WSL2-Linux-Kernel/fs/xfs/xfs_icache.c

1709 строки
43 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_inode_item.h"
#include "xfs_quota.h"
#include "xfs_trace.h"
#include "xfs_icache.h"
#include "xfs_bmap_util.h"
#include "xfs_dquot_item.h"
#include "xfs_dquot.h"
#include "xfs_reflink.h"
#include "xfs_ialloc.h"
#include <linux/iversion.h>
/*
* Allocate and initialise an xfs_inode.
*/
struct xfs_inode *
xfs_inode_alloc(
struct xfs_mount *mp,
xfs_ino_t ino)
{
struct xfs_inode *ip;
/*
* XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
* and return NULL here on ENOMEM.
*/
ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
if (inode_init_always(mp->m_super, VFS_I(ip))) {
kmem_cache_free(xfs_inode_zone, ip);
return NULL;
}
/* VFS doesn't initialise i_mode! */
VFS_I(ip)->i_mode = 0;
XFS_STATS_INC(mp, vn_active);
ASSERT(atomic_read(&ip->i_pincount) == 0);
ASSERT(ip->i_ino == 0);
/* initialise the xfs inode */
ip->i_ino = ino;
ip->i_mount = mp;
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
ip->i_afp = NULL;
ip->i_cowfp = NULL;
memset(&ip->i_df, 0, sizeof(ip->i_df));
ip->i_flags = 0;
ip->i_delayed_blks = 0;
ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
ip->i_nblocks = 0;
ip->i_forkoff = 0;
ip->i_sick = 0;
ip->i_checked = 0;
INIT_WORK(&ip->i_ioend_work, xfs_end_io);
INIT_LIST_HEAD(&ip->i_ioend_list);
spin_lock_init(&ip->i_ioend_lock);
return ip;
}
STATIC void
xfs_inode_free_callback(
struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
struct xfs_inode *ip = XFS_I(inode);
switch (VFS_I(ip)->i_mode & S_IFMT) {
case S_IFREG:
case S_IFDIR:
case S_IFLNK:
xfs_idestroy_fork(&ip->i_df);
break;
}
if (ip->i_afp) {
xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_zone, ip->i_afp);
}
if (ip->i_cowfp) {
xfs_idestroy_fork(ip->i_cowfp);
kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
}
if (ip->i_itemp) {
ASSERT(!test_bit(XFS_LI_IN_AIL,
&ip->i_itemp->ili_item.li_flags));
xfs_inode_item_destroy(ip);
ip->i_itemp = NULL;
}
kmem_cache_free(xfs_inode_zone, ip);
}
static void
__xfs_inode_free(
struct xfs_inode *ip)
{
/* asserts to verify all state is correct here */
ASSERT(atomic_read(&ip->i_pincount) == 0);
ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
XFS_STATS_DEC(ip->i_mount, vn_active);
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
}
void
xfs_inode_free(
struct xfs_inode *ip)
{
ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
/*
* Because we use RCU freeing we need to ensure the inode always
* appears to be reclaimed with an invalid inode number when in the
* free state. The ip->i_flags_lock provides the barrier against lookup
* races.
*/
spin_lock(&ip->i_flags_lock);
ip->i_flags = XFS_IRECLAIM;
ip->i_ino = 0;
spin_unlock(&ip->i_flags_lock);
__xfs_inode_free(ip);
}
/*
* Queue background inode reclaim work if there are reclaimable inodes and there
* isn't reclaim work already scheduled or in progress.
*/
static void
xfs_reclaim_work_queue(
struct xfs_mount *mp)
{
rcu_read_lock();
if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
}
rcu_read_unlock();
}
static void
xfs_perag_set_reclaim_tag(
struct xfs_perag *pag)
{
struct xfs_mount *mp = pag->pag_mount;
lockdep_assert_held(&pag->pag_ici_lock);
if (pag->pag_ici_reclaimable++)
return;
/* propagate the reclaim tag up into the perag radix tree */
spin_lock(&mp->m_perag_lock);
radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
XFS_ICI_RECLAIM_TAG);
spin_unlock(&mp->m_perag_lock);
/* schedule periodic background inode reclaim */
xfs_reclaim_work_queue(mp);
trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}
static void
xfs_perag_clear_reclaim_tag(
struct xfs_perag *pag)
{
struct xfs_mount *mp = pag->pag_mount;
lockdep_assert_held(&pag->pag_ici_lock);
if (--pag->pag_ici_reclaimable)
return;
/* clear the reclaim tag from the perag radix tree */
spin_lock(&mp->m_perag_lock);
radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
XFS_ICI_RECLAIM_TAG);
spin_unlock(&mp->m_perag_lock);
trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
}
/*
* We set the inode flag atomically with the radix tree tag.
* Once we get tag lookups on the radix tree, this inode flag
* can go away.
*/
void
xfs_inode_set_reclaim_tag(
struct xfs_inode *ip)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_perag *pag;
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
spin_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
XFS_ICI_RECLAIM_TAG);
xfs_perag_set_reclaim_tag(pag);
__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
spin_unlock(&ip->i_flags_lock);
spin_unlock(&pag->pag_ici_lock);
xfs_perag_put(pag);
}
STATIC void
xfs_inode_clear_reclaim_tag(
struct xfs_perag *pag,
xfs_ino_t ino)
{
radix_tree_tag_clear(&pag->pag_ici_root,
XFS_INO_TO_AGINO(pag->pag_mount, ino),
XFS_ICI_RECLAIM_TAG);
xfs_perag_clear_reclaim_tag(pag);
}
static void
xfs_inew_wait(
struct xfs_inode *ip)
{
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
do {
prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
if (!xfs_iflags_test(ip, XFS_INEW))
break;
schedule();
} while (true);
finish_wait(wq, &wait.wq_entry);
}
/*
* When we recycle a reclaimable inode, we need to re-initialise the VFS inode
* part of the structure. This is made more complex by the fact we store
* information about the on-disk values in the VFS inode and so we can't just
* overwrite the values unconditionally. Hence we save the parameters we
* need to retain across reinitialisation, and rewrite them into the VFS inode
* after reinitialisation even if it fails.
*/
static int
xfs_reinit_inode(
struct xfs_mount *mp,
struct inode *inode)
{
int error;
uint32_t nlink = inode->i_nlink;
uint32_t generation = inode->i_generation;
uint64_t version = inode_peek_iversion(inode);
umode_t mode = inode->i_mode;
dev_t dev = inode->i_rdev;
kuid_t uid = inode->i_uid;
kgid_t gid = inode->i_gid;
error = inode_init_always(mp->m_super, inode);
set_nlink(inode, nlink);
inode->i_generation = generation;
inode_set_iversion_queried(inode, version);
inode->i_mode = mode;
inode->i_rdev = dev;
inode->i_uid = uid;
inode->i_gid = gid;
return error;
}
/*
* If we are allocating a new inode, then check what was returned is
* actually a free, empty inode. If we are not allocating an inode,
* then check we didn't find a free inode.
*
* Returns:
* 0 if the inode free state matches the lookup context
* -ENOENT if the inode is free and we are not allocating
* -EFSCORRUPTED if there is any state mismatch at all
*/
static int
xfs_iget_check_free_state(
struct xfs_inode *ip,
int flags)
{
if (flags & XFS_IGET_CREATE) {
/* should be a free inode */
if (VFS_I(ip)->i_mode != 0) {
xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
ip->i_ino, VFS_I(ip)->i_mode);
return -EFSCORRUPTED;
}
if (ip->i_nblocks != 0) {
xfs_warn(ip->i_mount,
"Corruption detected! Free inode 0x%llx has blocks allocated!",
ip->i_ino);
return -EFSCORRUPTED;
}
return 0;
}
/* should be an allocated inode */
if (VFS_I(ip)->i_mode == 0)
return -ENOENT;
return 0;
}
/*
* Check the validity of the inode we just found it the cache
*/
static int
xfs_iget_cache_hit(
struct xfs_perag *pag,
struct xfs_inode *ip,
xfs_ino_t ino,
int flags,
int lock_flags) __releases(RCU)
{
struct inode *inode = VFS_I(ip);
struct xfs_mount *mp = ip->i_mount;
int error;
/*
* check for re-use of an inode within an RCU grace period due to the
* radix tree nodes not being updated yet. We monitor for this by
* setting the inode number to zero before freeing the inode structure.
* If the inode has been reallocated and set up, then the inode number
* will not match, so check for that, too.
*/
spin_lock(&ip->i_flags_lock);
if (ip->i_ino != ino) {
trace_xfs_iget_skip(ip);
XFS_STATS_INC(mp, xs_ig_frecycle);
error = -EAGAIN;
goto out_error;
}
/*
* If we are racing with another cache hit that is currently
* instantiating this inode or currently recycling it out of
* reclaimabe state, wait for the initialisation to complete
* before continuing.
*
* XXX(hch): eventually we should do something equivalent to
* wait_on_inode to wait for these flags to be cleared
* instead of polling for it.
*/
if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
trace_xfs_iget_skip(ip);
XFS_STATS_INC(mp, xs_ig_frecycle);
error = -EAGAIN;
goto out_error;
}
/*
* Check the inode free state is valid. This also detects lookup
* racing with unlinks.
*/
error = xfs_iget_check_free_state(ip, flags);
if (error)
goto out_error;
/*
* If IRECLAIMABLE is set, we've torn down the VFS inode already.
* Need to carefully get it back into useable state.
*/
if (ip->i_flags & XFS_IRECLAIMABLE) {
trace_xfs_iget_reclaim(ip);
if (flags & XFS_IGET_INCORE) {
error = -EAGAIN;
goto out_error;
}
/*
* We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
* from stomping over us while we recycle the inode. We can't
* clear the radix tree reclaimable tag yet as it requires
* pag_ici_lock to be held exclusive.
*/
ip->i_flags |= XFS_IRECLAIM;
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
error = xfs_reinit_inode(mp, inode);
if (error) {
bool wake;
/*
* Re-initializing the inode failed, and we are in deep
* trouble. Try to re-add it to the reclaim list.
*/
rcu_read_lock();
spin_lock(&ip->i_flags_lock);
wake = !!__xfs_iflags_test(ip, XFS_INEW);
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
if (wake)
wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
trace_xfs_iget_reclaim_fail(ip);
goto out_error;
}
spin_lock(&pag->pag_ici_lock);
spin_lock(&ip->i_flags_lock);
/*
* Clear the per-lifetime state in the inode as we are now
* effectively a new inode and need to return to the initial
* state before reuse occurs.
*/
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
ip->i_flags |= XFS_INEW;
xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
inode->i_state = I_NEW;
ip->i_sick = 0;
ip->i_checked = 0;
spin_unlock(&ip->i_flags_lock);
spin_unlock(&pag->pag_ici_lock);
} else {
/* If the VFS inode is being torn down, pause and try again. */
if (!igrab(inode)) {
trace_xfs_iget_skip(ip);
error = -EAGAIN;
goto out_error;
}
/* We've got a live one. */
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
trace_xfs_iget_hit(ip);
}
if (lock_flags != 0)
xfs_ilock(ip, lock_flags);
if (!(flags & XFS_IGET_INCORE))
xfs_iflags_clear(ip, XFS_ISTALE);
XFS_STATS_INC(mp, xs_ig_found);
return 0;
out_error:
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
return error;
}
static int
xfs_iget_cache_miss(
struct xfs_mount *mp,
struct xfs_perag *pag,
xfs_trans_t *tp,
xfs_ino_t ino,
struct xfs_inode **ipp,
int flags,
int lock_flags)
{
struct xfs_inode *ip;
int error;
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
int iflags;
ip = xfs_inode_alloc(mp, ino);
if (!ip)
return -ENOMEM;
error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
if (error)
goto out_destroy;
/*
* For version 5 superblocks, if we are initialising a new inode and we
* are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
* simply build the new inode core with a random generation number.
*
* For version 4 (and older) superblocks, log recovery is dependent on
* the i_flushiter field being initialised from the current on-disk
* value and hence we must also read the inode off disk even when
* initializing new inodes.
*/
if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
(flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
VFS_I(ip)->i_generation = prandom_u32();
} else {
struct xfs_buf *bp;
error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
if (error)
goto out_destroy;
error = xfs_inode_from_disk(ip,
xfs_buf_offset(bp, ip->i_imap.im_boffset));
if (!error)
xfs_buf_set_ref(bp, XFS_INO_REF);
xfs_trans_brelse(tp, bp);
if (error)
goto out_destroy;
}
trace_xfs_iget_miss(ip);
/*
* Check the inode free state is valid. This also detects lookup
* racing with unlinks.
*/
error = xfs_iget_check_free_state(ip, flags);
if (error)
goto out_destroy;
/*
* Preload the radix tree so we can insert safely under the
* write spinlock. Note that we cannot sleep inside the preload
* region. Since we can be called from transaction context, don't
* recurse into the file system.
*/
if (radix_tree_preload(GFP_NOFS)) {
error = -EAGAIN;
goto out_destroy;
}
/*
* Because the inode hasn't been added to the radix-tree yet it can't
* be found by another thread, so we can do the non-sleeping lock here.
*/
if (lock_flags) {
if (!xfs_ilock_nowait(ip, lock_flags))
BUG();
}
/*
* These values must be set before inserting the inode into the radix
* tree as the moment it is inserted a concurrent lookup (allowed by the
* RCU locking mechanism) can find it and that lookup must see that this
* is an inode currently under construction (i.e. that XFS_INEW is set).
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
* memory barrier that ensures this detection works correctly at lookup
* time.
*/
iflags = XFS_INEW;
if (flags & XFS_IGET_DONTCACHE)
d_mark_dontcache(VFS_I(ip));
ip->i_udquot = NULL;
ip->i_gdquot = NULL;
ip->i_pdquot = NULL;
xfs_iflags_set(ip, iflags);
/* insert the new inode */
spin_lock(&pag->pag_ici_lock);
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
if (unlikely(error)) {
WARN_ON(error != -EEXIST);
XFS_STATS_INC(mp, xs_ig_dup);
error = -EAGAIN;
goto out_preload_end;
}
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
*ipp = ip;
return 0;
out_preload_end:
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
if (lock_flags)
xfs_iunlock(ip, lock_flags);
out_destroy:
__destroy_inode(VFS_I(ip));
xfs_inode_free(ip);
return error;
}
/*
* Look up an inode by number in the given file system. The inode is looked up
* in the cache held in each AG. If the inode is found in the cache, initialise
* the vfs inode if necessary.
*
* If it is not in core, read it in from the file system's device, add it to the
* cache and initialise the vfs inode.
*
* The inode is locked according to the value of the lock_flags parameter.
* Inode lookup is only done during metadata operations and not as part of the
* data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
*/
int
xfs_iget(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t ino,
uint flags,
uint lock_flags,
struct xfs_inode **ipp)
{
struct xfs_inode *ip;
struct xfs_perag *pag;
xfs_agino_t agino;
int error;
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
/* reject inode numbers outside existing AGs */
if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
return -EINVAL;
XFS_STATS_INC(mp, xs_ig_attempts);
/* get the perag structure and ensure that it's inode capable */
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
agino = XFS_INO_TO_AGINO(mp, ino);
again:
error = 0;
rcu_read_lock();
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
if (ip) {
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
if (error)
goto out_error_or_again;
} else {
rcu_read_unlock();
if (flags & XFS_IGET_INCORE) {
error = -ENODATA;
goto out_error_or_again;
}
XFS_STATS_INC(mp, xs_ig_missed);
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
flags, lock_flags);
if (error)
goto out_error_or_again;
}
xfs_perag_put(pag);
*ipp = ip;
/*
* If we have a real type for an on-disk inode, we can setup the inode
* now. If it's a new inode being created, xfs_ialloc will handle it.
*/
if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
xfs_setup_existing_inode(ip);
return 0;
out_error_or_again:
if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
delay(1);
goto again;
}
xfs_perag_put(pag);
return error;
}
/*
* "Is this a cached inode that's also allocated?"
*
* Look up an inode by number in the given file system. If the inode is
* in cache and isn't in purgatory, return 1 if the inode is allocated
* and 0 if it is not. For all other cases (not in cache, being torn
* down, etc.), return a negative error code.
*
* The caller has to prevent inode allocation and freeing activity,
* presumably by locking the AGI buffer. This is to ensure that an
* inode cannot transition from allocated to freed until the caller is
* ready to allow that. If the inode is in an intermediate state (new,
* reclaimable, or being reclaimed), -EAGAIN will be returned; if the
* inode is not in the cache, -ENOENT will be returned. The caller must
* deal with these scenarios appropriately.
*
* This is a specialized use case for the online scrubber; if you're
* reading this, you probably want xfs_iget.
*/
int
xfs_icache_inode_is_allocated(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_ino_t ino,
bool *inuse)
{
struct xfs_inode *ip;
int error;
error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
if (error)
return error;
*inuse = !!(VFS_I(ip)->i_mode);
xfs_irele(ip);
return 0;
}
/*
* The inode lookup is done in batches to keep the amount of lock traffic and
* radix tree lookups to a minimum. The batch size is a trade off between
* lookup reduction and stack usage. This is in the reclaim path, so we can't
* be too greedy.
*/
#define XFS_LOOKUP_BATCH 32
/*
* Decide if the given @ip is eligible to be a part of the inode walk, and
* grab it if so. Returns true if it's ready to go or false if we should just
* ignore it.
*/
STATIC bool
xfs_inode_walk_ag_grab(
struct xfs_inode *ip,
int flags)
{
struct inode *inode = VFS_I(ip);
bool newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
ASSERT(rcu_read_lock_held());
/* Check for stale RCU freed inode */
spin_lock(&ip->i_flags_lock);
if (!ip->i_ino)
goto out_unlock_noent;
/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
__xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
goto out_unlock_noent;
spin_unlock(&ip->i_flags_lock);
/* nothing to sync during shutdown */
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return false;
/* If we can't grab the inode, it must on it's way to reclaim. */
if (!igrab(inode))
return false;
/* inode is valid */
return true;
out_unlock_noent:
spin_unlock(&ip->i_flags_lock);
return false;
}
/*
* For a given per-AG structure @pag, grab, @execute, and rele all incore
* inodes with the given radix tree @tag.
*/
STATIC int
xfs_inode_walk_ag(
struct xfs_perag *pag,
int iter_flags,
int (*execute)(struct xfs_inode *ip, void *args),
void *args,
int tag)
{
struct xfs_mount *mp = pag->pag_mount;
uint32_t first_index;
int last_error = 0;
int skipped;
bool done;
int nr_found;
restart:
done = false;
skipped = 0;
first_index = 0;
nr_found = 0;
do {
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
int error = 0;
int i;
rcu_read_lock();
if (tag == XFS_ICI_NO_TAG)
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
(void **)batch, first_index,
XFS_LOOKUP_BATCH);
else
nr_found = radix_tree_gang_lookup_tag(
&pag->pag_ici_root,
(void **) batch, first_index,
XFS_LOOKUP_BATCH, tag);
if (!nr_found) {
rcu_read_unlock();
break;
}
/*
* Grab the inodes before we drop the lock. if we found
* nothing, nr == 0 and the loop will be skipped.
*/
for (i = 0; i < nr_found; i++) {
struct xfs_inode *ip = batch[i];
if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
batch[i] = NULL;
/*
* Update the index for the next lookup. Catch
* overflows into the next AG range which can occur if
* we have inodes in the last block of the AG and we
* are currently pointing to the last inode.
*
* Because we may see inodes that are from the wrong AG
* due to RCU freeing and reallocation, only update the
* index if it lies in this AG. It was a race that lead
* us to see this inode, so another lookup from the
* same index will not find it again.
*/
if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
continue;
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
done = true;
}
/* unlock now we've grabbed the inodes. */
rcu_read_unlock();
for (i = 0; i < nr_found; i++) {
if (!batch[i])
continue;
if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
xfs_iflags_test(batch[i], XFS_INEW))
xfs_inew_wait(batch[i]);
error = execute(batch[i], args);
xfs_irele(batch[i]);
if (error == -EAGAIN) {
skipped++;
continue;
}
if (error && last_error != -EFSCORRUPTED)
last_error = error;
}
/* bail out if the filesystem is corrupted. */
if (error == -EFSCORRUPTED)
break;
cond_resched();
} while (nr_found && !done);
if (skipped) {
delay(1);
goto restart;
}
return last_error;
}
/* Fetch the next (possibly tagged) per-AG structure. */
static inline struct xfs_perag *
xfs_inode_walk_get_perag(
struct xfs_mount *mp,
xfs_agnumber_t agno,
int tag)
{
if (tag == XFS_ICI_NO_TAG)
return xfs_perag_get(mp, agno);
return xfs_perag_get_tag(mp, agno, tag);
}
/*
* Call the @execute function on all incore inodes matching the radix tree
* @tag.
*/
int
xfs_inode_walk(
struct xfs_mount *mp,
int iter_flags,
int (*execute)(struct xfs_inode *ip, void *args),
void *args,
int tag)
{
struct xfs_perag *pag;
int error = 0;
int last_error = 0;
xfs_agnumber_t ag;
ag = 0;
while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
ag = pag->pag_agno + 1;
error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
xfs_perag_put(pag);
if (error) {
last_error = error;
if (error == -EFSCORRUPTED)
break;
}
}
return last_error;
}
/*
* Grab the inode for reclaim exclusively.
*
* We have found this inode via a lookup under RCU, so the inode may have
* already been freed, or it may be in the process of being recycled by
* xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
* has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
* will not be set. Hence we need to check for both these flag conditions to
* avoid inodes that are no longer reclaim candidates.
*
* Note: checking for other state flags here, under the i_flags_lock or not, is
* racy and should be avoided. Those races should be resolved only after we have
* ensured that we are able to reclaim this inode and the world can see that we
* are going to reclaim it.
*
* Return true if we grabbed it, false otherwise.
*/
static bool
xfs_reclaim_inode_grab(
struct xfs_inode *ip)
{
ASSERT(rcu_read_lock_held());
spin_lock(&ip->i_flags_lock);
if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
__xfs_iflags_test(ip, XFS_IRECLAIM)) {
/* not a reclaim candidate. */
spin_unlock(&ip->i_flags_lock);
return false;
}
__xfs_iflags_set(ip, XFS_IRECLAIM);
spin_unlock(&ip->i_flags_lock);
return true;
}
/*
* Inode reclaim is non-blocking, so the default action if progress cannot be
* made is to "requeue" the inode for reclaim by unlocking it and clearing the
* XFS_IRECLAIM flag. If we are in a shutdown state, we don't care about
* blocking anymore and hence we can wait for the inode to be able to reclaim
* it.
*
* We do no IO here - if callers require inodes to be cleaned they must push the
* AIL first to trigger writeback of dirty inodes. This enables writeback to be
* done in the background in a non-blocking manner, and enables memory reclaim
* to make progress without blocking.
*/
static void
xfs_reclaim_inode(
struct xfs_inode *ip,
struct xfs_perag *pag)
{
xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
goto out;
if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
goto out_iunlock;
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_iunpin_wait(ip);
xfs_iflush_abort(ip);
goto reclaim;
}
if (xfs_ipincount(ip))
goto out_clear_flush;
if (!xfs_inode_clean(ip))
goto out_clear_flush;
xfs_iflags_clear(ip, XFS_IFLUSHING);
reclaim:
/*
* Because we use RCU freeing we need to ensure the inode always appears
* to be reclaimed with an invalid inode number when in the free state.
* We do this as early as possible under the ILOCK so that
* xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
* detect races with us here. By doing this, we guarantee that once
* xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
* it will see either a valid inode that will serialise correctly, or it
* will see an invalid inode that it can skip.
*/
spin_lock(&ip->i_flags_lock);
ip->i_flags = XFS_IRECLAIM;
ip->i_ino = 0;
spin_unlock(&ip->i_flags_lock);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
/*
* Remove the inode from the per-AG radix tree.
*
* Because radix_tree_delete won't complain even if the item was never
* added to the tree assert that it's been there before to catch
* problems with the inode life time early on.
*/
spin_lock(&pag->pag_ici_lock);
if (!radix_tree_delete(&pag->pag_ici_root,
XFS_INO_TO_AGINO(ip->i_mount, ino)))
ASSERT(0);
xfs_perag_clear_reclaim_tag(pag);
spin_unlock(&pag->pag_ici_lock);
/*
* Here we do an (almost) spurious inode lock in order to coordinate
* with inode cache radix tree lookups. This is because the lookup
* can reference the inodes in the cache without taking references.
*
* We make that OK here by ensuring that we wait until the inode is
* unlocked after the lookup before we go ahead and free it.
*/
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_qm_dqdetach(ip);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
ASSERT(xfs_inode_clean(ip));
__xfs_inode_free(ip);
return;
out_clear_flush:
xfs_iflags_clear(ip, XFS_IFLUSHING);
out_iunlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL);
out:
xfs_iflags_clear(ip, XFS_IRECLAIM);
}
/*
* Walk the AGs and reclaim the inodes in them. Even if the filesystem is
* corrupted, we still want to try to reclaim all the inodes. If we don't,
* then a shut down during filesystem unmount reclaim walk leak all the
* unreclaimed inodes.
*
* Returns non-zero if any AGs or inodes were skipped in the reclaim pass
* so that callers that want to block until all dirty inodes are written back
* and reclaimed can sanely loop.
*/
static void
xfs_reclaim_inodes_ag(
struct xfs_mount *mp,
int *nr_to_scan)
{
struct xfs_perag *pag;
xfs_agnumber_t ag = 0;
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
unsigned long first_index = 0;
int done = 0;
int nr_found = 0;
ag = pag->pag_agno + 1;
first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
do {
struct xfs_inode *batch[XFS_LOOKUP_BATCH];
int i;
rcu_read_lock();
nr_found = radix_tree_gang_lookup_tag(
&pag->pag_ici_root,
(void **)batch, first_index,
XFS_LOOKUP_BATCH,
XFS_ICI_RECLAIM_TAG);
if (!nr_found) {
done = 1;
rcu_read_unlock();
break;
}
/*
* Grab the inodes before we drop the lock. if we found
* nothing, nr == 0 and the loop will be skipped.
*/
for (i = 0; i < nr_found; i++) {
struct xfs_inode *ip = batch[i];
if (done || !xfs_reclaim_inode_grab(ip))
batch[i] = NULL;
/*
* Update the index for the next lookup. Catch
* overflows into the next AG range which can
* occur if we have inodes in the last block of
* the AG and we are currently pointing to the
* last inode.
*
* Because we may see inodes that are from the
* wrong AG due to RCU freeing and
* reallocation, only update the index if it
* lies in this AG. It was a race that lead us
* to see this inode, so another lookup from
* the same index will not find it again.
*/
if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
pag->pag_agno)
continue;
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
done = 1;
}
/* unlock now we've grabbed the inodes. */
rcu_read_unlock();
for (i = 0; i < nr_found; i++) {
if (batch[i])
xfs_reclaim_inode(batch[i], pag);
}
*nr_to_scan -= XFS_LOOKUP_BATCH;
cond_resched();
} while (nr_found && !done && *nr_to_scan > 0);
if (done)
first_index = 0;
WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
xfs_perag_put(pag);
}
}
void
xfs_reclaim_inodes(
struct xfs_mount *mp)
{
int nr_to_scan = INT_MAX;
while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
xfs_ail_push_all_sync(mp->m_ail);
xfs_reclaim_inodes_ag(mp, &nr_to_scan);
}
}
/*
* The shrinker infrastructure determines how many inodes we should scan for
* reclaim. We want as many clean inodes ready to reclaim as possible, so we
* push the AIL here. We also want to proactively free up memory if we can to
* minimise the amount of work memory reclaim has to do so we kick the
* background reclaim if it isn't already scheduled.
*/
long
xfs_reclaim_inodes_nr(
struct xfs_mount *mp,
int nr_to_scan)
{
/* kick background reclaimer and push the AIL */
xfs_reclaim_work_queue(mp);
xfs_ail_push_all(mp->m_ail);
xfs_reclaim_inodes_ag(mp, &nr_to_scan);
return 0;
}
/*
* Return the number of reclaimable inodes in the filesystem for
* the shrinker to determine how much to reclaim.
*/
int
xfs_reclaim_inodes_count(
struct xfs_mount *mp)
{
struct xfs_perag *pag;
xfs_agnumber_t ag = 0;
int reclaimable = 0;
while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
ag = pag->pag_agno + 1;
reclaimable += pag->pag_ici_reclaimable;
xfs_perag_put(pag);
}
return reclaimable;
}
STATIC bool
xfs_inode_match_id(
struct xfs_inode *ip,
struct xfs_eofblocks *eofb)
{
if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
!uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
return false;
if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
!gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
return false;
if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
ip->i_projid != eofb->eof_prid)
return false;
return true;
}
/*
* A union-based inode filtering algorithm. Process the inode if any of the
* criteria match. This is for global/internal scans only.
*/
STATIC bool
xfs_inode_match_id_union(
struct xfs_inode *ip,
struct xfs_eofblocks *eofb)
{
if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
return true;
if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
return true;
if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
ip->i_projid == eofb->eof_prid)
return true;
return false;
}
/*
* Is this inode @ip eligible for eof/cow block reclamation, given some
* filtering parameters @eofb? The inode is eligible if @eofb is null or
* if the predicate functions match.
*/
static bool
xfs_inode_matches_eofb(
struct xfs_inode *ip,
struct xfs_eofblocks *eofb)
{
bool match;
if (!eofb)
return true;
if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
match = xfs_inode_match_id_union(ip, eofb);
else
match = xfs_inode_match_id(ip, eofb);
if (!match)
return false;
/* skip the inode if the file size is too small */
if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
XFS_ISIZE(ip) < eofb->eof_min_file_size)
return false;
return true;
}
/*
* This is a fast pass over the inode cache to try to get reclaim moving on as
* many inodes as possible in a short period of time. It kicks itself every few
* seconds, as well as being kicked by the inode cache shrinker when memory
* goes low.
*/
void
xfs_reclaim_worker(
struct work_struct *work)
{
struct xfs_mount *mp = container_of(to_delayed_work(work),
struct xfs_mount, m_reclaim_work);
int nr_to_scan = INT_MAX;
xfs_reclaim_inodes_ag(mp, &nr_to_scan);
xfs_reclaim_work_queue(mp);
}
STATIC int
xfs_inode_free_eofblocks(
struct xfs_inode *ip,
void *args,
unsigned int *lockflags)
{
struct xfs_eofblocks *eofb = args;
bool wait;
wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
return 0;
/*
* If the mapping is dirty the operation can block and wait for some
* time. Unless we are waiting, skip it.
*/
if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
return 0;
if (!xfs_inode_matches_eofb(ip, eofb))
return 0;
/*
* If the caller is waiting, return -EAGAIN to keep the background
* scanner moving and revisit the inode in a subsequent pass.
*/
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
if (wait)
return -EAGAIN;
return 0;
}
*lockflags |= XFS_IOLOCK_EXCL;
if (xfs_can_free_eofblocks(ip, false))
return xfs_free_eofblocks(ip);
/* inode could be preallocated or append-only */
trace_xfs_inode_free_eofblocks_invalid(ip);
xfs_inode_clear_eofblocks_tag(ip);
return 0;
}
/*
* Background scanning to trim preallocated space. This is queued based on the
* 'speculative_prealloc_lifetime' tunable (5m by default).
*/
static inline void
xfs_blockgc_queue(
struct xfs_perag *pag)
{
rcu_read_lock();
if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
queue_delayed_work(pag->pag_mount->m_gc_workqueue,
&pag->pag_blockgc_work,
msecs_to_jiffies(xfs_blockgc_secs * 1000));
rcu_read_unlock();
}
static void
xfs_blockgc_set_iflag(
struct xfs_inode *ip,
unsigned long iflag)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_perag *pag;
int tagged;
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
/*
* Don't bother locking the AG and looking up in the radix trees
* if we already know that we have the tag set.
*/
if (ip->i_flags & iflag)
return;
spin_lock(&ip->i_flags_lock);
ip->i_flags |= iflag;
spin_unlock(&ip->i_flags_lock);
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
spin_lock(&pag->pag_ici_lock);
tagged = radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG);
radix_tree_tag_set(&pag->pag_ici_root,
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
XFS_ICI_BLOCKGC_TAG);
if (!tagged) {
/* propagate the blockgc tag up into the perag radix tree */
spin_lock(&ip->i_mount->m_perag_lock);
radix_tree_tag_set(&ip->i_mount->m_perag_tree,
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
XFS_ICI_BLOCKGC_TAG);
spin_unlock(&ip->i_mount->m_perag_lock);
/* kick off background trimming */
xfs_blockgc_queue(pag);
trace_xfs_perag_set_blockgc(ip->i_mount, pag->pag_agno, -1,
_RET_IP_);
}
spin_unlock(&pag->pag_ici_lock);
xfs_perag_put(pag);
}
void
xfs_inode_set_eofblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_set_eofblocks_tag(ip);
return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
}
static void
xfs_blockgc_clear_iflag(
struct xfs_inode *ip,
unsigned long iflag)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_perag *pag;
bool clear_tag;
ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
spin_lock(&ip->i_flags_lock);
ip->i_flags &= ~iflag;
clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
spin_unlock(&ip->i_flags_lock);
if (!clear_tag)
return;
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
spin_lock(&pag->pag_ici_lock);
radix_tree_tag_clear(&pag->pag_ici_root,
XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
XFS_ICI_BLOCKGC_TAG);
if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG)) {
/* clear the blockgc tag from the perag radix tree */
spin_lock(&ip->i_mount->m_perag_lock);
radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
XFS_ICI_BLOCKGC_TAG);
spin_unlock(&ip->i_mount->m_perag_lock);
trace_xfs_perag_clear_blockgc(ip->i_mount, pag->pag_agno, -1,
_RET_IP_);
}
spin_unlock(&pag->pag_ici_lock);
xfs_perag_put(pag);
}
void
xfs_inode_clear_eofblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_clear_eofblocks_tag(ip);
return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
}
/*
* Set ourselves up to free CoW blocks from this file. If it's already clean
* then we can bail out quickly, but otherwise we must back off if the file
* is undergoing some kind of write.
*/
static bool
xfs_prep_free_cowblocks(
struct xfs_inode *ip)
{
/*
* Just clear the tag if we have an empty cow fork or none at all. It's
* possible the inode was fully unshared since it was originally tagged.
*/
if (!xfs_inode_has_cow_data(ip)) {
trace_xfs_inode_free_cowblocks_invalid(ip);
xfs_inode_clear_cowblocks_tag(ip);
return false;
}
/*
* If the mapping is dirty or under writeback we cannot touch the
* CoW fork. Leave it alone if we're in the midst of a directio.
*/
if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
atomic_read(&VFS_I(ip)->i_dio_count))
return false;
return true;
}
/*
* Automatic CoW Reservation Freeing
*
* These functions automatically garbage collect leftover CoW reservations
* that were made on behalf of a cowextsize hint when we start to run out
* of quota or when the reservations sit around for too long. If the file
* has dirty pages or is undergoing writeback, its CoW reservations will
* be retained.
*
* The actual garbage collection piggybacks off the same code that runs
* the speculative EOF preallocation garbage collector.
*/
STATIC int
xfs_inode_free_cowblocks(
struct xfs_inode *ip,
void *args,
unsigned int *lockflags)
{
struct xfs_eofblocks *eofb = args;
bool wait;
int ret = 0;
wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
return 0;
if (!xfs_prep_free_cowblocks(ip))
return 0;
if (!xfs_inode_matches_eofb(ip, eofb))
return 0;
/*
* If the caller is waiting, return -EAGAIN to keep the background
* scanner moving and revisit the inode in a subsequent pass.
*/
if (!(*lockflags & XFS_IOLOCK_EXCL) &&
!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
if (wait)
return -EAGAIN;
return 0;
}
*lockflags |= XFS_IOLOCK_EXCL;
if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
if (wait)
return -EAGAIN;
return 0;
}
*lockflags |= XFS_MMAPLOCK_EXCL;
/*
* Check again, nobody else should be able to dirty blocks or change
* the reflink iflag now that we have the first two locks held.
*/
if (xfs_prep_free_cowblocks(ip))
ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
return ret;
}
void
xfs_inode_set_cowblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_set_cowblocks_tag(ip);
return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
}
void
xfs_inode_clear_cowblocks_tag(
xfs_inode_t *ip)
{
trace_xfs_inode_clear_cowblocks_tag(ip);
return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
}
#define for_each_perag_tag(mp, next_agno, pag, tag) \
for ((next_agno) = 0, (pag) = xfs_perag_get_tag((mp), 0, (tag)); \
(pag) != NULL; \
(next_agno) = (pag)->pag_agno + 1, \
xfs_perag_put(pag), \
(pag) = xfs_perag_get_tag((mp), (next_agno), (tag)))
/* Disable post-EOF and CoW block auto-reclamation. */
void
xfs_blockgc_stop(
struct xfs_mount *mp)
{
struct xfs_perag *pag;
xfs_agnumber_t agno;
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
cancel_delayed_work_sync(&pag->pag_blockgc_work);
}
/* Enable post-EOF and CoW block auto-reclamation. */
void
xfs_blockgc_start(
struct xfs_mount *mp)
{
struct xfs_perag *pag;
xfs_agnumber_t agno;
for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
xfs_blockgc_queue(pag);
}
/* Scan one incore inode for block preallocations that we can remove. */
static int
xfs_blockgc_scan_inode(
struct xfs_inode *ip,
void *args)
{
unsigned int lockflags = 0;
int error;
error = xfs_inode_free_eofblocks(ip, args, &lockflags);
if (error)
goto unlock;
error = xfs_inode_free_cowblocks(ip, args, &lockflags);
unlock:
if (lockflags)
xfs_iunlock(ip, lockflags);
return error;
}
/* Background worker that trims preallocated space. */
void
xfs_blockgc_worker(
struct work_struct *work)
{
struct xfs_perag *pag = container_of(to_delayed_work(work),
struct xfs_perag, pag_blockgc_work);
struct xfs_mount *mp = pag->pag_mount;
int error;
if (!sb_start_write_trylock(mp->m_super))
return;
error = xfs_inode_walk_ag(pag, 0, xfs_blockgc_scan_inode, NULL,
XFS_ICI_BLOCKGC_TAG);
if (error)
xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
pag->pag_agno, error);
sb_end_write(mp->m_super);
xfs_blockgc_queue(pag);
}
/*
* Try to free space in the filesystem by purging eofblocks and cowblocks.
*/
int
xfs_blockgc_free_space(
struct xfs_mount *mp,
struct xfs_eofblocks *eofb)
{
trace_xfs_blockgc_free_space(mp, eofb, _RET_IP_);
return xfs_inode_walk(mp, 0, xfs_blockgc_scan_inode, eofb,
XFS_ICI_BLOCKGC_TAG);
}
/*
* Run cow/eofblocks scans on the supplied dquots. We don't know exactly which
* quota caused an allocation failure, so we make a best effort by including
* each quota under low free space conditions (less than 1% free space) in the
* scan.
*
* Callers must not hold any inode's ILOCK. If requesting a synchronous scan
* (XFS_EOF_FLAGS_SYNC), the caller also must not hold any inode's IOLOCK or
* MMAPLOCK.
*/
int
xfs_blockgc_free_dquots(
struct xfs_mount *mp,
struct xfs_dquot *udqp,
struct xfs_dquot *gdqp,
struct xfs_dquot *pdqp,
unsigned int eof_flags)
{
struct xfs_eofblocks eofb = {0};
bool do_work = false;
if (!udqp && !gdqp && !pdqp)
return 0;
/*
* Run a scan to free blocks using the union filter to cover all
* applicable quotas in a single scan.
*/
eofb.eof_flags = XFS_EOF_FLAGS_UNION | eof_flags;
if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
eofb.eof_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
eofb.eof_flags |= XFS_EOF_FLAGS_UID;
do_work = true;
}
if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
eofb.eof_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
eofb.eof_flags |= XFS_EOF_FLAGS_GID;
do_work = true;
}
if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
eofb.eof_prid = pdqp->q_id;
eofb.eof_flags |= XFS_EOF_FLAGS_PRID;
do_work = true;
}
if (!do_work)
return 0;
return xfs_blockgc_free_space(mp, &eofb);
}
/* Run cow/eofblocks scans on the quotas attached to the inode. */
int
xfs_blockgc_free_quota(
struct xfs_inode *ip,
unsigned int eof_flags)
{
return xfs_blockgc_free_dquots(ip->i_mount,
xfs_inode_dquot(ip, XFS_DQTYPE_USER),
xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), eof_flags);
}