WSL2-Linux-Kernel/sound/oss/nm256_audio.c

1663 строки
42 KiB
C

/*
* Audio driver for the NeoMagic 256AV and 256ZX chipsets in native
* mode, with AC97 mixer support.
*
* Overall design and parts of this code stolen from vidc_*.c and
* skeleton.c.
*
* Yeah, there are a lot of magic constants in here. You tell ME what
* they are. I just get this stuff psychically, remember?
*
* This driver was written by someone who wishes to remain anonymous.
* It is in the public domain, so share and enjoy. Try to make a profit
* off of it; go on, I dare you.
*
* Changes:
* 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
* Added some __init
* 19-04-2001 Marcus Meissner <mm@caldera.de>
* Ported to 2.4 PCI API.
*/
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include "sound_config.h"
static int nm256_debug;
static int force_load;
#include "nm256.h"
#include "nm256_coeff.h"
/*
* The size of the playback reserve. When the playback buffer has less
* than NM256_PLAY_WMARK_SIZE bytes to output, we request a new
* buffer.
*/
#define NM256_PLAY_WMARK_SIZE 512
static struct audio_driver nm256_audio_driver;
static int nm256_grabInterrupt (struct nm256_info *card);
static int nm256_releaseInterrupt (struct nm256_info *card);
static irqreturn_t nm256_interrupt (int irq, void *dev_id, struct pt_regs *dummy);
static irqreturn_t nm256_interrupt_zx (int irq, void *dev_id, struct pt_regs *dummy);
/* These belong in linux/pci.h. */
#define PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO 0x8005
#define PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO 0x8006
#define PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO 0x8016
/* List of cards. */
static struct nm256_info *nmcard_list;
/* Release the mapped-in memory for CARD. */
static void
nm256_release_ports (struct nm256_info *card)
{
int x;
for (x = 0; x < 2; x++) {
if (card->port[x].ptr != NULL) {
iounmap (card->port[x].ptr);
card->port[x].ptr = NULL;
}
}
}
/*
* Map in the memory ports for CARD, if they aren't already mapped in
* and have been configured. If successful, a zero value is returned;
* otherwise any previously mapped-in areas are released and a non-zero
* value is returned.
*
* This is invoked twice, once for each port. Ideally it would only be
* called once, but we now need to map in the second port in order to
* check how much memory the card has on the 256ZX.
*/
static int
nm256_remap_ports (struct nm256_info *card)
{
int x;
for (x = 0; x < 2; x++) {
if (card->port[x].ptr == NULL && card->port[x].end_offset > 0) {
u32 physaddr
= card->port[x].physaddr + card->port[x].start_offset;
u32 size
= card->port[x].end_offset - card->port[x].start_offset;
card->port[x].ptr = ioremap_nocache (physaddr, size);
if (card->port[x].ptr == NULL) {
printk (KERN_ERR "NM256: Unable to remap port %d\n", x + 1);
nm256_release_ports (card);
return -1;
}
}
}
return 0;
}
/* Locate the card in our list. */
static struct nm256_info *
nm256_find_card (int dev)
{
struct nm256_info *card;
for (card = nmcard_list; card != NULL; card = card->next_card)
if (card->dev[0] == dev || card->dev[1] == dev)
return card;
return NULL;
}
/*
* Ditto, but find the card struct corresponding to the mixer device DEV
* instead.
*/
static struct nm256_info *
nm256_find_card_for_mixer (int dev)
{
struct nm256_info *card;
for (card = nmcard_list; card != NULL; card = card->next_card)
if (card->mixer_oss_dev == dev)
return card;
return NULL;
}
static int usecache;
static int buffertop;
/* Check to see if we're using the bank of cached coefficients. */
static int
nm256_cachedCoefficients (struct nm256_info *card)
{
return usecache;
}
/* The actual rates supported by the card. */
static int samplerates[9] = {
8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 99999999
};
/*
* Set the card samplerate, word size and stereo mode to correspond to
* the settings in the CARD struct for the specified device in DEV.
* We keep two separate sets of information, one for each device; the
* hardware is not actually configured until a read or write is
* attempted.
*/
static int
nm256_setInfo (int dev, struct nm256_info *card)
{
int x;
int w;
int targetrate;
if (card->dev[0] == dev)
w = 0;
else if (card->dev[1] == dev)
w = 1;
else
return -ENODEV;
targetrate = card->sinfo[w].samplerate;
if ((card->sinfo[w].bits != 8 && card->sinfo[w].bits != 16)
|| targetrate < samplerates[0]
|| targetrate > samplerates[7])
return -EINVAL;
for (x = 0; x < 8; x++)
if (targetrate < ((samplerates[x] + samplerates[x + 1]) / 2))
break;
if (x < 8) {
u8 ratebits = ((x << 4) & NM_RATE_MASK);
if (card->sinfo[w].bits == 16)
ratebits |= NM_RATE_BITS_16;
if (card->sinfo[w].stereo)
ratebits |= NM_RATE_STEREO;
card->sinfo[w].samplerate = samplerates[x];
if (card->dev_for_play == dev && card->playing) {
if (nm256_debug)
printk (KERN_DEBUG "Setting play ratebits to 0x%x\n",
ratebits);
nm256_loadCoefficient (card, 0, x);
nm256_writePort8 (card, 2,
NM_PLAYBACK_REG_OFFSET + NM_RATE_REG_OFFSET,
ratebits);
}
if (card->dev_for_record == dev && card->recording) {
if (nm256_debug)
printk (KERN_DEBUG "Setting record ratebits to 0x%x\n",
ratebits);
nm256_loadCoefficient (card, 1, x);
nm256_writePort8 (card, 2,
NM_RECORD_REG_OFFSET + NM_RATE_REG_OFFSET,
ratebits);
}
return 0;
}
else
return -EINVAL;
}
/* Start the play process going. */
static void
startPlay (struct nm256_info *card)
{
if (! card->playing) {
card->playing = 1;
if (nm256_grabInterrupt (card) == 0) {
nm256_setInfo (card->dev_for_play, card);
/* Enable playback engine and interrupts. */
nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG,
NM_PLAYBACK_ENABLE_FLAG | NM_PLAYBACK_FREERUN);
/* Enable both channels. */
nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG, 0x0);
}
}
}
/*
* Request one chunk of AMT bytes from the recording device. When the
* operation is complete, the data will be copied into BUFFER and the
* function DMAbuf_inputintr will be invoked.
*/
static void
nm256_startRecording (struct nm256_info *card, char *buffer, u32 amt)
{
u32 endpos;
int enableEngine = 0;
u32 ringsize = card->recordBufferSize;
unsigned long flags;
if (amt > (ringsize / 2)) {
/*
* Of course this won't actually work right, because the
* caller is going to assume we will give what we got asked
* for.
*/
printk (KERN_ERR "NM256: Read request too large: %d\n", amt);
amt = ringsize / 2;
}
if (amt < 8) {
printk (KERN_ERR "NM256: Read request too small; %d\n", amt);
return;
}
spin_lock_irqsave(&card->lock,flags);
/*
* If we're not currently recording, set up the start and end registers
* for the recording engine.
*/
if (! card->recording) {
card->recording = 1;
if (nm256_grabInterrupt (card) == 0) {
card->curRecPos = 0;
nm256_setInfo (card->dev_for_record, card);
nm256_writePort32 (card, 2, NM_RBUFFER_START, card->abuf2);
nm256_writePort32 (card, 2, NM_RBUFFER_END,
card->abuf2 + ringsize);
nm256_writePort32 (card, 2, NM_RBUFFER_CURRP,
card->abuf2 + card->curRecPos);
enableEngine = 1;
}
else {
/* Not sure what else to do here. */
spin_unlock_irqrestore(&card->lock,flags);
return;
}
}
/*
* If we happen to go past the end of the buffer a bit (due to a
* delayed interrupt) it's OK. So might as well set the watermark
* right at the end of the data we want.
*/
endpos = card->abuf2 + ((card->curRecPos + amt) % ringsize);
card->recBuf = buffer;
card->requestedRecAmt = amt;
nm256_writePort32 (card, 2, NM_RBUFFER_WMARK, endpos);
/* Enable recording engine and interrupts. */
if (enableEngine)
nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG,
NM_RECORD_ENABLE_FLAG | NM_RECORD_FREERUN);
spin_unlock_irqrestore(&card->lock,flags);
}
/* Stop the play engine. */
static void
stopPlay (struct nm256_info *card)
{
/* Shut off sound from both channels. */
nm256_writePort16 (card, 2, NM_AUDIO_MUTE_REG,
NM_AUDIO_MUTE_LEFT | NM_AUDIO_MUTE_RIGHT);
/* Disable play engine. */
nm256_writePort8 (card, 2, NM_PLAYBACK_ENABLE_REG, 0);
if (card->playing) {
nm256_releaseInterrupt (card);
/* Reset the relevant state bits. */
card->playing = 0;
card->curPlayPos = 0;
}
}
/* Stop recording. */
static void
stopRecord (struct nm256_info *card)
{
/* Disable recording engine. */
nm256_writePort8 (card, 2, NM_RECORD_ENABLE_REG, 0);
if (card->recording) {
nm256_releaseInterrupt (card);
card->recording = 0;
card->curRecPos = 0;
}
}
/*
* Ring buffers, man. That's where the hip-hop, wild-n-wooly action's at.
* 1972? (Well, I suppose it was cheep-n-easy to implement.)
*
* Write AMT bytes of BUFFER to the playback ring buffer, and start the
* playback engine running. It will only accept up to 1/2 of the total
* size of the ring buffer. No check is made that we're about to overwrite
* the currently-playing sample.
*/
static void
nm256_write_block (struct nm256_info *card, char *buffer, u32 amt)
{
u32 ringsize = card->playbackBufferSize;
u32 endstop;
unsigned long flags;
if (amt > (ringsize / 2)) {
printk (KERN_ERR "NM256: Write request too large: %d\n", amt);
amt = (ringsize / 2);
}
if (amt < NM256_PLAY_WMARK_SIZE) {
printk (KERN_ERR "NM256: Write request too small: %d\n", amt);
return;
}
card->curPlayPos %= ringsize;
card->requested_amt = amt;
spin_lock_irqsave(&card->lock,flags);
if ((card->curPlayPos + amt) >= ringsize) {
u32 rem = ringsize - card->curPlayPos;
nm256_writeBuffer8 (card, buffer, 1,
card->abuf1 + card->curPlayPos,
rem);
if (amt > rem)
nm256_writeBuffer8 (card, buffer + rem, 1, card->abuf1,
amt - rem);
}
else
nm256_writeBuffer8 (card, buffer, 1,
card->abuf1 + card->curPlayPos,
amt);
/*
* Setup the start-n-stop-n-limit registers, and start that engine
* goin'.
*
* Normally we just let it wrap around to avoid the click-click
* action scene.
*/
if (! card->playing) {
/* The PBUFFER_END register in this case points to one sample
before the end of the buffer. */
int w = (card->dev_for_play == card->dev[0] ? 0 : 1);
int sampsize = (card->sinfo[w].bits == 16 ? 2 : 1);
if (card->sinfo[w].stereo)
sampsize *= 2;
/* Need to set the not-normally-changing-registers up. */
nm256_writePort32 (card, 2, NM_PBUFFER_START,
card->abuf1 + card->curPlayPos);
nm256_writePort32 (card, 2, NM_PBUFFER_END,
card->abuf1 + ringsize - sampsize);
nm256_writePort32 (card, 2, NM_PBUFFER_CURRP,
card->abuf1 + card->curPlayPos);
}
endstop = (card->curPlayPos + amt - NM256_PLAY_WMARK_SIZE) % ringsize;
nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop);
if (! card->playing)
startPlay (card);
spin_unlock_irqrestore(&card->lock,flags);
}
/* We just got a card playback interrupt; process it. */
static void
nm256_get_new_block (struct nm256_info *card)
{
/* Check to see how much got played so far. */
u32 amt = nm256_readPort32 (card, 2, NM_PBUFFER_CURRP) - card->abuf1;
if (amt >= card->playbackBufferSize) {
printk (KERN_ERR "NM256: Sound playback pointer invalid!\n");
amt = 0;
}
if (amt < card->curPlayPos)
amt = (card->playbackBufferSize - card->curPlayPos) + amt;
else
amt -= card->curPlayPos;
if (card->requested_amt > (amt + NM256_PLAY_WMARK_SIZE)) {
u32 endstop =
card->curPlayPos + card->requested_amt - NM256_PLAY_WMARK_SIZE;
nm256_writePort32 (card, 2, NM_PBUFFER_WMARK, card->abuf1 + endstop);
}
else {
card->curPlayPos += card->requested_amt;
/* Get a new block to write. This will eventually invoke
nm256_write_block () or stopPlay (). */
DMAbuf_outputintr (card->dev_for_play, 1);
}
}
/*
* Read the last-recorded block from the ring buffer, copy it into the
* saved buffer pointer, and invoke DMAuf_inputintr() with the recording
* device.
*/
static void
nm256_read_block (struct nm256_info *card)
{
/* Grab the current position of the recording pointer. */
u32 currptr = nm256_readPort32 (card, 2, NM_RBUFFER_CURRP) - card->abuf2;
u32 amtToRead = card->requestedRecAmt;
u32 ringsize = card->recordBufferSize;
if (currptr >= card->recordBufferSize) {
printk (KERN_ERR "NM256: Sound buffer record pointer invalid!\n");
currptr = 0;
}
/*
* This test is probably redundant; we shouldn't be here unless
* it's true.
*/
if (card->recording) {
/* If we wrapped around, copy everything from the start of our
recording buffer to the end of the buffer. */
if (currptr < card->curRecPos) {
u32 amt = min (ringsize - card->curRecPos, amtToRead);
nm256_readBuffer8 (card, card->recBuf, 1,
card->abuf2 + card->curRecPos,
amt);
amtToRead -= amt;
card->curRecPos += amt;
card->recBuf += amt;
if (card->curRecPos == ringsize)
card->curRecPos = 0;
}
if ((card->curRecPos < currptr) && (amtToRead > 0)) {
u32 amt = min (currptr - card->curRecPos, amtToRead);
nm256_readBuffer8 (card, card->recBuf, 1,
card->abuf2 + card->curRecPos, amt);
card->curRecPos = ((card->curRecPos + amt) % ringsize);
}
card->recBuf = NULL;
card->requestedRecAmt = 0;
DMAbuf_inputintr (card->dev_for_record);
}
}
/*
* Initialize the hardware.
*/
static void
nm256_initHw (struct nm256_info *card)
{
/* Reset everything. */
nm256_writePort8 (card, 2, 0x0, 0x11);
nm256_writePort16 (card, 2, 0x214, 0);
stopRecord (card);
stopPlay (card);
}
/*
* Handle a potential interrupt for the device referred to by DEV_ID.
*
* I don't like the cut-n-paste job here either between the two routines,
* but there are sufficient differences between the two interrupt handlers
* that parameterizing it isn't all that great either. (Could use a macro,
* I suppose...yucky bleah.)
*/
static irqreturn_t
nm256_interrupt (int irq, void *dev_id, struct pt_regs *dummy)
{
struct nm256_info *card = (struct nm256_info *)dev_id;
u16 status;
static int badintrcount;
int handled = 0;
if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) {
printk (KERN_ERR "NM256: Bad card pointer\n");
return IRQ_NONE;
}
status = nm256_readPort16 (card, 2, NM_INT_REG);
/* Not ours. */
if (status == 0) {
if (badintrcount++ > 1000) {
/*
* I'm not sure if the best thing is to stop the card from
* playing or just release the interrupt (after all, we're in
* a bad situation, so doing fancy stuff may not be such a good
* idea).
*
* I worry about the card engine continuing to play noise
* over and over, however--that could become a very
* obnoxious problem. And we know that when this usually
* happens things are fairly safe, it just means the user's
* inserted a PCMCIA card and someone's spamming us with IRQ 9s.
*/
handled = 1;
if (card->playing)
stopPlay (card);
if (card->recording)
stopRecord (card);
badintrcount = 0;
}
return IRQ_RETVAL(handled);
}
badintrcount = 0;
/* Rather boring; check for individual interrupts and process them. */
if (status & NM_PLAYBACK_INT) {
handled = 1;
status &= ~NM_PLAYBACK_INT;
NM_ACK_INT (card, NM_PLAYBACK_INT);
if (card->playing)
nm256_get_new_block (card);
}
if (status & NM_RECORD_INT) {
handled = 1;
status &= ~NM_RECORD_INT;
NM_ACK_INT (card, NM_RECORD_INT);
if (card->recording)
nm256_read_block (card);
}
if (status & NM_MISC_INT_1) {
u8 cbyte;
handled = 1;
status &= ~NM_MISC_INT_1;
printk (KERN_ERR "NM256: Got misc interrupt #1\n");
NM_ACK_INT (card, NM_MISC_INT_1);
nm256_writePort16 (card, 2, NM_INT_REG, 0x8000);
cbyte = nm256_readPort8 (card, 2, 0x400);
nm256_writePort8 (card, 2, 0x400, cbyte | 2);
}
if (status & NM_MISC_INT_2) {
u8 cbyte;
handled = 1;
status &= ~NM_MISC_INT_2;
printk (KERN_ERR "NM256: Got misc interrupt #2\n");
NM_ACK_INT (card, NM_MISC_INT_2);
cbyte = nm256_readPort8 (card, 2, 0x400);
nm256_writePort8 (card, 2, 0x400, cbyte & ~2);
}
/* Unknown interrupt. */
if (status) {
handled = 1;
printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n",
status);
/* Pray. */
NM_ACK_INT (card, status);
}
return IRQ_RETVAL(handled);
}
/*
* Handle a potential interrupt for the device referred to by DEV_ID.
* This handler is for the 256ZX, and is very similar to the non-ZX
* routine.
*/
static irqreturn_t
nm256_interrupt_zx (int irq, void *dev_id, struct pt_regs *dummy)
{
struct nm256_info *card = (struct nm256_info *)dev_id;
u32 status;
static int badintrcount;
int handled = 0;
if ((card == NULL) || (card->magsig != NM_MAGIC_SIG)) {
printk (KERN_ERR "NM256: Bad card pointer\n");
return IRQ_NONE;
}
status = nm256_readPort32 (card, 2, NM_INT_REG);
/* Not ours. */
if (status == 0) {
if (badintrcount++ > 1000) {
printk (KERN_ERR "NM256: Releasing interrupt, over 1000 invalid interrupts\n");
/*
* I'm not sure if the best thing is to stop the card from
* playing or just release the interrupt (after all, we're in
* a bad situation, so doing fancy stuff may not be such a good
* idea).
*
* I worry about the card engine continuing to play noise
* over and over, however--that could become a very
* obnoxious problem. And we know that when this usually
* happens things are fairly safe, it just means the user's
* inserted a PCMCIA card and someone's spamming us with
* IRQ 9s.
*/
handled = 1;
if (card->playing)
stopPlay (card);
if (card->recording)
stopRecord (card);
badintrcount = 0;
}
return IRQ_RETVAL(handled);
}
badintrcount = 0;
/* Rather boring; check for individual interrupts and process them. */
if (status & NM2_PLAYBACK_INT) {
handled = 1;
status &= ~NM2_PLAYBACK_INT;
NM2_ACK_INT (card, NM2_PLAYBACK_INT);
if (card->playing)
nm256_get_new_block (card);
}
if (status & NM2_RECORD_INT) {
handled = 1;
status &= ~NM2_RECORD_INT;
NM2_ACK_INT (card, NM2_RECORD_INT);
if (card->recording)
nm256_read_block (card);
}
if (status & NM2_MISC_INT_1) {
u8 cbyte;
handled = 1;
status &= ~NM2_MISC_INT_1;
printk (KERN_ERR "NM256: Got misc interrupt #1\n");
NM2_ACK_INT (card, NM2_MISC_INT_1);
cbyte = nm256_readPort8 (card, 2, 0x400);
nm256_writePort8 (card, 2, 0x400, cbyte | 2);
}
if (status & NM2_MISC_INT_2) {
u8 cbyte;
handled = 1;
status &= ~NM2_MISC_INT_2;
printk (KERN_ERR "NM256: Got misc interrupt #2\n");
NM2_ACK_INT (card, NM2_MISC_INT_2);
cbyte = nm256_readPort8 (card, 2, 0x400);
nm256_writePort8 (card, 2, 0x400, cbyte & ~2);
}
/* Unknown interrupt. */
if (status) {
handled = 1;
printk (KERN_ERR "NM256: Fire in the hole! Unknown status 0x%x\n",
status);
/* Pray. */
NM2_ACK_INT (card, status);
}
return IRQ_RETVAL(handled);
}
/*
* Request our interrupt.
*/
static int
nm256_grabInterrupt (struct nm256_info *card)
{
if (card->has_irq++ == 0) {
if (request_irq (card->irq, card->introutine, SA_SHIRQ,
"NM256_audio", card) < 0) {
printk (KERN_ERR "NM256: can't obtain IRQ %d\n", card->irq);
return -1;
}
}
return 0;
}
/*
* Release our interrupt.
*/
static int
nm256_releaseInterrupt (struct nm256_info *card)
{
if (card->has_irq <= 0) {
printk (KERN_ERR "nm256: too many calls to releaseInterrupt\n");
return -1;
}
card->has_irq--;
if (card->has_irq == 0) {
free_irq (card->irq, card);
}
return 0;
}
/*
* Waits for the mixer to become ready to be written; returns a zero value
* if it timed out.
*/
static int
nm256_isReady (struct ac97_hwint *dev)
{
struct nm256_info *card = (struct nm256_info *)dev->driver_private;
int t2 = 10;
u32 testaddr;
u16 testb;
int done = 0;
if (card->magsig != NM_MAGIC_SIG) {
printk (KERN_ERR "NM256: Bad magic signature in isReady!\n");
return 0;
}
testaddr = card->mixer_status_offset;
testb = card->mixer_status_mask;
/*
* Loop around waiting for the mixer to become ready.
*/
while (! done && t2-- > 0) {
if ((nm256_readPort16 (card, 2, testaddr) & testb) == 0)
done = 1;
else
udelay (100);
}
return done;
}
/*
* Return the contents of the AC97 mixer register REG. Returns a positive
* value if successful, or a negative error code.
*/
static int
nm256_readAC97Reg (struct ac97_hwint *dev, u8 reg)
{
struct nm256_info *card = (struct nm256_info *)dev->driver_private;
if (card->magsig != NM_MAGIC_SIG) {
printk (KERN_ERR "NM256: Bad magic signature in readAC97Reg!\n");
return -EINVAL;
}
if (reg < 128) {
int res;
nm256_isReady (dev);
res = nm256_readPort16 (card, 2, card->mixer + reg);
/* Magic delay. Bleah yucky. */
udelay (1000);
return res;
}
else
return -EINVAL;
}
/*
* Writes VALUE to AC97 mixer register REG. Returns 0 if successful, or
* a negative error code.
*/
static int
nm256_writeAC97Reg (struct ac97_hwint *dev, u8 reg, u16 value)
{
unsigned long flags;
int tries = 2;
int done = 0;
u32 base;
struct nm256_info *card = (struct nm256_info *)dev->driver_private;
if (card->magsig != NM_MAGIC_SIG) {
printk (KERN_ERR "NM256: Bad magic signature in writeAC97Reg!\n");
return -EINVAL;
}
base = card->mixer;
spin_lock_irqsave(&card->lock,flags);
nm256_isReady (dev);
/* Wait for the write to take, too. */
while ((tries-- > 0) && !done) {
nm256_writePort16 (card, 2, base + reg, value);
if (nm256_isReady (dev)) {
done = 1;
break;
}
}
spin_unlock_irqrestore(&card->lock,flags);
udelay (1000);
return ! done;
}
/*
* Initial register values to be written to the AC97 mixer.
* While most of these are identical to the reset values, we do this
* so that we have most of the register contents cached--this avoids
* reading from the mixer directly (which seems to be problematic,
* probably due to ignorance).
*/
struct initialValues
{
unsigned short port;
unsigned short value;
};
static struct initialValues nm256_ac97_initial_values[] =
{
{ AC97_MASTER_VOL_STEREO, 0x8000 },
{ AC97_HEADPHONE_VOL, 0x8000 },
{ AC97_MASTER_VOL_MONO, 0x0000 },
{ AC97_PCBEEP_VOL, 0x0000 },
{ AC97_PHONE_VOL, 0x0008 },
{ AC97_MIC_VOL, 0x8000 },
{ AC97_LINEIN_VOL, 0x8808 },
{ AC97_CD_VOL, 0x8808 },
{ AC97_VIDEO_VOL, 0x8808 },
{ AC97_AUX_VOL, 0x8808 },
{ AC97_PCMOUT_VOL, 0x0808 },
{ AC97_RECORD_SELECT, 0x0000 },
{ AC97_RECORD_GAIN, 0x0B0B },
{ AC97_GENERAL_PURPOSE, 0x0000 },
{ 0xffff, 0xffff }
};
/* Initialize the AC97 into a known state. */
static int
nm256_resetAC97 (struct ac97_hwint *dev)
{
struct nm256_info *card = (struct nm256_info *)dev->driver_private;
int x;
if (card->magsig != NM_MAGIC_SIG) {
printk (KERN_ERR "NM256: Bad magic signature in resetAC97!\n");
return -EINVAL;
}
/* Reset the mixer. 'Tis magic! */
nm256_writePort8 (card, 2, 0x6c0, 1);
// nm256_writePort8 (card, 2, 0x6cc, 0x87); /* This crashes Dell latitudes */
nm256_writePort8 (card, 2, 0x6cc, 0x80);
nm256_writePort8 (card, 2, 0x6cc, 0x0);
if (! card->mixer_values_init) {
for (x = 0; nm256_ac97_initial_values[x].port != 0xffff; x++) {
ac97_put_register (dev,
nm256_ac97_initial_values[x].port,
nm256_ac97_initial_values[x].value);
card->mixer_values_init = 1;
}
}
return 0;
}
/*
* We don't do anything particularly special here; it just passes the
* mixer ioctl to the AC97 driver.
*/
static int
nm256_default_mixer_ioctl (int dev, unsigned int cmd, void __user *arg)
{
struct nm256_info *card = nm256_find_card_for_mixer (dev);
if (card != NULL)
return ac97_mixer_ioctl (&(card->mdev), cmd, arg);
else
return -ENODEV;
}
static struct mixer_operations nm256_mixer_operations = {
.owner = THIS_MODULE,
.id = "NeoMagic",
.name = "NM256AC97Mixer",
.ioctl = nm256_default_mixer_ioctl
};
/*
* Default settings for the OSS mixer. These are set last, after the
* mixer is initialized.
*
* I "love" C sometimes. Got braces?
*/
static struct ac97_mixer_value_list mixer_defaults[] = {
{ SOUND_MIXER_VOLUME, { { 85, 85 } } },
{ SOUND_MIXER_SPEAKER, { { 100 } } },
{ SOUND_MIXER_PCM, { { 65, 65 } } },
{ SOUND_MIXER_CD, { { 65, 65 } } },
{ -1, { { 0, 0 } } }
};
/* Installs the AC97 mixer into CARD. */
static int __init
nm256_install_mixer (struct nm256_info *card)
{
int mixer;
card->mdev.reset_device = nm256_resetAC97;
card->mdev.read_reg = nm256_readAC97Reg;
card->mdev.write_reg = nm256_writeAC97Reg;
card->mdev.driver_private = (void *)card;
if (ac97_init (&(card->mdev)))
return -1;
mixer = sound_alloc_mixerdev();
if (num_mixers >= MAX_MIXER_DEV) {
printk ("NM256 mixer: Unable to alloc mixerdev\n");
return -1;
}
mixer_devs[mixer] = &nm256_mixer_operations;
card->mixer_oss_dev = mixer;
/* Some reasonable default values. */
ac97_set_values (&(card->mdev), mixer_defaults);
printk(KERN_INFO "Initialized AC97 mixer\n");
return 0;
}
/*
* See if the signature left by the NM256 BIOS is intact; if so, we use
* the associated address as the end of our audio buffer in the video
* RAM.
*/
static void __init
nm256_peek_for_sig (struct nm256_info *card)
{
u32 port1offset
= card->port[0].physaddr + card->port[0].end_offset - 0x0400;
/* The signature is located 1K below the end of video RAM. */
char __iomem *temp = ioremap_nocache (port1offset, 16);
/* Default buffer end is 5120 bytes below the top of RAM. */
u32 default_value = card->port[0].end_offset - 0x1400;
u32 sig;
/* Install the default value first, so we don't have to repeatedly
do it if there is a problem. */
card->port[0].end_offset = default_value;
if (temp == NULL) {
printk (KERN_ERR "NM256: Unable to scan for card signature in video RAM\n");
return;
}
sig = readl (temp);
if ((sig & NM_SIG_MASK) == NM_SIGNATURE) {
u32 pointer = readl (temp + 4);
/*
* If it's obviously invalid, don't use it (the port already has a
* suitable default value set).
*/
if (pointer != 0xffffffff)
card->port[0].end_offset = pointer;
printk (KERN_INFO "NM256: Found card signature in video RAM: 0x%x\n",
pointer);
}
iounmap (temp);
}
/*
* Install a driver for the PCI device referenced by PCIDEV.
* VERSTR is a human-readable version string.
*/
static int __devinit
nm256_install(struct pci_dev *pcidev, enum nm256rev rev, char *verstr)
{
struct nm256_info *card;
int x;
if (pci_enable_device(pcidev))
return 0;
card = kmalloc (sizeof (struct nm256_info), GFP_KERNEL);
if (card == NULL) {
printk (KERN_ERR "NM256: out of memory!\n");
return 0;
}
card->magsig = NM_MAGIC_SIG;
card->playing = 0;
card->recording = 0;
card->rev = rev;
spin_lock_init(&card->lock);
/* Init the memory port info. */
for (x = 0; x < 2; x++) {
card->port[x].physaddr = pci_resource_start (pcidev, x);
card->port[x].ptr = NULL;
card->port[x].start_offset = 0;
card->port[x].end_offset = 0;
}
/* Port 2 is easy. */
card->port[1].start_offset = 0;
card->port[1].end_offset = NM_PORT2_SIZE;
/* Yuck. But we have to map in port 2 so we can check how much RAM the
card has. */
if (nm256_remap_ports (card)) {
kfree (card);
return 0;
}
/*
* The NM256 has two memory ports. The first port is nothing
* more than a chunk of video RAM, which is used as the I/O ring
* buffer. The second port has the actual juicy stuff (like the
* mixer and the playback engine control registers).
*/
if (card->rev == REV_NM256AV) {
/* Ok, try to see if this is a non-AC97 version of the hardware. */
int pval = nm256_readPort16 (card, 2, NM_MIXER_PRESENCE);
if ((pval & NM_PRESENCE_MASK) != NM_PRESENCE_VALUE) {
if (! force_load) {
printk (KERN_ERR "NM256: This doesn't look to me like the AC97-compatible version.\n");
printk (KERN_ERR " You can force the driver to load by passing in the module\n");
printk (KERN_ERR " parameter:\n");
printk (KERN_ERR " force_load = 1\n");
printk (KERN_ERR "\n");
printk (KERN_ERR " More likely, you should be using the appropriate SB-16 or\n");
printk (KERN_ERR " CS4232 driver instead. (If your BIOS has settings for\n");
printk (KERN_ERR " IRQ and/or DMA for the sound card, this is *not* the correct\n");
printk (KERN_ERR " driver to use.)\n");
nm256_release_ports (card);
kfree (card);
return 0;
}
else {
printk (KERN_INFO "NM256: Forcing driver load as per user request.\n");
}
}
else {
/* printk (KERN_INFO "NM256: Congratulations. You're not running Eunice.\n")*/;
}
card->port[0].end_offset = 2560 * 1024;
card->introutine = nm256_interrupt;
card->mixer_status_offset = NM_MIXER_STATUS_OFFSET;
card->mixer_status_mask = NM_MIXER_READY_MASK;
}
else {
/* Not sure if there is any relevant detect for the ZX or not. */
if (nm256_readPort8 (card, 2, 0xa0b) != 0)
card->port[0].end_offset = 6144 * 1024;
else
card->port[0].end_offset = 4096 * 1024;
card->introutine = nm256_interrupt_zx;
card->mixer_status_offset = NM2_MIXER_STATUS_OFFSET;
card->mixer_status_mask = NM2_MIXER_READY_MASK;
}
if (buffertop >= 98304 && buffertop < card->port[0].end_offset)
card->port[0].end_offset = buffertop;
else
nm256_peek_for_sig (card);
card->port[0].start_offset = card->port[0].end_offset - 98304;
printk (KERN_INFO "NM256: Mapping port 1 from 0x%x - 0x%x\n",
card->port[0].start_offset, card->port[0].end_offset);
if (nm256_remap_ports (card)) {
kfree (card);
return 0;
}
/* See if we can get the interrupt. */
card->irq = pcidev->irq;
card->has_irq = 0;
if (nm256_grabInterrupt (card) != 0) {
nm256_release_ports (card);
kfree (card);
return 0;
}
nm256_releaseInterrupt (card);
/*
* Init the board.
*/
card->playbackBufferSize = 16384;
card->recordBufferSize = 16384;
card->coeffBuf = card->port[0].end_offset - NM_MAX_COEFFICIENT;
card->abuf2 = card->coeffBuf - card->recordBufferSize;
card->abuf1 = card->abuf2 - card->playbackBufferSize;
card->allCoeffBuf = card->abuf2 - (NM_TOTAL_COEFF_COUNT * 4);
/* Fixed setting. */
card->mixer = NM_MIXER_OFFSET;
card->mixer_values_init = 0;
card->is_open_play = 0;
card->is_open_record = 0;
card->coeffsCurrent = 0;
card->opencnt[0] = 0; card->opencnt[1] = 0;
/* Reasonable default settings, but largely unnecessary. */
for (x = 0; x < 2; x++) {
card->sinfo[x].bits = 8;
card->sinfo[x].stereo = 0;
card->sinfo[x].samplerate = 8000;
}
nm256_initHw (card);
for (x = 0; x < 2; x++) {
if ((card->dev[x] =
sound_install_audiodrv(AUDIO_DRIVER_VERSION,
"NM256", &nm256_audio_driver,
sizeof(struct audio_driver),
DMA_NODMA, AFMT_U8 | AFMT_S16_LE,
NULL, -1, -1)) >= 0) {
/* 1K minimum buffer size. */
audio_devs[card->dev[x]]->min_fragment = 10;
/* Maximum of 8K buffer size. */
audio_devs[card->dev[x]]->max_fragment = 13;
}
else {
printk(KERN_ERR "NM256: Too many PCM devices available\n");
nm256_release_ports (card);
kfree (card);
return 0;
}
}
pci_set_drvdata(pcidev,card);
/* Insert the card in the list. */
card->next_card = nmcard_list;
nmcard_list = card;
printk(KERN_INFO "Initialized NeoMagic %s audio in PCI native mode\n",
verstr);
/*
* And our mixer. (We should allow support for other mixers, maybe.)
*/
nm256_install_mixer (card);
return 1;
}
static int __devinit
nm256_probe(struct pci_dev *pcidev,const struct pci_device_id *pciid)
{
if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO)
return nm256_install(pcidev, REV_NM256AV, "256AV");
if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO)
return nm256_install(pcidev, REV_NM256ZX, "256ZX");
if (pcidev->device == PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO)
return nm256_install(pcidev, REV_NM256ZX, "256XL+");
return -1; /* should not come here ... */
}
static void __devinit
nm256_remove(struct pci_dev *pcidev) {
struct nm256_info *xcard = pci_get_drvdata(pcidev);
struct nm256_info *card,*next_card = NULL;
for (card = nmcard_list; card != NULL; card = next_card) {
next_card = card->next_card;
if (card == xcard) {
stopPlay (card);
stopRecord (card);
if (card->has_irq)
free_irq (card->irq, card);
nm256_release_ports (card);
sound_unload_mixerdev (card->mixer_oss_dev);
sound_unload_audiodev (card->dev[0]);
sound_unload_audiodev (card->dev[1]);
kfree (card);
break;
}
}
if (nmcard_list == card)
nmcard_list = next_card;
}
/*
* Open the device
*
* DEV - device
* MODE - mode to open device (logical OR of OPEN_READ and OPEN_WRITE)
*
* Called when opening the DMAbuf (dmabuf.c:259)
*/
static int
nm256_audio_open(int dev, int mode)
{
struct nm256_info *card = nm256_find_card (dev);
int w;
if (card == NULL)
return -ENODEV;
if (card->dev[0] == dev)
w = 0;
else if (card->dev[1] == dev)
w = 1;
else
return -ENODEV;
if (card->opencnt[w] > 0)
return -EBUSY;
/* No bits set? Huh? */
if (! ((mode & OPEN_READ) || (mode & OPEN_WRITE)))
return -EIO;
/*
* If it's open for both read and write, and the card's currently
* being read or written to, then do the opposite of what has
* already been done. Otherwise, don't specify any mode until the
* user actually tries to do I/O. (Some programs open the device
* for both read and write, but only actually do reading or writing.)
*/
if ((mode & OPEN_WRITE) && (mode & OPEN_READ)) {
if (card->is_open_play)
mode = OPEN_WRITE;
else if (card->is_open_record)
mode = OPEN_READ;
else mode = 0;
}
if (mode & OPEN_WRITE) {
if (card->is_open_play == 0) {
card->dev_for_play = dev;
card->is_open_play = 1;
}
else
return -EBUSY;
}
if (mode & OPEN_READ) {
if (card->is_open_record == 0) {
card->dev_for_record = dev;
card->is_open_record = 1;
}
else
return -EBUSY;
}
card->opencnt[w]++;
return 0;
}
/*
* Close the device
*
* DEV - device
*
* Called when closing the DMAbuf (dmabuf.c:477)
* after halt_xfer
*/
static void
nm256_audio_close(int dev)
{
struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) {
int w;
if (card->dev[0] == dev)
w = 0;
else if (card->dev[1] == dev)
w = 1;
else
return;
card->opencnt[w]--;
if (card->opencnt[w] <= 0) {
card->opencnt[w] = 0;
if (card->dev_for_play == dev) {
stopPlay (card);
card->is_open_play = 0;
card->dev_for_play = -1;
}
if (card->dev_for_record == dev) {
stopRecord (card);
card->is_open_record = 0;
card->dev_for_record = -1;
}
}
}
}
/* Standard ioctl handler. */
static int
nm256_audio_ioctl(int dev, unsigned int cmd, void __user *arg)
{
int ret;
u32 oldinfo;
int w;
struct nm256_info *card = nm256_find_card (dev);
if (card == NULL)
return -ENODEV;
if (dev == card->dev[0])
w = 0;
else
w = 1;
/*
* The code here is messy. There are probably better ways to do
* it. (It should be possible to handle it the same way the AC97 mixer
* is done.)
*/
switch (cmd)
{
case SOUND_PCM_WRITE_RATE:
if (get_user(ret, (int __user *) arg))
return -EFAULT;
if (ret != 0) {
oldinfo = card->sinfo[w].samplerate;
card->sinfo[w].samplerate = ret;
ret = nm256_setInfo(dev, card);
if (ret != 0)
card->sinfo[w].samplerate = oldinfo;
}
if (ret == 0)
ret = card->sinfo[w].samplerate;
break;
case SOUND_PCM_READ_RATE:
ret = card->sinfo[w].samplerate;
break;
case SNDCTL_DSP_STEREO:
if (get_user(ret, (int __user *) arg))
return -EFAULT;
card->sinfo[w].stereo = ret ? 1 : 0;
ret = nm256_setInfo (dev, card);
if (ret == 0)
ret = card->sinfo[w].stereo;
break;
case SOUND_PCM_WRITE_CHANNELS:
if (get_user(ret, (int __user *) arg))
return -EFAULT;
if (ret < 1 || ret > 3)
ret = card->sinfo[w].stereo + 1;
else {
card->sinfo[w].stereo = ret - 1;
ret = nm256_setInfo (dev, card);
if (ret == 0)
ret = card->sinfo[w].stereo + 1;
}
break;
case SOUND_PCM_READ_CHANNELS:
ret = card->sinfo[w].stereo + 1;
break;
case SNDCTL_DSP_SETFMT:
if (get_user(ret, (int __user *) arg))
return -EFAULT;
if (ret != 0) {
oldinfo = card->sinfo[w].bits;
card->sinfo[w].bits = ret;
ret = nm256_setInfo (dev, card);
if (ret != 0)
card->sinfo[w].bits = oldinfo;
}
if (ret == 0)
ret = card->sinfo[w].bits;
break;
case SOUND_PCM_READ_BITS:
ret = card->sinfo[w].bits;
break;
default:
return -EINVAL;
}
return put_user(ret, (int __user *) arg);
}
/*
* Given the sound device DEV and an associated physical buffer PHYSBUF,
* return a pointer to the actual buffer in kernel space.
*
* This routine should exist as part of the soundcore routines.
*/
static char *
nm256_getDMAbuffer (int dev, unsigned long physbuf)
{
struct audio_operations *adev = audio_devs[dev];
struct dma_buffparms *dmap = adev->dmap_out;
char *dma_start =
(char *)(physbuf - (unsigned long)dmap->raw_buf_phys
+ (unsigned long)dmap->raw_buf);
return dma_start;
}
/*
* Output a block to sound device
*
* dev - device number
* buf - physical address of buffer
* total_count - total byte count in buffer
* intrflag - set if this has been called from an interrupt
* (via DMAbuf_outputintr)
* restart_dma - set if engine needs to be re-initialised
*
* Called when:
* 1. Starting output (dmabuf.c:1327)
* 2. (dmabuf.c:1504)
* 3. A new buffer needs to be sent to the device (dmabuf.c:1579)
*/
static void
nm256_audio_output_block(int dev, unsigned long physbuf,
int total_count, int intrflag)
{
struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) {
char *dma_buf = nm256_getDMAbuffer (dev, physbuf);
card->is_open_play = 1;
card->dev_for_play = dev;
nm256_write_block (card, dma_buf, total_count);
}
}
/* Ditto, but do recording instead. */
static void
nm256_audio_start_input(int dev, unsigned long physbuf, int count,
int intrflag)
{
struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) {
char *dma_buf = nm256_getDMAbuffer (dev, physbuf);
card->is_open_record = 1;
card->dev_for_record = dev;
nm256_startRecording (card, dma_buf, count);
}
}
/*
* Prepare for inputting samples to DEV.
* Each requested buffer will be BSIZE byes long, with a total of
* BCOUNT buffers.
*/
static int
nm256_audio_prepare_for_input(int dev, int bsize, int bcount)
{
struct nm256_info *card = nm256_find_card (dev);
if (card == NULL)
return -ENODEV;
if (card->is_open_record && card->dev_for_record != dev)
return -EBUSY;
audio_devs[dev]->dmap_in->flags |= DMA_NODMA;
return 0;
}
/*
* Prepare for outputting samples to `dev'
*
* Each buffer that will be passed will be `bsize' bytes long,
* with a total of `bcount' buffers.
*
* Called when:
* 1. A trigger enables audio output (dmabuf.c:978)
* 2. We get a write buffer without dma_mode setup (dmabuf.c:1152)
* 3. We restart a transfer (dmabuf.c:1324)
*/
static int
nm256_audio_prepare_for_output(int dev, int bsize, int bcount)
{
struct nm256_info *card = nm256_find_card (dev);
if (card == NULL)
return -ENODEV;
if (card->is_open_play && card->dev_for_play != dev)
return -EBUSY;
audio_devs[dev]->dmap_out->flags |= DMA_NODMA;
return 0;
}
/* Stop the current operations associated with DEV. */
static void
nm256_audio_reset(int dev)
{
struct nm256_info *card = nm256_find_card (dev);
if (card != NULL) {
if (card->dev_for_play == dev)
stopPlay (card);
if (card->dev_for_record == dev)
stopRecord (card);
}
}
static int
nm256_audio_local_qlen(int dev)
{
return 0;
}
static struct audio_driver nm256_audio_driver =
{
.owner = THIS_MODULE,
.open = nm256_audio_open,
.close = nm256_audio_close,
.output_block = nm256_audio_output_block,
.start_input = nm256_audio_start_input,
.ioctl = nm256_audio_ioctl,
.prepare_for_input = nm256_audio_prepare_for_input,
.prepare_for_output = nm256_audio_prepare_for_output,
.halt_io = nm256_audio_reset,
.local_qlen = nm256_audio_local_qlen,
};
static struct pci_device_id nm256_pci_tbl[] = {
{PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256AV_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0},
{PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256ZX_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0},
{PCI_VENDOR_ID_NEOMAGIC, PCI_DEVICE_ID_NEOMAGIC_NM256XL_PLUS_AUDIO,
PCI_ANY_ID, PCI_ANY_ID, 0, 0},
{0,}
};
MODULE_DEVICE_TABLE(pci, nm256_pci_tbl);
MODULE_LICENSE("GPL");
static struct pci_driver nm256_pci_driver = {
.name = "nm256_audio",
.id_table = nm256_pci_tbl,
.probe = nm256_probe,
.remove = nm256_remove,
};
module_param(usecache, bool, 0);
module_param(buffertop, int, 0);
module_param(nm256_debug, bool, 0644);
module_param(force_load, bool, 0);
static int __init do_init_nm256(void)
{
printk (KERN_INFO "NeoMagic 256AV/256ZX audio driver, version 1.1p\n");
return pci_module_init(&nm256_pci_driver);
}
static void __exit cleanup_nm256 (void)
{
pci_unregister_driver(&nm256_pci_driver);
}
module_init(do_init_nm256);
module_exit(cleanup_nm256);
/*
* Local variables:
* c-basic-offset: 4
* End:
*/