WSL2-Linux-Kernel/drivers/mtd/devices/doc2001.c

842 строки
24 KiB
C

/*
* Linux driver for Disk-On-Chip Millennium
* (c) 1999 Machine Vision Holdings, Inc.
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/doc2000.h>
/* #define ECC_DEBUG */
/* I have no idea why some DoC chips can not use memcop_form|to_io().
* This may be due to the different revisions of the ASIC controller built-in or
* simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
* this:*/
#undef USE_MEMCPY
static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf);
static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf);
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
struct mtd_oob_ops *ops);
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
struct mtd_oob_ops *ops);
static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
static struct mtd_info *docmillist = NULL;
/* Perform the required delay cycles by reading from the NOP register */
static void DoC_Delay(void __iomem * docptr, unsigned short cycles)
{
volatile char dummy;
int i;
for (i = 0; i < cycles; i++)
dummy = ReadDOC(docptr, NOP);
}
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
static int _DoC_WaitReady(void __iomem * docptr)
{
unsigned short c = 0xffff;
DEBUG(MTD_DEBUG_LEVEL3,
"_DoC_WaitReady called for out-of-line wait\n");
/* Out-of-line routine to wait for chip response */
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B) && --c)
;
if (c == 0)
DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
return (c == 0);
}
static inline int DoC_WaitReady(void __iomem * docptr)
{
/* This is inline, to optimise the common case, where it's ready instantly */
int ret = 0;
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
see Software Requirement 11.4 item 2. */
DoC_Delay(docptr, 4);
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
/* Call the out-of-line routine to wait */
ret = _DoC_WaitReady(docptr);
/* issue 2 read from NOP register after reading from CDSNControl register
see Software Requirement 11.4 item 2. */
DoC_Delay(docptr, 2);
return ret;
}
/* DoC_Command: Send a flash command to the flash chip through the CDSN IO register
with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static void DoC_Command(void __iomem * docptr, unsigned char command,
unsigned char xtraflags)
{
/* Assert the CLE (Command Latch Enable) line to the flash chip */
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
/* Send the command */
WriteDOC(command, docptr, Mil_CDSN_IO);
WriteDOC(0x00, docptr, WritePipeTerm);
/* Lower the CLE line */
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
}
/* DoC_Address: Set the current address for the flash chip through the CDSN IO register
with the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
static inline void DoC_Address(void __iomem * docptr, int numbytes, unsigned long ofs,
unsigned char xtraflags1, unsigned char xtraflags2)
{
/* Assert the ALE (Address Latch Enable) line to the flash chip */
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
/* Send the address */
switch (numbytes)
{
case 1:
/* Send single byte, bits 0-7. */
WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
WriteDOC(0x00, docptr, WritePipeTerm);
break;
case 2:
/* Send bits 9-16 followed by 17-23 */
WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
WriteDOC(0x00, docptr, WritePipeTerm);
break;
case 3:
/* Send 0-7, 9-16, then 17-23 */
WriteDOC(ofs & 0xff, docptr, Mil_CDSN_IO);
WriteDOC((ofs >> 9) & 0xff, docptr, Mil_CDSN_IO);
WriteDOC((ofs >> 17) & 0xff, docptr, Mil_CDSN_IO);
WriteDOC(0x00, docptr, WritePipeTerm);
break;
default:
return;
}
/* Lower the ALE line */
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, CDSNControl);
DoC_Delay(docptr, 4);
}
/* DoC_SelectChip: Select a given flash chip within the current floor */
static int DoC_SelectChip(void __iomem * docptr, int chip)
{
/* Select the individual flash chip requested */
WriteDOC(chip, docptr, CDSNDeviceSelect);
DoC_Delay(docptr, 4);
/* Wait for it to be ready */
return DoC_WaitReady(docptr);
}
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
static int DoC_SelectFloor(void __iomem * docptr, int floor)
{
/* Select the floor (bank) of chips required */
WriteDOC(floor, docptr, FloorSelect);
/* Wait for the chip to be ready */
return DoC_WaitReady(docptr);
}
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
{
int mfr, id, i, j;
volatile char dummy;
/* Page in the required floor/chip
FIXME: is this supported by Millennium ?? */
DoC_SelectFloor(doc->virtadr, floor);
DoC_SelectChip(doc->virtadr, chip);
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(doc->virtadr, NAND_CMD_RESET, CDSN_CTRL_WP);
DoC_WaitReady(doc->virtadr);
/* Read the NAND chip ID: 1. Send ReadID command */
DoC_Command(doc->virtadr, NAND_CMD_READID, CDSN_CTRL_WP);
/* Read the NAND chip ID: 2. Send address byte zero */
DoC_Address(doc->virtadr, 1, 0x00, CDSN_CTRL_WP, 0x00);
/* Read the manufacturer and device id codes of the flash device through
CDSN IO register see Software Requirement 11.4 item 5.*/
dummy = ReadDOC(doc->virtadr, ReadPipeInit);
DoC_Delay(doc->virtadr, 2);
mfr = ReadDOC(doc->virtadr, Mil_CDSN_IO);
DoC_Delay(doc->virtadr, 2);
id = ReadDOC(doc->virtadr, Mil_CDSN_IO);
dummy = ReadDOC(doc->virtadr, LastDataRead);
/* No response - return failure */
if (mfr == 0xff || mfr == 0)
return 0;
/* FIXME: to deal with multi-flash on multi-Millennium case more carefully */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
if ( id == nand_flash_ids[i].id) {
/* Try to identify manufacturer */
for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
if (nand_manuf_ids[j].id == mfr)
break;
}
printk(KERN_INFO "Flash chip found: Manufacturer ID: %2.2X, "
"Chip ID: %2.2X (%s:%s)\n",
mfr, id, nand_manuf_ids[j].name, nand_flash_ids[i].name);
doc->mfr = mfr;
doc->id = id;
doc->chipshift = ffs((nand_flash_ids[i].chipsize << 20)) - 1;
break;
}
}
if (nand_flash_ids[i].name == NULL)
return 0;
else
return 1;
}
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
static void DoC_ScanChips(struct DiskOnChip *this)
{
int floor, chip;
int numchips[MAX_FLOORS_MIL];
int ret;
this->numchips = 0;
this->mfr = 0;
this->id = 0;
/* For each floor, find the number of valid chips it contains */
for (floor = 0,ret = 1; floor < MAX_FLOORS_MIL; floor++) {
numchips[floor] = 0;
for (chip = 0; chip < MAX_CHIPS_MIL && ret != 0; chip++) {
ret = DoC_IdentChip(this, floor, chip);
if (ret) {
numchips[floor]++;
this->numchips++;
}
}
}
/* If there are none at all that we recognise, bail */
if (!this->numchips) {
printk("No flash chips recognised.\n");
return;
}
/* Allocate an array to hold the information for each chip */
this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
if (!this->chips){
printk("No memory for allocating chip info structures\n");
return;
}
/* Fill out the chip array with {floor, chipno} for each
* detected chip in the device. */
for (floor = 0, ret = 0; floor < MAX_FLOORS_MIL; floor++) {
for (chip = 0 ; chip < numchips[floor] ; chip++) {
this->chips[ret].floor = floor;
this->chips[ret].chip = chip;
this->chips[ret].curadr = 0;
this->chips[ret].curmode = 0x50;
ret++;
}
}
/* Calculate and print the total size of the device */
this->totlen = this->numchips * (1 << this->chipshift);
printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
this->numchips ,this->totlen >> 20);
}
static int DoCMil_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
{
int tmp1, tmp2, retval;
if (doc1->physadr == doc2->physadr)
return 1;
/* Use the alias resolution register which was set aside for this
* purpose. If it's value is the same on both chips, they might
* be the same chip, and we write to one and check for a change in
* the other. It's unclear if this register is usuable in the
* DoC 2000 (it's in the Millenium docs), but it seems to work. */
tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
if (tmp1 != tmp2)
return 0;
WriteDOC((tmp1+1) % 0xff, doc1->virtadr, AliasResolution);
tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
if (tmp2 == (tmp1+1) % 0xff)
retval = 1;
else
retval = 0;
/* Restore register contents. May not be necessary, but do it just to
* be safe. */
WriteDOC(tmp1, doc1->virtadr, AliasResolution);
return retval;
}
/* This routine is found from the docprobe code by symbol_get(),
* which will bump the use count of this module. */
void DoCMil_init(struct mtd_info *mtd)
{
struct DiskOnChip *this = mtd->priv;
struct DiskOnChip *old = NULL;
/* We must avoid being called twice for the same device. */
if (docmillist)
old = docmillist->priv;
while (old) {
if (DoCMil_is_alias(this, old)) {
printk(KERN_NOTICE "Ignoring DiskOnChip Millennium at "
"0x%lX - already configured\n", this->physadr);
iounmap(this->virtadr);
kfree(mtd);
return;
}
if (old->nextdoc)
old = old->nextdoc->priv;
else
old = NULL;
}
mtd->name = "DiskOnChip Millennium";
printk(KERN_NOTICE "DiskOnChip Millennium found at address 0x%lX\n",
this->physadr);
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH;
mtd->size = 0;
/* FIXME: erase size is not always 8KiB */
mtd->erasesize = 0x2000;
mtd->writesize = 512;
mtd->oobsize = 16;
mtd->owner = THIS_MODULE;
mtd->erase = doc_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = doc_read;
mtd->write = doc_write;
mtd->read_oob = doc_read_oob;
mtd->write_oob = doc_write_oob;
mtd->sync = NULL;
this->totlen = 0;
this->numchips = 0;
this->curfloor = -1;
this->curchip = -1;
/* Ident all the chips present. */
DoC_ScanChips(this);
if (!this->totlen) {
kfree(mtd);
iounmap(this->virtadr);
} else {
this->nextdoc = docmillist;
docmillist = mtd;
mtd->size = this->totlen;
add_mtd_device(mtd);
return;
}
}
EXPORT_SYMBOL_GPL(DoCMil_init);
static int doc_read (struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
int i, ret;
volatile char dummy;
unsigned char syndrome[6], eccbuf[6];
struct DiskOnChip *this = mtd->priv;
void __iomem *docptr = this->virtadr;
struct Nand *mychip = &this->chips[from >> (this->chipshift)];
/* Don't allow read past end of device */
if (from >= this->totlen)
return -EINVAL;
/* Don't allow a single read to cross a 512-byte block boundary */
if (from + len > ((from | 0x1ff) + 1))
len = ((from | 0x1ff) + 1) - from;
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* issue the Read0 or Read1 command depend on which half of the page
we are accessing. Polling the Flash Ready bit after issue 3 bytes
address in Sequence Read Mode, see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, (from >> 8) & 1, CDSN_CTRL_WP);
DoC_Address(docptr, 3, from, CDSN_CTRL_WP, 0x00);
DoC_WaitReady(docptr);
/* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_EN, docptr, ECCConf);
/* Read the data via the internal pipeline through CDSN IO register,
see Pipelined Read Operations 11.3 */
dummy = ReadDOC(docptr, ReadPipeInit);
#ifndef USE_MEMCPY
for (i = 0; i < len-1; i++) {
/* N.B. you have to increase the source address in this way or the
ECC logic will not work properly */
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
}
#else
memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
#endif
buf[len - 1] = ReadDOC(docptr, LastDataRead);
/* Let the caller know we completed it */
*retlen = len;
ret = 0;
/* Read the ECC data from Spare Data Area,
see Reed-Solomon EDC/ECC 11.1 */
dummy = ReadDOC(docptr, ReadPipeInit);
#ifndef USE_MEMCPY
for (i = 0; i < 5; i++) {
/* N.B. you have to increase the source address in this way or the
ECC logic will not work properly */
eccbuf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
}
#else
memcpy_fromio(eccbuf, docptr + DoC_Mil_CDSN_IO, 5);
#endif
eccbuf[5] = ReadDOC(docptr, LastDataRead);
/* Flush the pipeline */
dummy = ReadDOC(docptr, ECCConf);
dummy = ReadDOC(docptr, ECCConf);
/* Check the ECC Status */
if (ReadDOC(docptr, ECCConf) & 0x80) {
int nb_errors;
/* There was an ECC error */
#ifdef ECC_DEBUG
printk("DiskOnChip ECC Error: Read at %lx\n", (long)from);
#endif
/* Read the ECC syndrom through the DiskOnChip ECC logic.
These syndrome will be all ZERO when there is no error */
for (i = 0; i < 6; i++) {
syndrome[i] = ReadDOC(docptr, ECCSyndrome0 + i);
}
nb_errors = doc_decode_ecc(buf, syndrome);
#ifdef ECC_DEBUG
printk("ECC Errors corrected: %x\n", nb_errors);
#endif
if (nb_errors < 0) {
/* We return error, but have actually done the read. Not that
this can be told to user-space, via sys_read(), but at least
MTD-aware stuff can know about it by checking *retlen */
ret = -EIO;
}
}
#ifdef PSYCHO_DEBUG
printk("ECC DATA at %lx: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
(long)from, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
eccbuf[4], eccbuf[5]);
#endif
/* disable the ECC engine */
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
return ret;
}
static int doc_write (struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
int i,ret = 0;
char eccbuf[6];
volatile char dummy;
struct DiskOnChip *this = mtd->priv;
void __iomem *docptr = this->virtadr;
struct Nand *mychip = &this->chips[to >> (this->chipshift)];
/* Don't allow write past end of device */
if (to >= this->totlen)
return -EINVAL;
#if 0
/* Don't allow a single write to cross a 512-byte block boundary */
if (to + len > ( (to | 0x1ff) + 1))
len = ((to | 0x1ff) + 1) - to;
#else
/* Don't allow writes which aren't exactly one block */
if (to & 0x1ff || len != 0x200)
return -EINVAL;
#endif
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(docptr, NAND_CMD_RESET, 0x00);
DoC_WaitReady(docptr);
/* Set device to main plane of flash */
DoC_Command(docptr, NAND_CMD_READ0, 0x00);
/* issue the Serial Data In command to initial the Page Program process */
DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
DoC_Address(docptr, 3, to, 0x00, 0x00);
DoC_WaitReady(docptr);
/* init the ECC engine, see Reed-Solomon EDC/ECC 11.1 .*/
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
/* Write the data via the internal pipeline through CDSN IO register,
see Pipelined Write Operations 11.2 */
#ifndef USE_MEMCPY
for (i = 0; i < len; i++) {
/* N.B. you have to increase the source address in this way or the
ECC logic will not work properly */
WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
}
#else
memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
#endif
WriteDOC(0x00, docptr, WritePipeTerm);
/* Write ECC data to flash, the ECC info is generated by the DiskOnChip ECC logic
see Reed-Solomon EDC/ECC 11.1 */
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
WriteDOC(0, docptr, NOP);
/* Read the ECC data through the DiskOnChip ECC logic */
for (i = 0; i < 6; i++) {
eccbuf[i] = ReadDOC(docptr, ECCSyndrome0 + i);
}
/* ignore the ECC engine */
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
#ifndef USE_MEMCPY
/* Write the ECC data to flash */
for (i = 0; i < 6; i++) {
/* N.B. you have to increase the source address in this way or the
ECC logic will not work properly */
WriteDOC(eccbuf[i], docptr, Mil_CDSN_IO + i);
}
#else
memcpy_toio(docptr + DoC_Mil_CDSN_IO, eccbuf, 6);
#endif
/* write the block status BLOCK_USED (0x5555) at the end of ECC data
FIXME: this is only a hack for programming the IPL area for LinuxBIOS
and should be replace with proper codes in user space utilities */
WriteDOC(0x55, docptr, Mil_CDSN_IO);
WriteDOC(0x55, docptr, Mil_CDSN_IO + 1);
WriteDOC(0x00, docptr, WritePipeTerm);
#ifdef PSYCHO_DEBUG
printk("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
eccbuf[4], eccbuf[5]);
#endif
/* Commit the Page Program command and wait for ready
see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
DoC_WaitReady(docptr);
/* Read the status of the flash device through CDSN IO register
see Software Requirement 11.4 item 5.*/
DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
dummy = ReadDOC(docptr, ReadPipeInit);
DoC_Delay(docptr, 2);
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
printk("Error programming flash\n");
/* Error in programming
FIXME: implement Bad Block Replacement (in nftl.c ??) */
*retlen = 0;
ret = -EIO;
}
dummy = ReadDOC(docptr, LastDataRead);
/* Let the caller know we completed it */
*retlen = len;
return ret;
}
static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
struct mtd_oob_ops *ops)
{
#ifndef USE_MEMCPY
int i;
#endif
volatile char dummy;
struct DiskOnChip *this = mtd->priv;
void __iomem *docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
uint8_t *buf = ops->oobbuf;
size_t len = ops->len;
BUG_ON(ops->mode != MTD_OOB_PLACE);
ofs += ops->ooboffs;
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* disable the ECC engine */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
/* issue the Read2 command to set the pointer to the Spare Data Area.
Polling the Flash Ready bit after issue 3 bytes address in
Sequence Read Mode, see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
DoC_Address(docptr, 3, ofs, CDSN_CTRL_WP, 0x00);
DoC_WaitReady(docptr);
/* Read the data out via the internal pipeline through CDSN IO register,
see Pipelined Read Operations 11.3 */
dummy = ReadDOC(docptr, ReadPipeInit);
#ifndef USE_MEMCPY
for (i = 0; i < len-1; i++) {
/* N.B. you have to increase the source address in this way or the
ECC logic will not work properly */
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + i);
}
#else
memcpy_fromio(buf, docptr + DoC_Mil_CDSN_IO, len - 1);
#endif
buf[len - 1] = ReadDOC(docptr, LastDataRead);
ops->retlen = len;
return 0;
}
static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
struct mtd_oob_ops *ops)
{
#ifndef USE_MEMCPY
int i;
#endif
volatile char dummy;
int ret = 0;
struct DiskOnChip *this = mtd->priv;
void __iomem *docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
uint8_t *buf = ops->oobbuf;
size_t len = ops->len;
BUG_ON(ops->mode != MTD_OOB_PLACE);
ofs += ops->ooboffs;
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
/* disable the ECC engine */
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
/* Reset the chip, see Software Requirement 11.4 item 1. */
DoC_Command(docptr, NAND_CMD_RESET, CDSN_CTRL_WP);
DoC_WaitReady(docptr);
/* issue the Read2 command to set the pointer to the Spare Data Area. */
DoC_Command(docptr, NAND_CMD_READOOB, CDSN_CTRL_WP);
/* issue the Serial Data In command to initial the Page Program process */
DoC_Command(docptr, NAND_CMD_SEQIN, 0x00);
DoC_Address(docptr, 3, ofs, 0x00, 0x00);
/* Write the data via the internal pipeline through CDSN IO register,
see Pipelined Write Operations 11.2 */
#ifndef USE_MEMCPY
for (i = 0; i < len; i++) {
/* N.B. you have to increase the source address in this way or the
ECC logic will not work properly */
WriteDOC(buf[i], docptr, Mil_CDSN_IO + i);
}
#else
memcpy_toio(docptr + DoC_Mil_CDSN_IO, buf, len);
#endif
WriteDOC(0x00, docptr, WritePipeTerm);
/* Commit the Page Program command and wait for ready
see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_PAGEPROG, 0x00);
DoC_WaitReady(docptr);
/* Read the status of the flash device through CDSN IO register
see Software Requirement 11.4 item 5.*/
DoC_Command(docptr, NAND_CMD_STATUS, 0x00);
dummy = ReadDOC(docptr, ReadPipeInit);
DoC_Delay(docptr, 2);
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
printk("Error programming oob data\n");
/* FIXME: implement Bad Block Replacement (in nftl.c ??) */
ops->retlen = 0;
ret = -EIO;
}
dummy = ReadDOC(docptr, LastDataRead);
ops->retlen = len;
return ret;
}
int doc_erase (struct mtd_info *mtd, struct erase_info *instr)
{
volatile char dummy;
struct DiskOnChip *this = mtd->priv;
__u32 ofs = instr->addr;
__u32 len = instr->len;
void __iomem *docptr = this->virtadr;
struct Nand *mychip = &this->chips[ofs >> this->chipshift];
if (len != mtd->erasesize)
printk(KERN_WARNING "Erase not right size (%x != %x)n",
len, mtd->erasesize);
/* Find the chip which is to be used and select it */
if (this->curfloor != mychip->floor) {
DoC_SelectFloor(docptr, mychip->floor);
DoC_SelectChip(docptr, mychip->chip);
} else if (this->curchip != mychip->chip) {
DoC_SelectChip(docptr, mychip->chip);
}
this->curfloor = mychip->floor;
this->curchip = mychip->chip;
instr->state = MTD_ERASE_PENDING;
/* issue the Erase Setup command */
DoC_Command(docptr, NAND_CMD_ERASE1, 0x00);
DoC_Address(docptr, 2, ofs, 0x00, 0x00);
/* Commit the Erase Start command and wait for ready
see Software Requirement 11.4 item 1.*/
DoC_Command(docptr, NAND_CMD_ERASE2, 0x00);
DoC_WaitReady(docptr);
instr->state = MTD_ERASING;
/* Read the status of the flash device through CDSN IO register
see Software Requirement 11.4 item 5.
FIXME: it seems that we are not wait long enough, some blocks are not
erased fully */
DoC_Command(docptr, NAND_CMD_STATUS, CDSN_CTRL_WP);
dummy = ReadDOC(docptr, ReadPipeInit);
DoC_Delay(docptr, 2);
if (ReadDOC(docptr, Mil_CDSN_IO) & 1) {
printk("Error Erasing at 0x%x\n", ofs);
/* There was an error
FIXME: implement Bad Block Replacement (in nftl.c ??) */
instr->state = MTD_ERASE_FAILED;
} else
instr->state = MTD_ERASE_DONE;
dummy = ReadDOC(docptr, LastDataRead);
mtd_erase_callback(instr);
return 0;
}
/****************************************************************************
*
* Module stuff
*
****************************************************************************/
static void __exit cleanup_doc2001(void)
{
struct mtd_info *mtd;
struct DiskOnChip *this;
while ((mtd=docmillist)) {
this = mtd->priv;
docmillist = this->nextdoc;
del_mtd_device(mtd);
iounmap(this->virtadr);
kfree(this->chips);
kfree(mtd);
}
}
module_exit(cleanup_doc2001);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
MODULE_DESCRIPTION("Alternative driver for DiskOnChip Millennium");