WSL2-Linux-Kernel/drivers/crypto/marvell/octeontx2/otx2_cptlf.h

365 строки
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only
* Copyright (C) 2020 Marvell.
*/
#ifndef __OTX2_CPTLF_H
#define __OTX2_CPTLF_H
#include <linux/soc/marvell/octeontx2/asm.h>
#include <mbox.h>
#include <rvu.h>
#include "otx2_cpt_common.h"
#include "otx2_cpt_reqmgr.h"
/*
* CPT instruction and pending queues user requested length in CPT_INST_S msgs
*/
#define OTX2_CPT_USER_REQUESTED_QLEN_MSGS 8200
/*
* CPT instruction queue size passed to HW is in units of 40*CPT_INST_S
* messages.
*/
#define OTX2_CPT_SIZE_DIV40 (OTX2_CPT_USER_REQUESTED_QLEN_MSGS/40)
/*
* CPT instruction and pending queues length in CPT_INST_S messages
*/
#define OTX2_CPT_INST_QLEN_MSGS ((OTX2_CPT_SIZE_DIV40 - 1) * 40)
/* CPT instruction queue length in bytes */
#define OTX2_CPT_INST_QLEN_BYTES (OTX2_CPT_SIZE_DIV40 * 40 * \
OTX2_CPT_INST_SIZE)
/* CPT instruction group queue length in bytes */
#define OTX2_CPT_INST_GRP_QLEN_BYTES (OTX2_CPT_SIZE_DIV40 * 16)
/* CPT FC length in bytes */
#define OTX2_CPT_Q_FC_LEN 128
/* CPT instruction queue alignment */
#define OTX2_CPT_INST_Q_ALIGNMENT 128
/* Mask which selects all engine groups */
#define OTX2_CPT_ALL_ENG_GRPS_MASK 0xFF
/* Maximum LFs supported in OcteonTX2 for CPT */
#define OTX2_CPT_MAX_LFS_NUM 64
/* Queue priority */
#define OTX2_CPT_QUEUE_HI_PRIO 0x1
#define OTX2_CPT_QUEUE_LOW_PRIO 0x0
enum otx2_cptlf_state {
OTX2_CPTLF_IN_RESET,
OTX2_CPTLF_STARTED,
};
struct otx2_cpt_inst_queue {
u8 *vaddr;
u8 *real_vaddr;
dma_addr_t dma_addr;
dma_addr_t real_dma_addr;
u32 size;
};
struct otx2_cptlfs_info;
struct otx2_cptlf_wqe {
struct tasklet_struct work;
struct otx2_cptlfs_info *lfs;
u8 lf_num;
};
struct otx2_cptlf_info {
struct otx2_cptlfs_info *lfs; /* Ptr to cptlfs_info struct */
void __iomem *lmtline; /* Address of LMTLINE */
void __iomem *ioreg; /* LMTLINE send register */
int msix_offset; /* MSI-X interrupts offset */
cpumask_var_t affinity_mask; /* IRQs affinity mask */
u8 irq_name[OTX2_CPT_LF_MSIX_VECTORS][32];/* Interrupts name */
u8 is_irq_reg[OTX2_CPT_LF_MSIX_VECTORS]; /* Is interrupt registered */
u8 slot; /* Slot number of this LF */
struct otx2_cpt_inst_queue iqueue;/* Instruction queue */
struct otx2_cpt_pending_queue pqueue; /* Pending queue */
struct otx2_cptlf_wqe *wqe; /* Tasklet work info */
};
struct cpt_hw_ops {
void (*send_cmd)(union otx2_cpt_inst_s *cptinst, u32 insts_num,
struct otx2_cptlf_info *lf);
u8 (*cpt_get_compcode)(union otx2_cpt_res_s *result);
u8 (*cpt_get_uc_compcode)(union otx2_cpt_res_s *result);
};
struct otx2_cptlfs_info {
/* Registers start address of VF/PF LFs are attached to */
void __iomem *reg_base;
#define LMTLINE_SIZE 128
void __iomem *lmt_base;
struct pci_dev *pdev; /* Device LFs are attached to */
struct otx2_cptlf_info lf[OTX2_CPT_MAX_LFS_NUM];
struct otx2_mbox *mbox;
struct cpt_hw_ops *ops;
u8 are_lfs_attached; /* Whether CPT LFs are attached */
u8 lfs_num; /* Number of CPT LFs */
u8 kcrypto_eng_grp_num; /* Kernel crypto engine group number */
u8 kvf_limits; /* Kernel crypto limits */
atomic_t state; /* LF's state. started/reset */
int blkaddr; /* CPT blkaddr: BLKADDR_CPT0/BLKADDR_CPT1 */
};
static inline void otx2_cpt_free_instruction_queues(
struct otx2_cptlfs_info *lfs)
{
struct otx2_cpt_inst_queue *iq;
int i;
for (i = 0; i < lfs->lfs_num; i++) {
iq = &lfs->lf[i].iqueue;
if (iq->real_vaddr)
dma_free_coherent(&lfs->pdev->dev,
iq->size,
iq->real_vaddr,
iq->real_dma_addr);
iq->real_vaddr = NULL;
iq->vaddr = NULL;
}
}
static inline int otx2_cpt_alloc_instruction_queues(
struct otx2_cptlfs_info *lfs)
{
struct otx2_cpt_inst_queue *iq;
int ret = 0, i;
if (!lfs->lfs_num)
return -EINVAL;
for (i = 0; i < lfs->lfs_num; i++) {
iq = &lfs->lf[i].iqueue;
iq->size = OTX2_CPT_INST_QLEN_BYTES +
OTX2_CPT_Q_FC_LEN +
OTX2_CPT_INST_GRP_QLEN_BYTES +
OTX2_CPT_INST_Q_ALIGNMENT;
iq->real_vaddr = dma_alloc_coherent(&lfs->pdev->dev, iq->size,
&iq->real_dma_addr, GFP_KERNEL);
if (!iq->real_vaddr) {
ret = -ENOMEM;
goto error;
}
iq->vaddr = iq->real_vaddr + OTX2_CPT_INST_GRP_QLEN_BYTES;
iq->dma_addr = iq->real_dma_addr + OTX2_CPT_INST_GRP_QLEN_BYTES;
/* Align pointers */
iq->vaddr = PTR_ALIGN(iq->vaddr, OTX2_CPT_INST_Q_ALIGNMENT);
iq->dma_addr = PTR_ALIGN(iq->dma_addr,
OTX2_CPT_INST_Q_ALIGNMENT);
}
return 0;
error:
otx2_cpt_free_instruction_queues(lfs);
return ret;
}
static inline void otx2_cptlf_set_iqueues_base_addr(
struct otx2_cptlfs_info *lfs)
{
union otx2_cptx_lf_q_base lf_q_base;
int slot;
for (slot = 0; slot < lfs->lfs_num; slot++) {
lf_q_base.u = lfs->lf[slot].iqueue.dma_addr;
otx2_cpt_write64(lfs->reg_base, BLKADDR_CPT0, slot,
OTX2_CPT_LF_Q_BASE, lf_q_base.u);
}
}
static inline void otx2_cptlf_do_set_iqueue_size(struct otx2_cptlf_info *lf)
{
union otx2_cptx_lf_q_size lf_q_size = { .u = 0x0 };
lf_q_size.s.size_div40 = OTX2_CPT_SIZE_DIV40;
otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_Q_SIZE, lf_q_size.u);
}
static inline void otx2_cptlf_set_iqueues_size(struct otx2_cptlfs_info *lfs)
{
int slot;
for (slot = 0; slot < lfs->lfs_num; slot++)
otx2_cptlf_do_set_iqueue_size(&lfs->lf[slot]);
}
static inline void otx2_cptlf_do_disable_iqueue(struct otx2_cptlf_info *lf)
{
union otx2_cptx_lf_ctl lf_ctl = { .u = 0x0 };
union otx2_cptx_lf_inprog lf_inprog;
int timeout = 20;
/* Disable instructions enqueuing */
otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_CTL, lf_ctl.u);
/* Wait for instruction queue to become empty */
do {
lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0,
lf->slot, OTX2_CPT_LF_INPROG);
if (!lf_inprog.s.inflight)
break;
usleep_range(10000, 20000);
if (timeout-- < 0) {
dev_err(&lf->lfs->pdev->dev,
"Error LF %d is still busy.\n", lf->slot);
break;
}
} while (1);
/*
* Disable executions in the LF's queue,
* the queue should be empty at this point
*/
lf_inprog.s.eena = 0x0;
otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_INPROG, lf_inprog.u);
}
static inline void otx2_cptlf_disable_iqueues(struct otx2_cptlfs_info *lfs)
{
int slot;
for (slot = 0; slot < lfs->lfs_num; slot++)
otx2_cptlf_do_disable_iqueue(&lfs->lf[slot]);
}
static inline void otx2_cptlf_set_iqueue_enq(struct otx2_cptlf_info *lf,
bool enable)
{
union otx2_cptx_lf_ctl lf_ctl;
lf_ctl.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_CTL);
/* Set iqueue's enqueuing */
lf_ctl.s.ena = enable ? 0x1 : 0x0;
otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_CTL, lf_ctl.u);
}
static inline void otx2_cptlf_enable_iqueue_enq(struct otx2_cptlf_info *lf)
{
otx2_cptlf_set_iqueue_enq(lf, true);
}
static inline void otx2_cptlf_set_iqueue_exec(struct otx2_cptlf_info *lf,
bool enable)
{
union otx2_cptx_lf_inprog lf_inprog;
lf_inprog.u = otx2_cpt_read64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_INPROG);
/* Set iqueue's execution */
lf_inprog.s.eena = enable ? 0x1 : 0x0;
otx2_cpt_write64(lf->lfs->reg_base, BLKADDR_CPT0, lf->slot,
OTX2_CPT_LF_INPROG, lf_inprog.u);
}
static inline void otx2_cptlf_enable_iqueue_exec(struct otx2_cptlf_info *lf)
{
otx2_cptlf_set_iqueue_exec(lf, true);
}
static inline void otx2_cptlf_disable_iqueue_exec(struct otx2_cptlf_info *lf)
{
otx2_cptlf_set_iqueue_exec(lf, false);
}
static inline void otx2_cptlf_enable_iqueues(struct otx2_cptlfs_info *lfs)
{
int slot;
for (slot = 0; slot < lfs->lfs_num; slot++) {
otx2_cptlf_enable_iqueue_exec(&lfs->lf[slot]);
otx2_cptlf_enable_iqueue_enq(&lfs->lf[slot]);
}
}
static inline void otx2_cpt_fill_inst(union otx2_cpt_inst_s *cptinst,
struct otx2_cpt_iq_command *iq_cmd,
u64 comp_baddr)
{
cptinst->u[0] = 0x0;
cptinst->s.doneint = true;
cptinst->s.res_addr = comp_baddr;
cptinst->u[2] = 0x0;
cptinst->u[3] = 0x0;
cptinst->s.ei0 = iq_cmd->cmd.u;
cptinst->s.ei1 = iq_cmd->dptr;
cptinst->s.ei2 = iq_cmd->rptr;
cptinst->s.ei3 = iq_cmd->cptr.u;
}
/*
* On OcteonTX2 platform the parameter insts_num is used as a count of
* instructions to be enqueued. The valid values for insts_num are:
* 1 - 1 CPT instruction will be enqueued during LMTST operation
* 2 - 2 CPT instructions will be enqueued during LMTST operation
*/
static inline void otx2_cpt_send_cmd(union otx2_cpt_inst_s *cptinst,
u32 insts_num, struct otx2_cptlf_info *lf)
{
void __iomem *lmtline = lf->lmtline;
long ret;
/*
* Make sure memory areas pointed in CPT_INST_S
* are flushed before the instruction is sent to CPT
*/
dma_wmb();
do {
/* Copy CPT command to LMTLINE */
memcpy_toio(lmtline, cptinst, insts_num * OTX2_CPT_INST_SIZE);
/*
* LDEOR initiates atomic transfer to I/O device
* The following will cause the LMTST to fail (the LDEOR
* returns zero):
* - No stores have been performed to the LMTLINE since it was
* last invalidated.
* - The bytes which have been stored to LMTLINE since it was
* last invalidated form a pattern that is non-contiguous, does
* not start at byte 0, or does not end on a 8-byte boundary.
* (i.e.comprises a formation of other than 1–16 8-byte
* words.)
*
* These rules are designed such that an operating system
* context switch or hypervisor guest switch need have no
* knowledge of the LMTST operations; the switch code does not
* need to store to LMTCANCEL. Also note as LMTLINE data cannot
* be read, there is no information leakage between processes.
*/
ret = otx2_lmt_flush(lf->ioreg);
} while (!ret);
}
static inline bool otx2_cptlf_started(struct otx2_cptlfs_info *lfs)
{
return atomic_read(&lfs->state) == OTX2_CPTLF_STARTED;
}
int otx2_cptlf_init(struct otx2_cptlfs_info *lfs, u8 eng_grp_msk, int pri,
int lfs_num);
void otx2_cptlf_shutdown(struct otx2_cptlfs_info *lfs);
int otx2_cptlf_register_interrupts(struct otx2_cptlfs_info *lfs);
void otx2_cptlf_unregister_interrupts(struct otx2_cptlfs_info *lfs);
void otx2_cptlf_free_irqs_affinity(struct otx2_cptlfs_info *lfs);
int otx2_cptlf_set_irqs_affinity(struct otx2_cptlfs_info *lfs);
#endif /* __OTX2_CPTLF_H */