ap);
}
return 0; /* not handled */
}
static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
{
struct ata_eh_info *ehi = &ap->link.eh_info;
char *when = "idle";
ata_ehi_clear_desc(ehi);
if (edma_was_enabled) {
when = "EDMA enabled";
} else {
struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
when = "polling";
}
ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
ehi->err_mask |= AC_ERR_OTHER;
ehi->action |= ATA_EH_RESET;
ata_port_freeze(ap);
}
/**
* mv_err_intr - Handle error interrupts on the port
* @ap: ATA channel to manipulate
*
* Most cases require a full reset of the chip's state machine,
* which also performs a COMRESET.
* Also, if the port disabled DMA, update our cached copy to match.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_err_intr(struct ata_port *ap)
{
void __iomem *port_mmio = mv_ap_base(ap);
u32 edma_err_cause, eh_freeze_mask, serr = 0;
u32 fis_cause = 0;
struct mv_port_priv *pp = ap->private_data;
struct mv_host_priv *hpriv = ap->host->private_data;
unsigned int action = 0, err_mask = 0;
struct ata_eh_info *ehi = &ap->link.eh_info;
struct ata_queued_cmd *qc;
int abort = 0;
/*
* Read and clear the SError and err_cause bits.
* For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
* the FIS_IRQ_CAUSE register before clearing edma_err_cause.
*/
sata_scr_read(&ap->link, SCR_ERROR, &serr);
sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
}
writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
if (edma_err_cause & EDMA_ERR_DEV) {
/*
* Device errors during FIS-based switching operation
* require special handling.
*/
if (mv_handle_dev_err(ap, edma_err_cause))
return;
}
qc = mv_get_active_qc(ap);
ata_ehi_clear_desc(ehi);
ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
edma_err_cause, pp->pp_flags);
if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
if (fis_cause & FIS_IRQ_CAUSE_AN) {
u32 ec = edma_err_cause &
~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
sata_async_notification(ap);
if (!ec)
return; /* Just an AN; no need for the nukes */
ata_ehi_push_desc(ehi, "SDB notify");
}
}
/*
* All generations share these EDMA error cause bits:
*/
if (edma_err_cause & EDMA_ERR_DEV) {
err_mask |= AC_ERR_DEV;
action |= ATA_EH_RESET;
ata_ehi_push_desc(ehi, "dev error");
}
if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
EDMA_ERR_INTRL_PAR)) {
err_mask |= AC_ERR_ATA_BUS;
action |= ATA_EH_RESET;
ata_ehi_push_desc(ehi, "parity error");
}
if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
ata_ehi_hotplugged(ehi);
ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
"dev disconnect" : "dev connect");
action |= ATA_EH_RESET;
}
/*
* Gen-I has a different SELF_DIS bit,
* different FREEZE bits, and no SERR bit:
*/
if (IS_GEN_I(hpriv)) {
eh_freeze_mask = EDMA_EH_FREEZE_5;
if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
ata_ehi_push_desc(ehi, "EDMA self-disable");
}
} else {
eh_freeze_mask = EDMA_EH_FREEZE;
if (edma_err_cause & EDMA_ERR_SELF_DIS) {
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
ata_ehi_push_desc(ehi, "EDMA self-disable");
}
if (edma_err_cause & EDMA_ERR_SERR) {
ata_ehi_push_desc(ehi, "SError=%08x", serr);
err_mask |= AC_ERR_ATA_BUS;
action |= ATA_EH_RESET;
}
}
if (!err_mask) {
err_mask = AC_ERR_OTHER;
action |= ATA_EH_RESET;
}
ehi->serror |= serr;
ehi->action |= action;
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
if (err_mask == AC_ERR_DEV) {
/*
* Cannot do ata_port_freeze() here,
* because it would kill PIO access,
* which is needed for further diagnosis.
*/
mv_eh_freeze(ap);
abort = 1;
} else if (edma_err_cause & eh_freeze_mask) {
/*
* Note to self: ata_port_freeze() calls ata_port_abort()
*/
ata_port_freeze(ap);
} else {
abort = 1;
}
if (abort) {
if (qc)
ata_link_abort(qc->dev->link);
else
ata_port_abort(ap);
}
}
static bool mv_process_crpb_response(struct ata_port *ap,
struct mv_crpb *response, unsigned int tag, int ncq_enabled)
{
u8 ata_status;
u16 edma_status = le16_to_cpu(response->flags);
/*
* edma_status from a response queue entry:
* LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
* MSB is saved ATA status from command completion.
*/
if (!ncq_enabled) {
u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
if (err_cause) {
/*
* Error will be seen/handled by
* mv_err_intr(). So do nothing at all here.
*/
return false;
}
}
ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
if (!ac_err_mask(ata_status))
return true;
/* else: leave it for mv_err_intr() */
return false;
}
static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
{
void __iomem *port_mmio = mv_ap_base(ap);
struct mv_host_priv *hpriv = ap->host->private_data;
u32 in_index;
bool work_done = false;
u32 done_mask = 0;
int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
/* Get the hardware queue position index */
in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
/* Process new responses from since the last time we looked */
while (in_index != pp->resp_idx) {
unsigned int tag;
struct mv_crpb *response = &pp->crpb[pp->resp_idx];
pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
if (IS_GEN_I(hpriv)) {
/* 50xx: no NCQ, only one command active at a time */
tag = ap->link.active_tag;
} else {
/* Gen II/IIE: get command tag from CRPB entry */
tag = le16_to_cpu(response->id) & 0x1f;
}
if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
done_mask |= 1 << tag;
work_done = true;
}
if (work_done) {
ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
/* Update the software queue position index in hardware */
writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
(pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
port_mmio + EDMA_RSP_Q_OUT_PTR);
}
}
static void mv_port_intr(struct ata_port *ap, u32 port_cause)
{
struct mv_port_priv *pp;
int edma_was_enabled;
/*
* Grab a snapshot of the EDMA_EN flag setting,
* so that we have a consistent view for this port,
* even if something we call of our routines changes it.
*/
pp = ap->private_data;
edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
/*
* Process completed CRPB response(s) before other events.
*/
if (edma_was_enabled && (port_cause & DONE_IRQ)) {
mv_process_crpb_entries(ap, pp);
if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
mv_handle_fbs_ncq_dev_err(ap);
}
/*
* Handle chip-reported errors, or continue on to handle PIO.
*/
if (unlikely(port_cause & ERR_IRQ)) {
mv_err_intr(ap);
} else if (!edma_was_enabled) {
struct ata_queued_cmd *qc = mv_get_active_qc(ap);
if (qc)
ata_bmdma_port_intr(ap, qc);
else
mv_unexpected_intr(ap, edma_was_enabled);
}
}
/**
* mv_host_intr - Handle all interrupts on the given host controller
* @host: host specific structure
* @main_irq_cause: Main interrupt cause register for the chip.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
{
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base, *hc_mmio;
unsigned int handled = 0, port;
/* If asserted, clear the "all ports" IRQ coalescing bit */
if (main_irq_cause & ALL_PORTS_COAL_DONE)
writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
for (port = 0; port < hpriv->n_ports; port++) {
struct ata_port *ap = host->ports[port];
unsigned int p, shift, hardport, port_cause;
MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
/*
* Each hc within the host has its own hc_irq_cause register,
* where the interrupting ports bits get ack'd.
*/
if (hardport == 0) { /* first port on this hc ? */
u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
u32 port_mask, ack_irqs;
/*
* Skip this entire hc if nothing pending for any ports
*/
if (!hc_cause) {
port += MV_PORTS_PER_HC - 1;
continue;
}
/*
* We don't need/want to read the hc_irq_cause register,
* because doing so hurts performance, and
* main_irq_cause already gives us everything we need.
*
* But we do have to *write* to the hc_irq_cause to ack
* the ports that we are handling this time through.
*
* This requires that we create a bitmap for those
* ports which interrupted us, and use that bitmap
* to ack (only) those ports via hc_irq_cause.
*/
ack_irqs = 0;
if (hc_cause & PORTS_0_3_COAL_DONE)
ack_irqs = HC_COAL_IRQ;
for (p = 0; p < MV_PORTS_PER_HC; ++p) {
if ((port + p) >= hpriv->n_ports)
break;
port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
if (hc_cause & port_mask)
ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
}
hc_mmio = mv_hc_base_from_port(mmio, port);
writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
handled = 1;
}
/*
* Handle interrupts signalled for this port:
*/
port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
if (port_cause)
mv_port_intr(ap, port_cause);
}
return handled;
}
static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
{
struct mv_host_priv *hpriv = host->private_data;
struct ata_port *ap;
struct ata_queued_cmd *qc;
struct ata_eh_info *ehi;
unsigned int i, err_mask, printed = 0;
u32 err_cause;
err_cause = readl(mmio + hpriv->irq_cause_offset);
dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
DPRINTK("All regs @ PCI error\n");
mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
writelfl(0, mmio + hpriv->irq_cause_offset);
for (i = 0; i < host->n_ports; i++) {
ap = host->ports[i];
if (!ata_link_offline(&ap->link)) {
ehi = &ap->link.eh_info;
ata_ehi_clear_desc(ehi);
if (!printed++)
ata_ehi_push_desc(ehi,
"PCI err cause 0x%08x", err_cause);
err_mask = AC_ERR_HOST_BUS;
ehi->action = ATA_EH_RESET;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc)
qc->err_mask |= err_mask;
else
ehi->err_mask |= err_mask;
ata_port_freeze(ap);
}
}
return 1; /* handled */
}
/**
* mv_interrupt - Main interrupt event handler
* @irq: unused
* @dev_instance: private data; in this case the host structure
*
* Read the read only register to determine if any host
* controllers have pending interrupts. If so, call lower level
* routine to handle. Also check for PCI errors which are only
* reported here.
*
* LOCKING:
* This routine holds the host lock while processing pending
* interrupts.
*/
static irqreturn_t mv_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct mv_host_priv *hpriv = host->private_data;
unsigned int handled = 0;
int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
u32 main_irq_cause, pending_irqs;
spin_lock(&host->lock);
/* for MSI: block new interrupts while in here */
if (using_msi)
mv_write_main_irq_mask(0, hpriv);
main_irq_cause = readl(hpriv->main_irq_cause_addr);
pending_irqs = main_irq_cause & hpriv->main_irq_mask;
/*
* Deal with cases where we either have nothing pending, or have read
* a bogus register value which can indicate HW removal or PCI fault.
*/
if (pending_irqs && main_irq_cause != 0xffffffffU) {
if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
handled = mv_pci_error(host, hpriv->base);
else
handled = mv_host_intr(host, pending_irqs);
}
/* for MSI: unmask; interrupt cause bits will retrigger now */
if (using_msi)
mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
spin_unlock(&host->lock);
return IRQ_RETVAL(handled);
}
static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
{
unsigned int ofs;
switch (sc_reg_in) {
case SCR_STATUS:
case SCR_ERROR:
case SCR_CONTROL:
ofs = sc_reg_in * sizeof(u32);
break;
default:
ofs = 0xffffffffU;
break;
}
return ofs;
}
static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
{
struct mv_host_priv *hpriv = link->ap->host->private_data;
void __iomem *mmio = hpriv->base;
void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
unsigned int ofs = mv5_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
*val = readl(addr + ofs);
return 0;
} else
return -EINVAL;
}
static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
{
struct mv_host_priv *hpriv = link->ap->host->private_data;
void __iomem *mmio = hpriv->base;
void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
unsigned int ofs = mv5_scr_offset(sc_reg_in);
if (ofs != 0xffffffffU) {
writelfl(val, addr + ofs);
return 0;
} else
return -EINVAL;
}
static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
int early_5080;
early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
if (!early_5080) {
u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
tmp |= (1 << 0);
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
}
mv_reset_pci_bus(host, mmio);
}
static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
writel(0x0fcfffff, mmio + FLASH_CTL);
}
static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
u32 tmp;
tmp = readl(phy_mmio + MV5_PHY_MODE);
hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
}
static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
u32 tmp;
writel(0, mmio + GPIO_PORT_CTL);
/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
tmp |= ~(1 << 0);
writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
}
static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *phy_mmio = mv5_phy_base(mmio, port);
const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
u32 tmp;
int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
if (fix_apm_sq) {
tmp = readl(phy_mmio + MV5_LTMODE);
tmp |= (1 << 19);
writel(tmp, phy_mmio + MV5_LTMODE);
tmp = readl(phy_mmio + MV5_PHY_CTL);
tmp &= ~0x3;
tmp |= 0x1;
writel(tmp, phy_mmio + MV5_PHY_CTL);
}
tmp = readl(phy_mmio + MV5_PHY_MODE);
tmp &= ~mask;
tmp |= hpriv->signal[port].pre;
tmp |= hpriv->signal[port].amps;
writel(tmp, phy_mmio + MV5_PHY_MODE);
}
#undef ZERO
#define ZERO(reg) writel(0, port_mmio + (reg))
static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
mv_reset_channel(hpriv, mmio, port);
ZERO(0x028); /* command */
writel(0x11f, port_mmio + EDMA_CFG);
ZERO(0x004); /* timer */
ZERO(0x008); /* irq err cause */
ZERO(0x00c); /* irq err mask */
ZERO(0x010); /* rq bah */
ZERO(0x014); /* rq inp */
ZERO(0x018); /* rq outp */
ZERO(0x01c); /* respq bah */
ZERO(0x024); /* respq outp */
ZERO(0x020); /* respq inp */
ZERO(0x02c); /* test control */
writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
}
#undef ZERO
#define ZERO(reg) writel(0, hc_mmio + (reg))
static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int hc)
{
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
u32 tmp;
ZERO(0x00c);
ZERO(0x010);
ZERO(0x014);
ZERO(0x018);
tmp = readl(hc_mmio + 0x20);
tmp &= 0x1c1c1c1c;
tmp |= 0x03030303;
writel(tmp, hc_mmio + 0x20);
}
#undef ZERO
static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc)
{
unsigned int hc, port;
for (hc = 0; hc < n_hc; hc++) {
for (port = 0; port < MV_PORTS_PER_HC; port++)
mv5_reset_hc_port(hpriv, mmio,
(hc * MV_PORTS_PER_HC) + port);
mv5_reset_one_hc(hpriv, mmio, hc);
}
return 0;
}
#undef ZERO
#define ZERO(reg) writel(0, mmio + (reg))
static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
{
struct mv_host_priv *hpriv = host->private_data;
u32 tmp;
tmp = readl(mmio + MV_PCI_MODE);
tmp &= 0xff00ffff;
writel(tmp, mmio + MV_PCI_MODE);
ZERO(MV_PCI_DISC_TIMER);
ZERO(MV_PCI_MSI_TRIGGER);
writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
ZERO(MV_PCI_SERR_MASK);
ZERO(hpriv->irq_cause_offset);
ZERO(hpriv->irq_mask_offset);
ZERO(MV_PCI_ERR_LOW_ADDRESS);
ZERO(MV_PCI_ERR_HIGH_ADDRESS);
ZERO(MV_PCI_ERR_ATTRIBUTE);
ZERO(MV_PCI_ERR_COMMAND);
}
#undef ZERO
static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
{
u32 tmp;
mv5_reset_flash(hpriv, mmio);
tmp = readl(mmio + GPIO_PORT_CTL);
tmp &= 0x3;
tmp |= (1 << 5) | (1 << 6);
writel(tmp, mmio + GPIO_PORT_CTL);
}
/**
* mv6_reset_hc - Perform the 6xxx global soft reset
* @mmio: base address of the HBA
*
* This routine only applies to 6xxx parts.
*
* LOCKING:
* Inherited from caller.
*/
static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int n_hc)
{
void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
int i, rc = 0;
u32 t;
/* Following procedure defined in PCI "main command and status
* register" table.
*/
t = readl(reg);
writel(t | STOP_PCI_MASTER, reg);
for (i = 0; i < 1000; i++) {
udelay(1);
t = readl(reg);
if (PCI_MASTER_EMPTY & t)
break;
}
if (!(PCI_MASTER_EMPTY & t)) {
printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
rc = 1;
goto done;
}
/* set reset */
i = 5;
do {
writel(t | GLOB_SFT_RST, reg);
t = readl(reg);
udelay(1);
} while (!(GLOB_SFT_RST & t) && (i-- > 0));
if (!(GLOB_SFT_RST & t)) {
printk(KERN_ERR DRV_NAME ": can't set global reset\n");
rc = 1;
goto done;
}
/* clear reset and *reenable the PCI master* (not mentioned in spec) */
i = 5;
do {
writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
t = readl(reg);
udelay(1);
} while ((GLOB_SFT_RST & t) && (i-- > 0));
if (GLOB_SFT_RST & t) {
printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
rc = 1;
}
done:
return rc;
}
static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *port_mmio;
u32 tmp;
tmp = readl(mmio + RESET_CFG);
if ((tmp & (1 << 0)) == 0) {
hpriv->signal[idx].amps = 0x7 << 8;
hpriv->signal[idx].pre = 0x1 << 5;
return;
}
port_mmio = mv_port_base(mmio, idx);
tmp = readl(port_mmio + PHY_MODE2);
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
}
static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
{
writel(0x00000060, mmio + GPIO_PORT_CTL);
}
static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
u32 hp_flags = hpriv->hp_flags;
int fix_phy_mode2 =
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
int fix_phy_mode4 =
hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
u32 m2, m3;
if (fix_phy_mode2) {
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~(1 << 16);
m2 |= (1 << 31);
writel(m2, port_mmio + PHY_MODE2);
udelay(200);
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~((1 << 16) | (1 << 31));
writel(m2, port_mmio + PHY_MODE2);
udelay(200);
}
/*
* Gen-II/IIe PHY_MODE3 errata RM#2:
* Achieves better receiver noise performance than the h/w default:
*/
m3 = readl(port_mmio + PHY_MODE3);
m3 = (m3 & 0x1f) | (0x5555601 << 5);
/* Guideline 88F5182 (GL# SATA-S11) */
if (IS_SOC(hpriv))
m3 &= ~0x1c;
if (fix_phy_mode4) {
u32 m4 = readl(port_mmio + PHY_MODE4);
/*
* Enforce reserved-bit restrictions on GenIIe devices only.
* For earlier chipsets, force only the internal config field
* (workaround for errata FEr SATA#10 part 1).
*/
if (IS_GEN_IIE(hpriv))
m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
else
m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
writel(m4, port_mmio + PHY_MODE4);
}
/*
* Workaround for 60x1-B2 errata SATA#13:
* Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
* so we must always rewrite PHY_MODE3 after PHY_MODE4.
* Or ensure we use writelfl() when writing PHY_MODE4.
*/
writel(m3, port_mmio + PHY_MODE3);
/* Revert values of pre-emphasis and signal amps to the saved ones */
m2 = readl(port_mmio + PHY_MODE2);
m2 &= ~MV_M2_PREAMP_MASK;
m2 |= hpriv->signal[port].amps;
m2 |= hpriv->signal[port].pre;
m2 &= ~(1 << 16);
/* according to mvSata 3.6.1, some IIE values are fixed */
if (IS_GEN_IIE(hpriv)) {
m2 &= ~0xC30FF01F;
m2 |= 0x0000900F;
}
writel(m2, port_mmio + PHY_MODE2);
}
/* TODO: use the generic LED interface to configure the SATA Presence */
/* & Acitivy LEDs on the board */
static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
void __iomem *mmio)
{
return;
}
static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
void __iomem *mmio)
{
void __iomem *port_mmio;
u32 tmp;
port_mmio = mv_port_base(mmio, idx);
tmp = readl(port_mmio + PHY_MODE2);
hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
}
#undef ZERO
#define ZERO(reg) writel(0, port_mmio + (reg))
static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
mv_reset_channel(hpriv, mmio, port);
ZERO(0x028); /* command */
writel(0x101f, port_mmio + EDMA_CFG);
ZERO(0x004); /* timer */
ZERO(0x008); /* irq err cause */
ZERO(0x00c); /* irq err mask */
ZERO(0x010); /* rq bah */
ZERO(0x014); /* rq inp */
ZERO(0x018); /* rq outp */
ZERO(0x01c); /* respq bah */
ZERO(0x024); /* respq outp */
ZERO(0x020); /* respq inp */
ZERO(0x02c); /* test control */
writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
}
#undef ZERO
#define ZERO(reg) writel(0, hc_mmio + (reg))
static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
void __iomem *mmio)
{
void __iomem *hc_mmio = mv_hc_base(mmio, 0);
ZERO(0x00c);
ZERO(0x010);
ZERO(0x014);
}
#undef ZERO
static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int n_hc)
{
unsigned int port;
for (port = 0; port < hpriv->n_ports; port++)
mv_soc_reset_hc_port(hpriv, mmio, port);
mv_soc_reset_one_hc(hpriv, mmio);
return 0;
}
static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
void __iomem *mmio)
{
return;
}
static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
{
return;
}
static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
void __iomem *mmio, unsigned int port)
{
void __iomem *port_mmio = mv_port_base(mmio, port);
u32 reg;
reg = readl(port_mmio + PHY_MODE3);
reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
reg |= (0x1 << 27);
reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
reg |= (0x1 << 29);
writel(reg, port_mmio + PHY_MODE3);
reg = readl(port_mmio + PHY_MODE4);
reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
reg |= (0x1 << 16);
writel(reg, port_mmio + PHY_MODE4);
reg = readl(port_mmio + PHY_MODE9_GEN2);
reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
reg |= 0x8;
reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
writel(reg, port_mmio + PHY_MODE9_GEN2);
reg = readl(port_mmio + PHY_MODE9_GEN1);
reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
reg |= 0x8;
reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
writel(reg, port_mmio + PHY_MODE9_GEN1);
}
/**
* soc_is_65 - check if the soc is 65 nano device
*
* Detect the type of the SoC, this is done by reading the PHYCFG_OFS
* register, this register should contain non-zero value and it exists only
* in the 65 nano devices, when reading it from older devices we get 0.
*/
static bool soc_is_65n(struct mv_host_priv *hpriv)
{
void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
if (readl(port0_mmio + PHYCFG_OFS))
return true;
return false;
}
static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
{
u32 ifcfg = readl(port_mmio + SATA_IFCFG);
ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
if (want_gen2i)
ifcfg |= (1 << 7); /* enable gen2i speed */
writelfl(ifcfg, port_mmio + SATA_IFCFG);
}
static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
unsigned int port_no)
{
void __iomem *port_mmio = mv_port_base(mmio, port_no);
/*
* The datasheet warns against setting EDMA_RESET when EDMA is active
* (but doesn't say what the problem might be). So we first try
* to disable the EDMA engine before doing the EDMA_RESET operation.
*/
mv_stop_edma_engine(port_mmio);
writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
if (!IS_GEN_I(hpriv)) {
/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
mv_setup_ifcfg(port_mmio, 1);
}
/*
* Strobing EDMA_RESET here causes a hard reset of the SATA transport,
* link, and physical layers. It resets all SATA interface registers
* (except for SATA_IFCFG), and issues a COMRESET to the dev.
*/
writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
udelay(25); /* allow reset propagation */
writelfl(0, port_mmio + EDMA_CMD);
hpriv->ops->phy_errata(hpriv, mmio, port_no);
if (IS_GEN_I(hpriv))
mdelay(1);
}
static void mv_pmp_select(struct ata_port *ap, int pmp)
{
if (sata_pmp_supported(ap)) {
void __iomem *port_mmio = mv_ap_base(ap);
u32 reg = readl(port_mmio + SATA_IFCTL);
int old = reg & 0xf;
if (old != pmp) {
reg = (reg & ~0xf) | pmp;
writelfl(reg, port_mmio + SATA_IFCTL);
}
}
}
static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
mv_pmp_select(link->ap, sata_srst_pmp(link));
return sata_std_hardreset(link, class, deadline);
}
static int mv_softreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
mv_pmp_select(link->ap, sata_srst_pmp(link));
return ata_sff_softreset(link, class, deadline);
}
static int mv_hardreset(struct ata_link *link, unsigned int *class,
unsigned long deadline)
{
struct ata_port *ap = link->ap;
struct mv_host_priv *hpriv = ap->host->private_data;
struct mv_port_priv *pp = ap->private_data;
void __iomem *mmio = hpriv->base;
int rc, attempts = 0, extra = 0;
u32 sstatus;
bool online;
mv_reset_channel(hpriv, mmio, ap->port_no);
pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
pp->pp_flags &=
~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
/* Workaround for errata FEr SATA#10 (part 2) */
do {
const unsigned long *timing =
sata_ehc_deb_timing(&link->eh_context);
rc = sata_link_hardreset(link, timing, deadline + extra,
&online, NULL);
rc = online ? -EAGAIN : rc;
if (rc)
return rc;
sata_scr_read(link, SCR_STATUS, &sstatus);
if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
/* Force 1.5gb/s link speed and try again */
mv_setup_ifcfg(mv_ap_base(ap), 0);
if (time_after(jiffies + HZ, deadline))
extra = HZ; /* only extend it once, max */
}
} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
mv_save_cached_regs(ap);
mv_edma_cfg(ap, 0, 0);
return rc;
}
static void mv_eh_freeze(struct ata_port *ap)
{
mv_stop_edma(ap);
mv_enable_port_irqs(ap, 0);
}
static void mv_eh_thaw(struct ata_port *ap)
{
struct mv_host_priv *hpriv = ap->host->private_data;
unsigned int port = ap->port_no;
unsigned int hardport = mv_hardport_from_port(port);
void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
void __iomem *port_mmio = mv_ap_base(ap);
u32 hc_irq_cause;
/* clear EDMA errors on this port */
writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
/* clear pending irq events */
hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
mv_enable_port_irqs(ap, ERR_IRQ);
}
/**
* mv_port_init - Perform some early initialization on a single port.
* @port: libata data structure storing shadow register addresses
* @port_mmio: base address of the port
*
* Initialize shadow register mmio addresses, clear outstanding
* interrupts on the port, and unmask interrupts for the future
* start of the port.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
{
void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
/* PIO related setup
*/
port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
port->error_addr =
port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
port->status_addr =
port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
/* special case: control/altstatus doesn't have ATA_REG_ address */
port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
/* Clear any currently outstanding port interrupt conditions */
serr = port_mmio + mv_scr_offset(SCR_ERROR);
writelfl(readl(serr), serr);
writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
/* unmask all non-transient EDMA error interrupts */
writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
readl(port_mmio + EDMA_CFG),
readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
readl(port_mmio + EDMA_ERR_IRQ_MASK));
}
static unsigned int mv_in_pcix_mode(struct ata_host *host)
{
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base;
u32 reg;
if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
return 0; /* not PCI-X capable */
reg = readl(mmio + MV_PCI_MODE);
if ((reg & MV_PCI_MODE_MASK) == 0)
return 0; /* conventional PCI mode */
return 1; /* chip is in PCI-X mode */
}
static int mv_pci_cut_through_okay(struct ata_host *host)
{
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base;
u32 reg;
if (!mv_in_pcix_mode(host)) {
reg = readl(mmio + MV_PCI_COMMAND);
if (reg & MV_PCI_COMMAND_MRDTRIG)
return 0; /* not okay */
}
return 1; /* okay */
}
static void mv_60x1b2_errata_pci7(struct ata_host *host)
{
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base;
/* workaround for 60x1-B2 errata PCI#7 */
if (mv_in_pcix_mode(host)) {
u32 reg = readl(mmio + MV_PCI_COMMAND);
writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
}
}
static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
struct mv_host_priv *hpriv = host->private_data;
u32 hp_flags = hpriv->hp_flags;
switch (board_idx) {
case chip_5080:
hpriv->ops = &mv5xxx_ops;
hp_flags |= MV_HP_GEN_I;
switch (pdev->revision) {
case 0x1:
hp_flags |= MV_HP_ERRATA_50XXB0;
break;
case 0x3:
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
default:
dev_warn(&pdev->dev,
"Applying 50XXB2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
}
break;
case chip_504x:
case chip_508x:
hpriv->ops = &mv5xxx_ops;
hp_flags |= MV_HP_GEN_I;
switch (pdev->revision) {
case 0x0:
hp_flags |= MV_HP_ERRATA_50XXB0;
break;
case 0x3:
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
default:
dev_warn(&pdev->dev,
"Applying B2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_50XXB2;
break;
}
break;
case chip_604x:
case chip_608x:
hpriv->ops = &mv6xxx_ops;
hp_flags |= MV_HP_GEN_II;
switch (pdev->revision) {
case 0x7:
mv_60x1b2_errata_pci7(host);
hp_flags |= MV_HP_ERRATA_60X1B2;
break;
case 0x9:
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_warn(&pdev->dev,
"Applying B2 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_60X1B2;
break;
}
break;
case chip_7042:
hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
if (pdev->vendor == PCI_VENDOR_ID_TTI &&
(pdev->device == 0x2300 || pdev->device == 0x2310))
{
/*
* Highpoint RocketRAID PCIe 23xx series cards:
*
* Unconfigured drives are treated as "Legacy"
* by the BIOS, and it overwrites sector 8 with
* a "Lgcy" metadata block prior to Linux boot.
*
* Configured drives (RAID or JBOD) leave sector 8
* alone, but instead overwrite a high numbered
* sector for the RAID metadata. This sector can
* be determined exactly, by truncating the physical
* drive capacity to a nice even GB value.
*
* RAID metadata is at: (dev->n_sectors & ~0xfffff)
*
* Warn the user, lest they think we're just buggy.
*/
printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
" BIOS CORRUPTS DATA on all attached drives,"
" regardless of if/how they are configured."
" BEWARE!\n");
printk(KERN_WARNING DRV_NAME ": For data safety, do not"
" use sectors 8-9 on \"Legacy\" drives,"
" and avoid the final two gigabytes on"
" all RocketRAID BIOS initialized drives.\n");
}
/* drop through */
case chip_6042:
hpriv->ops = &mv6xxx_ops;
hp_flags |= MV_HP_GEN_IIE;
if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
hp_flags |= MV_HP_CUT_THROUGH;
switch (pdev->revision) {
case 0x2: /* Rev.B0: the first/only public release */
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
default:
dev_warn(&pdev->dev,
"Applying 60X1C0 workarounds to unknown rev\n");
hp_flags |= MV_HP_ERRATA_60X1C0;
break;
}
break;
case chip_soc:
if (soc_is_65n(hpriv))
hpriv->ops = &mv_soc_65n_ops;
else
hpriv->ops = &mv_soc_ops;
hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
MV_HP_ERRATA_60X1C0;
break;
default:
dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
return 1;
}
hpriv->hp_flags = hp_flags;
if (hp_flags & MV_HP_PCIE) {
hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
hpriv->irq_mask_offset = PCIE_IRQ_MASK;
hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
} else {
hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
hpriv->irq_mask_offset = PCI_IRQ_MASK;
hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
}
return 0;
}
/**
* mv_init_host - Perform some early initialization of the host.
* @host: ATA host to initialize
*
* If possible, do an early global reset of the host. Then do
* our port init and clear/unmask all/relevant host interrupts.
*
* LOCKING:
* Inherited from caller.
*/
static int mv_init_host(struct ata_host *host)
{
int rc = 0, n_hc, port, hc;
struct mv_host_priv *hpriv = host->private_data;
void __iomem *mmio = hpriv->base;
rc = mv_chip_id(host, hpriv->board_idx);
if (rc)
goto done;
if (IS_SOC(hpriv)) {
hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
} else {
hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
}
/* initialize shadow irq mask with register's value */
hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
/* global interrupt mask: 0 == mask everything */
mv_set_main_irq_mask(host, ~0, 0);
n_hc = mv_get_hc_count(host->ports[0]->flags);
for (port = 0; port < host->n_ports; port++)
if (hpriv->ops->read_preamp)
hpriv->ops->read_preamp(hpriv, port, mmio);
rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
if (rc)
goto done;
hpriv->ops->reset_flash(hpriv, mmio);
hpriv->ops->reset_bus(host, mmio);
hpriv->ops->enable_leds(hpriv, mmio);
for (port = 0; port < host->n_ports; port++) {
struct ata_port *ap = host->ports[port];
void __iomem *port_mmio = mv_port_base(mmio, port);
mv_port_init(&ap->ioaddr, port_mmio);
}
for (hc = 0; hc < n_hc; hc++) {
void __iomem *hc_mmio = mv_hc_base(mmio, hc);
VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
"(before clear)=0x%08x\n", hc,
readl(hc_mmio + HC_CFG),
readl(hc_mmio + HC_IRQ_CAUSE));
/* Clear any currently outstanding hc interrupt conditions */
writelfl(0, hc_mmio + HC_IRQ_CAUSE);
}
if (!IS_SOC(hpriv)) {
/* Clear any currently outstanding host interrupt conditions */
writelfl(0, mmio + hpriv->irq_cause_offset);
/* and unmask interrupt generation for host regs */
writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
}
/*
* enable only global host interrupts for now.
* The per-port interrupts get done later as ports are set up.
*/
mv_set_main_irq_mask(host, 0, PCI_ERR);
mv_set_irq_coalescing(host, irq_coalescing_io_count,
irq_coalescing_usecs);
done:
return rc;
}
static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
{
hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
MV_CRQB_Q_SZ, 0);
if (!hpriv->crqb_pool)
return -ENOMEM;
hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
MV_CRPB_Q_SZ, 0);
if (!hpriv->crpb_pool)
return -ENOMEM;
hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
MV_SG_TBL_SZ, 0);
if (!hpriv->sg_tbl_pool)
return -ENOMEM;
return 0;
}
static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
const struct mbus_dram_target_info *dram)
{
int i;
for (i = 0; i < 4; i++) {
writel(0, hpriv->base + WINDOW_CTRL(i));
writel(0, hpriv->base + WINDOW_BASE(i));
}
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
writel(((cs->size - 1) & 0xffff0000) |
(cs->mbus_attr << 8) |
(dram->mbus_dram_target_id << 4) | 1,
hpriv->base + WINDOW_CTRL(i));
writel(cs->base, hpriv->base + WINDOW_BASE(i));
}
}
/**
* mv_platform_probe - handle a positive probe of an soc Marvell
* host
* @pdev: platform device found
*
* LOCKING:
* Inherited from caller.
*/
static int mv_platform_probe(struct platform_device *pdev)
{
const struct mv_sata_platform_data *mv_platform_data;
const struct mbus_dram_target_info *dram;
const struct ata_port_info *ppi[] =
{ &mv_port_info[chip_soc], NULL };
struct ata_host *host;
struct mv_host_priv *hpriv;
struct resource *res;
int n_ports = 0, irq = 0;
int rc;
int port;
ata_print_version_once(&pdev->dev, DRV_VERSION);
/*
* Simple resource validation ..
*/
if (unlikely(pdev->num_resources != 2)) {
dev_err(&pdev->dev, "invalid number of resources\n");
return -EINVAL;
}
/*
* Get the register base first
*/
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL)
return -EINVAL;
/* allocate host */
if (pdev->dev.of_node) {
rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
&n_ports);
if (rc) {
dev_err(&pdev->dev,
"error parsing nr-ports property: %d\n", rc);
return rc;
}
if (n_ports <= 0) {
dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
n_ports);
return -EINVAL;
}
irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
} else {
mv_platform_data = dev_get_platdata(&pdev->dev);
n_ports = mv_platform_data->n_ports;
irq = platform_get_irq(pdev, 0);
}
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
if (!host || !hpriv)
return -ENOMEM;
hpriv->port_clks = devm_kzalloc(&pdev->dev,
sizeof(struct clk *) * n_ports,
GFP_KERNEL);
if (!hpriv->port_clks)
return -ENOMEM;
hpriv->port_phys = devm_kzalloc(&pdev->dev,
sizeof(struct phy *) * n_ports,
GFP_KERNEL);
if (!hpriv->port_phys)
return -ENOMEM;
host->private_data = hpriv;
hpriv->board_idx = chip_soc;
host->iomap = NULL;
hpriv->base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!hpriv->base)
return -ENOMEM;
hpriv->base -= SATAHC0_REG_BASE;
hpriv->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(hpriv->clk))
dev_notice(&pdev->dev, "cannot get optional clkdev\n");
else
clk_prepare_enable(hpriv->clk);
for (port = 0; port < n_ports; port++) {
char port_number[16];
sprintf(port_number, "%d", port);
hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
if (!IS_ERR(hpriv->port_clks[port]))
clk_prepare_enable(hpriv->port_clks[port]);
sprintf(port_number, "port%d", port);
hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
port_number);
if (IS_ERR(hpriv->port_phys[port])) {
rc = PTR_ERR(hpriv->port_phys[port]);
hpriv->port_phys[port] = NULL;
if (rc != -EPROBE_DEFER)
dev_warn(&pdev->dev, "error getting phy %d", rc);
/* Cleanup only the initialized ports */
hpriv->n_ports = port;
goto err;
} else
phy_power_on(hpriv->port_phys[port]);
}
/* All the ports have been initialized */
hpriv->n_ports = n_ports;
/*
* (Re-)program MBUS remapping windows if we are asked to.
*/
dram = mv_mbus_dram_info();
if (dram)
mv_conf_mbus_windows(hpriv, dram);
rc = mv_create_dma_pools(hpriv, &pdev->dev);
if (rc)
goto err;
/*
* To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
* updated in the LP_PHY_CTL register.
*/
if (pdev->dev.of_node &&
of_device_is_compatible(pdev->dev.of_node,
"marvell,armada-370-sata"))
hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
/* initialize adapter */
rc = mv_init_host(host);
if (rc)
goto err;
dev_info(&pdev->dev, "slots %u ports %d\n",
(unsigned)MV_MAX_Q_DEPTH, host->n_ports);
rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
if (!rc)
return 0;
err:
if (!IS_ERR(hpriv->clk)) {
clk_disable_unprepare(hpriv->clk);
clk_put(hpriv->clk);
}
for (port = 0; port < hpriv->n_ports; port++) {
if (!IS_ERR(hpriv->port_clks[port])) {
clk_disable_unprepare(hpriv->port_clks[port]);
clk_put(hpriv->port_clks[port]);
}
phy_power_off(hpriv->port_phys[port]);
}
return rc;
}
/*
*
* mv_platform_remove - unplug a platform interface
* @pdev: platform device
*
* A platform bus SATA device has been unplugged. Perform the needed
* cleanup. Also called on module unload for any active devices.
*/
static int mv_platform_remove(struct platform_device *pdev)
{
struct ata_host *host = platform_get_drvdata(pdev);
struct mv_host_priv *hpriv = host->private_data;
int port;
ata_host_detach(host);
if (!IS_ERR(hpriv->clk)) {
clk_disable_unprepare(hpriv->clk);
clk_put(hpriv->clk);
}
for (port = 0; port < host->n_ports; port++) {
if (!IS_ERR(hpriv->port_clks[port])) {
clk_disable_unprepare(hpriv->port_clks[port]);
clk_put(hpriv->port_clks[port]);
}
phy_power_off(hpriv->port_phys[port]);
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
{
struct ata_host *host = platform_get_drvdata(pdev);
if (host)
return ata_host_suspend(host, state);
else
return 0;
}
static int mv_platform_resume(struct platform_device *pdev)
{
struct ata_host *host = platform_get_drvdata(pdev);
const struct mbus_dram_target_info *dram;
int ret;
if (host) {
struct mv_host_priv *hpriv = host->private_data;
/*
* (Re-)program MBUS remapping windows if we are asked to.
*/
dram = mv_mbus_dram_info();
if (dram)
mv_conf_mbus_windows(hpriv, dram);
/* initialize adapter */
ret = mv_init_host(host);
if (ret) {
printk(KERN_ERR DRV_NAME ": Error during HW init\n");
return ret;
}
ata_host_resume(host);
}
return 0;
}
#else
#define mv_platform_suspend NULL
#define mv_platform_resume NULL
#endif
#ifdef CONFIG_OF
static const struct of_device_id mv_sata_dt_ids[] = {
{ .compatible = "marvell,armada-370-sata", },
{ .compatible = "marvell,orion-sata", },
{},
};
MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
#endif
static struct platform_driver mv_platform_driver = {
.probe = mv_platform_probe,
.remove = mv_platform_remove,
.suspend = mv_platform_suspend,
.resume = mv_platform_resume,
.driver = {
.name = DRV_NAME,
.of_match_table = of_match_ptr(mv_sata_dt_ids),
},
};
#ifdef CONFIG_PCI
static int mv_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent);
#ifdef CONFIG_PM_SLEEP
static int mv_pci_device_resume(struct pci_dev *pdev);
#endif
static struct pci_driver mv_pci_driver = {
.name = DRV_NAME,
.id_table = mv_pci_tbl,
.probe = mv_pci_init_one,
.remove = ata_pci_remove_one,
#ifdef CONFIG_PM_SLEEP
.suspend = ata_pci_device_suspend,
.resume = mv_pci_device_resume,
#endif
};
/* move to PCI layer or libata core? */
static int pci_go_64(struct pci_dev *pdev)
{
int rc;
if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
if (rc) {
rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(&pdev->dev,
"64-bit DMA enable failed\n");
return rc;
}
}
} else {
rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(&pdev->dev, "32-bit DMA enable failed\n");
return rc;
}
rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(&pdev->dev,
"32-bit consistent DMA enable failed\n");
return rc;
}
}
return rc;
}
/**
* mv_print_info - Dump key info to kernel log for perusal.
* @host: ATA host to print info about
*
* FIXME: complete this.
*
* LOCKING:
* Inherited from caller.
*/
static void mv_print_info(struct ata_host *host)
{
struct pci_dev *pdev = to_pci_dev(host->dev);
struct mv_host_priv *hpriv = host->private_data;
u8 scc;
const char *scc_s, *gen;
/* Use this to determine the HW stepping of the chip so we know
* what errata to workaround
*/
pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
if (scc == 0)
scc_s = "SCSI";
else if (scc == 0x01)
scc_s = "RAID";
else
scc_s = "?";
if (IS_GEN_I(hpriv))
gen = "I";
else if (IS_GEN_II(hpriv))
gen = "II";
else if (IS_GEN_IIE(hpriv))
gen = "IIE";
else
gen = "?";
dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
}
/**
* mv_pci_init_one - handle a positive probe of a PCI Marvell host
* @pdev: PCI device found
* @ent: PCI device ID entry for the matched host
*
* LOCKING:
* Inherited from caller.
*/
static int mv_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
unsigned int board_idx = (unsigned int)ent->driver_data;
const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
struct ata_host *host;
struct mv_host_priv *hpriv;
int n_ports, port, rc;
ata_print_version_once(&pdev->dev, DRV_VERSION);
/* allocate host */
n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
if (!host || !hpriv)
return -ENOMEM;
host->private_data = hpriv;
hpriv->n_ports = n_ports;
hpriv->board_idx = board_idx;
/* acquire resources */
rc = pcim_enable_device(pdev);
if (rc)
return rc;
rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
if (rc == -EBUSY)
pcim_pin_device(pdev);
if (rc)
return rc;
host->iomap = pcim_iomap_table(pdev);
hpriv->base = host->iomap[MV_PRIMARY_BAR];
rc = pci_go_64(pdev);
if (rc)
return rc;
rc = mv_create_dma_pools(hpriv, &pdev->dev);
if (rc)
return rc;
for (port = 0; port < host->n_ports; port++) {
struct ata_port *ap = host->ports[port];
void __iomem *port_mmio = mv_port_base(hpriv->base, port);
unsigned int offset = port_mmio - hpriv->base;
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
}
/* initialize adapter */
rc = mv_init_host(host);
if (rc)
return rc;
/* Enable message-switched interrupts, if requested */
if (msi && pci_enable_msi(pdev) == 0)
hpriv->hp_flags |= MV_HP_FLAG_MSI;
mv_dump_pci_cfg(pdev, 0x68);
mv_print_info(host);
pci_set_master(pdev);
pci_try_set_mwi(pdev);
return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
}
#ifdef CONFIG_PM_SLEEP
static int mv_pci_device_resume(struct pci_dev *pdev)
{
struct ata_host *host = pci_get_drvdata(pdev);
int rc;
rc = ata_pci_device_do_resume(pdev);
if (rc)
return rc;
/* initialize adapter */
rc = mv_init_host(host);
if (rc)
return rc;
ata_host_resume(host);
return 0;
}
#endif
#endif
static int __init mv_init(void)
{
int rc = -ENODEV;
#ifdef CONFIG_PCI
rc = pci_register_driver(&mv_pci_driver);
if (rc < 0)
return rc;
#endif
rc = platform_driver_register(&mv_platform_driver);
#ifdef CONFIG_PCI
if (rc < 0)
pci_unregister_driver(&mv_pci_driver);
#endif
return rc;
}
static void __exit mv_exit(void)
{
#ifdef CONFIG_PCI
pci_unregister_driver(&mv_pci_driver);
#endif
platform_driver_unregister(&mv_platform_driver);
}
MODULE_AUTHOR("Brett Russ");
MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
MODULE_VERSION(DRV_VERSION);
MODULE_ALIAS("platform:" DRV_NAME);
module_init(mv_init);
module_exit(mv_exit);