WSL2-Linux-Kernel/tools/perf/builtin-top.c

1498 строки
36 KiB
C
Исходник Ответственный История

Этот файл содержит невидимые символы Юникода!

Этот файл содержит невидимые символы Юникода, которые могут быть отображены не так, как показано ниже. Если это намеренно, можете спокойно проигнорировать это предупреждение. Используйте кнопку Экранировать, чтобы показать скрытые символы.

/*
* builtin-top.c
*
* Builtin top command: Display a continuously updated profile of
* any workload, CPU or specific PID.
*
* Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
*
* Improvements and fixes by:
*
* Arjan van de Ven <arjan@linux.intel.com>
* Yanmin Zhang <yanmin.zhang@intel.com>
* Wu Fengguang <fengguang.wu@intel.com>
* Mike Galbraith <efault@gmx.de>
* Paul Mackerras <paulus@samba.org>
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "builtin.h"
#include "perf.h"
#include "util/color.h"
#include "util/evsel.h"
#include "util/session.h"
#include "util/symbol.h"
#include "util/thread.h"
#include "util/util.h"
#include <linux/rbtree.h>
#include "util/parse-options.h"
#include "util/parse-events.h"
#include "util/cpumap.h"
#include "util/xyarray.h"
#include "util/debug.h"
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include <inttypes.h>
#include <errno.h>
#include <time.h>
#include <sched.h>
#include <pthread.h>
#include <sys/syscall.h>
#include <sys/ioctl.h>
#include <sys/poll.h>
#include <sys/prctl.h>
#include <sys/wait.h>
#include <sys/uio.h>
#include <sys/mman.h>
#include <linux/unistd.h>
#include <linux/types.h>
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
static bool system_wide = false;
static int default_interval = 0;
static int count_filter = 5;
static int print_entries;
static int target_pid = -1;
static int target_tid = -1;
static struct thread_map *threads;
static bool inherit = false;
static struct cpu_map *cpus;
static int realtime_prio = 0;
static bool group = false;
static unsigned int page_size;
static unsigned int mmap_pages = 16;
static int freq = 1000; /* 1 KHz */
static int delay_secs = 2;
static bool zero = false;
static bool dump_symtab = false;
static bool hide_kernel_symbols = false;
static bool hide_user_symbols = false;
static struct winsize winsize;
/*
* Source
*/
struct source_line {
u64 eip;
unsigned long count[MAX_COUNTERS];
char *line;
struct source_line *next;
};
static const char *sym_filter = NULL;
struct sym_entry *sym_filter_entry = NULL;
struct sym_entry *sym_filter_entry_sched = NULL;
static int sym_pcnt_filter = 5;
static int sym_counter = 0;
static struct perf_evsel *sym_evsel = NULL;
static int display_weighted = -1;
static const char *cpu_list;
/*
* Symbols
*/
struct sym_entry_source {
struct source_line *source;
struct source_line *lines;
struct source_line **lines_tail;
pthread_mutex_t lock;
};
struct sym_entry {
struct rb_node rb_node;
struct list_head node;
unsigned long snap_count;
double weight;
int skip;
u16 name_len;
u8 origin;
struct map *map;
struct sym_entry_source *src;
unsigned long count[0];
};
/*
* Source functions
*/
static inline struct symbol *sym_entry__symbol(struct sym_entry *self)
{
return ((void *)self) + symbol_conf.priv_size;
}
void get_term_dimensions(struct winsize *ws)
{
char *s = getenv("LINES");
if (s != NULL) {
ws->ws_row = atoi(s);
s = getenv("COLUMNS");
if (s != NULL) {
ws->ws_col = atoi(s);
if (ws->ws_row && ws->ws_col)
return;
}
}
#ifdef TIOCGWINSZ
if (ioctl(1, TIOCGWINSZ, ws) == 0 &&
ws->ws_row && ws->ws_col)
return;
#endif
ws->ws_row = 25;
ws->ws_col = 80;
}
static void update_print_entries(struct winsize *ws)
{
print_entries = ws->ws_row;
if (print_entries > 9)
print_entries -= 9;
}
static void sig_winch_handler(int sig __used)
{
get_term_dimensions(&winsize);
update_print_entries(&winsize);
}
static int parse_source(struct sym_entry *syme)
{
struct symbol *sym;
struct sym_entry_source *source;
struct map *map;
FILE *file;
char command[PATH_MAX*2];
const char *path;
u64 len;
if (!syme)
return -1;
sym = sym_entry__symbol(syme);
map = syme->map;
/*
* We can't annotate with just /proc/kallsyms
*/
if (map->dso->origin == DSO__ORIG_KERNEL)
return -1;
if (syme->src == NULL) {
syme->src = zalloc(sizeof(*source));
if (syme->src == NULL)
return -1;
pthread_mutex_init(&syme->src->lock, NULL);
}
source = syme->src;
if (source->lines) {
pthread_mutex_lock(&source->lock);
goto out_assign;
}
path = map->dso->long_name;
len = sym->end - sym->start;
sprintf(command,
"objdump --start-address=%#0*" PRIx64 " --stop-address=%#0*" PRIx64 " -dS %s",
BITS_PER_LONG / 4, map__rip_2objdump(map, sym->start),
BITS_PER_LONG / 4, map__rip_2objdump(map, sym->end), path);
file = popen(command, "r");
if (!file)
return -1;
pthread_mutex_lock(&source->lock);
source->lines_tail = &source->lines;
while (!feof(file)) {
struct source_line *src;
size_t dummy = 0;
char *c, *sep;
src = malloc(sizeof(struct source_line));
assert(src != NULL);
memset(src, 0, sizeof(struct source_line));
if (getline(&src->line, &dummy, file) < 0)
break;
if (!src->line)
break;
c = strchr(src->line, '\n');
if (c)
*c = 0;
src->next = NULL;
*source->lines_tail = src;
source->lines_tail = &src->next;
src->eip = strtoull(src->line, &sep, 16);
if (*sep == ':')
src->eip = map__objdump_2ip(map, src->eip);
else /* this line has no ip info (e.g. source line) */
src->eip = 0;
}
pclose(file);
out_assign:
sym_filter_entry = syme;
pthread_mutex_unlock(&source->lock);
return 0;
}
static void __zero_source_counters(struct sym_entry *syme)
{
int i;
struct source_line *line;
line = syme->src->lines;
while (line) {
for (i = 0; i < nr_counters; i++)
line->count[i] = 0;
line = line->next;
}
}
static void record_precise_ip(struct sym_entry *syme, int counter, u64 ip)
{
struct source_line *line;
if (syme != sym_filter_entry)
return;
if (pthread_mutex_trylock(&syme->src->lock))
return;
if (syme->src == NULL || syme->src->source == NULL)
goto out_unlock;
for (line = syme->src->lines; line; line = line->next) {
/* skip lines without IP info */
if (line->eip == 0)
continue;
if (line->eip == ip) {
line->count[counter]++;
break;
}
if (line->eip > ip)
break;
}
out_unlock:
pthread_mutex_unlock(&syme->src->lock);
}
#define PATTERN_LEN (BITS_PER_LONG / 4 + 2)
static void lookup_sym_source(struct sym_entry *syme)
{
struct symbol *symbol = sym_entry__symbol(syme);
struct source_line *line;
char pattern[PATTERN_LEN + 1];
sprintf(pattern, "%0*" PRIx64 " <", BITS_PER_LONG / 4,
map__rip_2objdump(syme->map, symbol->start));
pthread_mutex_lock(&syme->src->lock);
for (line = syme->src->lines; line; line = line->next) {
if (memcmp(line->line, pattern, PATTERN_LEN) == 0) {
syme->src->source = line;
break;
}
}
pthread_mutex_unlock(&syme->src->lock);
}
static void show_lines(struct source_line *queue, int count, int total)
{
int i;
struct source_line *line;
line = queue;
for (i = 0; i < count; i++) {
float pcnt = 100.0*(float)line->count[sym_counter]/(float)total;
printf("%8li %4.1f%%\t%s\n", line->count[sym_counter], pcnt, line->line);
line = line->next;
}
}
#define TRACE_COUNT 3
static void show_details(struct sym_entry *syme)
{
struct symbol *symbol;
struct source_line *line;
struct source_line *line_queue = NULL;
int displayed = 0;
int line_queue_count = 0, total = 0, more = 0;
if (!syme)
return;
if (!syme->src->source)
lookup_sym_source(syme);
if (!syme->src->source)
return;
symbol = sym_entry__symbol(syme);
printf("Showing %s for %s\n", event_name(sym_evsel), symbol->name);
printf(" Events Pcnt (>=%d%%)\n", sym_pcnt_filter);
pthread_mutex_lock(&syme->src->lock);
line = syme->src->source;
while (line) {
total += line->count[sym_counter];
line = line->next;
}
line = syme->src->source;
while (line) {
float pcnt = 0.0;
if (!line_queue_count)
line_queue = line;
line_queue_count++;
if (line->count[sym_counter])
pcnt = 100.0 * line->count[sym_counter] / (float)total;
if (pcnt >= (float)sym_pcnt_filter) {
if (displayed <= print_entries)
show_lines(line_queue, line_queue_count, total);
else more++;
displayed += line_queue_count;
line_queue_count = 0;
line_queue = NULL;
} else if (line_queue_count > TRACE_COUNT) {
line_queue = line_queue->next;
line_queue_count--;
}
line->count[sym_counter] = zero ? 0 : line->count[sym_counter] * 7 / 8;
line = line->next;
}
pthread_mutex_unlock(&syme->src->lock);
if (more)
printf("%d lines not displayed, maybe increase display entries [e]\n", more);
}
/*
* Symbols will be added here in event__process_sample and will get out
* after decayed.
*/
static LIST_HEAD(active_symbols);
static pthread_mutex_t active_symbols_lock = PTHREAD_MUTEX_INITIALIZER;
/*
* Ordering weight: count-1 * count-2 * ... / count-n
*/
static double sym_weight(const struct sym_entry *sym)
{
double weight = sym->snap_count;
int counter;
if (!display_weighted)
return weight;
for (counter = 1; counter < nr_counters-1; counter++)
weight *= sym->count[counter];
weight /= (sym->count[counter] + 1);
return weight;
}
static long samples;
static long kernel_samples, us_samples;
static long exact_samples;
static long guest_us_samples, guest_kernel_samples;
static const char CONSOLE_CLEAR[] = "";
static void __list_insert_active_sym(struct sym_entry *syme)
{
list_add(&syme->node, &active_symbols);
}
static void list_remove_active_sym(struct sym_entry *syme)
{
pthread_mutex_lock(&active_symbols_lock);
list_del_init(&syme->node);
pthread_mutex_unlock(&active_symbols_lock);
}
static void rb_insert_active_sym(struct rb_root *tree, struct sym_entry *se)
{
struct rb_node **p = &tree->rb_node;
struct rb_node *parent = NULL;
struct sym_entry *iter;
while (*p != NULL) {
parent = *p;
iter = rb_entry(parent, struct sym_entry, rb_node);
if (se->weight > iter->weight)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&se->rb_node, parent, p);
rb_insert_color(&se->rb_node, tree);
}
static void print_sym_table(void)
{
int printed = 0, j;
struct perf_evsel *counter;
int snap = !display_weighted ? sym_counter : 0;
float samples_per_sec = samples/delay_secs;
float ksamples_per_sec = kernel_samples/delay_secs;
float us_samples_per_sec = (us_samples)/delay_secs;
float guest_kernel_samples_per_sec = (guest_kernel_samples)/delay_secs;
float guest_us_samples_per_sec = (guest_us_samples)/delay_secs;
float esamples_percent = (100.0*exact_samples)/samples;
float sum_ksamples = 0.0;
struct sym_entry *syme, *n;
struct rb_root tmp = RB_ROOT;
struct rb_node *nd;
int sym_width = 0, dso_width = 0, dso_short_width = 0;
const int win_width = winsize.ws_col - 1;
samples = us_samples = kernel_samples = exact_samples = 0;
guest_kernel_samples = guest_us_samples = 0;
/* Sort the active symbols */
pthread_mutex_lock(&active_symbols_lock);
syme = list_entry(active_symbols.next, struct sym_entry, node);
pthread_mutex_unlock(&active_symbols_lock);
list_for_each_entry_safe_from(syme, n, &active_symbols, node) {
syme->snap_count = syme->count[snap];
if (syme->snap_count != 0) {
if ((hide_user_symbols &&
syme->origin == PERF_RECORD_MISC_USER) ||
(hide_kernel_symbols &&
syme->origin == PERF_RECORD_MISC_KERNEL)) {
list_remove_active_sym(syme);
continue;
}
syme->weight = sym_weight(syme);
rb_insert_active_sym(&tmp, syme);
sum_ksamples += syme->snap_count;
for (j = 0; j < nr_counters; j++)
syme->count[j] = zero ? 0 : syme->count[j] * 7 / 8;
} else
list_remove_active_sym(syme);
}
puts(CONSOLE_CLEAR);
printf("%-*.*s\n", win_width, win_width, graph_dotted_line);
if (!perf_guest) {
printf(" PerfTop:%8.0f irqs/sec kernel:%4.1f%%"
" exact: %4.1f%% [",
samples_per_sec,
100.0 - (100.0 * ((samples_per_sec - ksamples_per_sec) /
samples_per_sec)),
esamples_percent);
} else {
printf(" PerfTop:%8.0f irqs/sec kernel:%4.1f%% us:%4.1f%%"
" guest kernel:%4.1f%% guest us:%4.1f%%"
" exact: %4.1f%% [",
samples_per_sec,
100.0 - (100.0 * ((samples_per_sec-ksamples_per_sec) /
samples_per_sec)),
100.0 - (100.0 * ((samples_per_sec-us_samples_per_sec) /
samples_per_sec)),
100.0 - (100.0 * ((samples_per_sec -
guest_kernel_samples_per_sec) /
samples_per_sec)),
100.0 - (100.0 * ((samples_per_sec -
guest_us_samples_per_sec) /
samples_per_sec)),
esamples_percent);
}
if (nr_counters == 1 || !display_weighted) {
struct perf_evsel *first;
first = list_entry(evsel_list.next, struct perf_evsel, node);
printf("%" PRIu64, (uint64_t)first->attr.sample_period);
if (freq)
printf("Hz ");
else
printf(" ");
}
if (!display_weighted)
printf("%s", event_name(sym_evsel));
else list_for_each_entry(counter, &evsel_list, node) {
if (counter->idx)
printf("/");
printf("%s", event_name(counter));
}
printf( "], ");
if (target_pid != -1)
printf(" (target_pid: %d", target_pid);
else if (target_tid != -1)
printf(" (target_tid: %d", target_tid);
else
printf(" (all");
if (cpu_list)
printf(", CPU%s: %s)\n", cpus->nr > 1 ? "s" : "", cpu_list);
else {
if (target_tid != -1)
printf(")\n");
else
printf(", %d CPU%s)\n", cpus->nr, cpus->nr > 1 ? "s" : "");
}
printf("%-*.*s\n", win_width, win_width, graph_dotted_line);
if (sym_filter_entry) {
show_details(sym_filter_entry);
return;
}
/*
* Find the longest symbol name that will be displayed
*/
for (nd = rb_first(&tmp); nd; nd = rb_next(nd)) {
syme = rb_entry(nd, struct sym_entry, rb_node);
if (++printed > print_entries ||
(int)syme->snap_count < count_filter)
continue;
if (syme->map->dso->long_name_len > dso_width)
dso_width = syme->map->dso->long_name_len;
if (syme->map->dso->short_name_len > dso_short_width)
dso_short_width = syme->map->dso->short_name_len;
if (syme->name_len > sym_width)
sym_width = syme->name_len;
}
printed = 0;
if (sym_width + dso_width > winsize.ws_col - 29) {
dso_width = dso_short_width;
if (sym_width + dso_width > winsize.ws_col - 29)
sym_width = winsize.ws_col - dso_width - 29;
}
putchar('\n');
if (nr_counters == 1)
printf(" samples pcnt");
else
printf(" weight samples pcnt");
if (verbose)
printf(" RIP ");
printf(" %-*.*s DSO\n", sym_width, sym_width, "function");
printf(" %s _______ _____",
nr_counters == 1 ? " " : "______");
if (verbose)
printf(" ________________");
printf(" %-*.*s", sym_width, sym_width, graph_line);
printf(" %-*.*s", dso_width, dso_width, graph_line);
puts("\n");
for (nd = rb_first(&tmp); nd; nd = rb_next(nd)) {
struct symbol *sym;
double pcnt;
syme = rb_entry(nd, struct sym_entry, rb_node);
sym = sym_entry__symbol(syme);
if (++printed > print_entries || (int)syme->snap_count < count_filter)
continue;
pcnt = 100.0 - (100.0 * ((sum_ksamples - syme->snap_count) /
sum_ksamples));
if (nr_counters == 1 || !display_weighted)
printf("%20.2f ", syme->weight);
else
printf("%9.1f %10ld ", syme->weight, syme->snap_count);
percent_color_fprintf(stdout, "%4.1f%%", pcnt);
if (verbose)
printf(" %016" PRIx64, sym->start);
printf(" %-*.*s", sym_width, sym_width, sym->name);
printf(" %-*.*s\n", dso_width, dso_width,
dso_width >= syme->map->dso->long_name_len ?
syme->map->dso->long_name :
syme->map->dso->short_name);
}
}
static void prompt_integer(int *target, const char *msg)
{
char *buf = malloc(0), *p;
size_t dummy = 0;
int tmp;
fprintf(stdout, "\n%s: ", msg);
if (getline(&buf, &dummy, stdin) < 0)
return;
p = strchr(buf, '\n');
if (p)
*p = 0;
p = buf;
while(*p) {
if (!isdigit(*p))
goto out_free;
p++;
}
tmp = strtoul(buf, NULL, 10);
*target = tmp;
out_free:
free(buf);
}
static void prompt_percent(int *target, const char *msg)
{
int tmp = 0;
prompt_integer(&tmp, msg);
if (tmp >= 0 && tmp <= 100)
*target = tmp;
}
static void prompt_symbol(struct sym_entry **target, const char *msg)
{
char *buf = malloc(0), *p;
struct sym_entry *syme = *target, *n, *found = NULL;
size_t dummy = 0;
/* zero counters of active symbol */
if (syme) {
pthread_mutex_lock(&syme->src->lock);
__zero_source_counters(syme);
*target = NULL;
pthread_mutex_unlock(&syme->src->lock);
}
fprintf(stdout, "\n%s: ", msg);
if (getline(&buf, &dummy, stdin) < 0)
goto out_free;
p = strchr(buf, '\n');
if (p)
*p = 0;
pthread_mutex_lock(&active_symbols_lock);
syme = list_entry(active_symbols.next, struct sym_entry, node);
pthread_mutex_unlock(&active_symbols_lock);
list_for_each_entry_safe_from(syme, n, &active_symbols, node) {
struct symbol *sym = sym_entry__symbol(syme);
if (!strcmp(buf, sym->name)) {
found = syme;
break;
}
}
if (!found) {
fprintf(stderr, "Sorry, %s is not active.\n", buf);
sleep(1);
return;
} else
parse_source(found);
out_free:
free(buf);
}
static void print_mapped_keys(void)
{
char *name = NULL;
if (sym_filter_entry) {
struct symbol *sym = sym_entry__symbol(sym_filter_entry);
name = sym->name;
}
fprintf(stdout, "\nMapped keys:\n");
fprintf(stdout, "\t[d] display refresh delay. \t(%d)\n", delay_secs);
fprintf(stdout, "\t[e] display entries (lines). \t(%d)\n", print_entries);
if (nr_counters > 1)
fprintf(stdout, "\t[E] active event counter. \t(%s)\n", event_name(sym_evsel));
fprintf(stdout, "\t[f] profile display filter (count). \t(%d)\n", count_filter);
fprintf(stdout, "\t[F] annotate display filter (percent). \t(%d%%)\n", sym_pcnt_filter);
fprintf(stdout, "\t[s] annotate symbol. \t(%s)\n", name?: "NULL");
fprintf(stdout, "\t[S] stop annotation.\n");
if (nr_counters > 1)
fprintf(stdout, "\t[w] toggle display weighted/count[E]r. \t(%d)\n", display_weighted ? 1 : 0);
fprintf(stdout,
"\t[K] hide kernel_symbols symbols. \t(%s)\n",
hide_kernel_symbols ? "yes" : "no");
fprintf(stdout,
"\t[U] hide user symbols. \t(%s)\n",
hide_user_symbols ? "yes" : "no");
fprintf(stdout, "\t[z] toggle sample zeroing. \t(%d)\n", zero ? 1 : 0);
fprintf(stdout, "\t[qQ] quit.\n");
}
static int key_mapped(int c)
{
switch (c) {
case 'd':
case 'e':
case 'f':
case 'z':
case 'q':
case 'Q':
case 'K':
case 'U':
case 'F':
case 's':
case 'S':
return 1;
case 'E':
case 'w':
return nr_counters > 1 ? 1 : 0;
default:
break;
}
return 0;
}
static void handle_keypress(struct perf_session *session, int c)
{
if (!key_mapped(c)) {
struct pollfd stdin_poll = { .fd = 0, .events = POLLIN };
struct termios tc, save;
print_mapped_keys();
fprintf(stdout, "\nEnter selection, or unmapped key to continue: ");
fflush(stdout);
tcgetattr(0, &save);
tc = save;
tc.c_lflag &= ~(ICANON | ECHO);
tc.c_cc[VMIN] = 0;
tc.c_cc[VTIME] = 0;
tcsetattr(0, TCSANOW, &tc);
poll(&stdin_poll, 1, -1);
c = getc(stdin);
tcsetattr(0, TCSAFLUSH, &save);
if (!key_mapped(c))
return;
}
switch (c) {
case 'd':
prompt_integer(&delay_secs, "Enter display delay");
if (delay_secs < 1)
delay_secs = 1;
break;
case 'e':
prompt_integer(&print_entries, "Enter display entries (lines)");
if (print_entries == 0) {
sig_winch_handler(SIGWINCH);
signal(SIGWINCH, sig_winch_handler);
} else
signal(SIGWINCH, SIG_DFL);
break;
case 'E':
if (nr_counters > 1) {
fprintf(stderr, "\nAvailable events:");
list_for_each_entry(sym_evsel, &evsel_list, node)
fprintf(stderr, "\n\t%d %s", sym_evsel->idx, event_name(sym_evsel));
prompt_integer(&sym_counter, "Enter details event counter");
if (sym_counter >= nr_counters) {
sym_evsel = list_entry(evsel_list.next, struct perf_evsel, node);
sym_counter = 0;
fprintf(stderr, "Sorry, no such event, using %s.\n", event_name(sym_evsel));
sleep(1);
break;
}
list_for_each_entry(sym_evsel, &evsel_list, node)
if (sym_evsel->idx == sym_counter)
break;
} else sym_counter = 0;
break;
case 'f':
prompt_integer(&count_filter, "Enter display event count filter");
break;
case 'F':
prompt_percent(&sym_pcnt_filter, "Enter details display event filter (percent)");
break;
case 'K':
hide_kernel_symbols = !hide_kernel_symbols;
break;
case 'q':
case 'Q':
printf("exiting.\n");
if (dump_symtab)
perf_session__fprintf_dsos(session, stderr);
exit(0);
case 's':
prompt_symbol(&sym_filter_entry, "Enter details symbol");
break;
case 'S':
if (!sym_filter_entry)
break;
else {
struct sym_entry *syme = sym_filter_entry;
pthread_mutex_lock(&syme->src->lock);
sym_filter_entry = NULL;
__zero_source_counters(syme);
pthread_mutex_unlock(&syme->src->lock);
}
break;
case 'U':
hide_user_symbols = !hide_user_symbols;
break;
case 'w':
display_weighted = ~display_weighted;
break;
case 'z':
zero = !zero;
break;
default:
break;
}
}
static void *display_thread(void *arg __used)
{
struct pollfd stdin_poll = { .fd = 0, .events = POLLIN };
struct termios tc, save;
int delay_msecs, c;
struct perf_session *session = (struct perf_session *) arg;
tcgetattr(0, &save);
tc = save;
tc.c_lflag &= ~(ICANON | ECHO);
tc.c_cc[VMIN] = 0;
tc.c_cc[VTIME] = 0;
repeat:
delay_msecs = delay_secs * 1000;
tcsetattr(0, TCSANOW, &tc);
/* trash return*/
getc(stdin);
do {
print_sym_table();
} while (!poll(&stdin_poll, 1, delay_msecs) == 1);
c = getc(stdin);
tcsetattr(0, TCSAFLUSH, &save);
handle_keypress(session, c);
goto repeat;
return NULL;
}
/* Tag samples to be skipped. */
static const char *skip_symbols[] = {
"default_idle",
"cpu_idle",
"enter_idle",
"exit_idle",
"mwait_idle",
"mwait_idle_with_hints",
"poll_idle",
"ppc64_runlatch_off",
"pseries_dedicated_idle_sleep",
NULL
};
static int symbol_filter(struct map *map, struct symbol *sym)
{
struct sym_entry *syme;
const char *name = sym->name;
int i;
/*
* ppc64 uses function descriptors and appends a '.' to the
* start of every instruction address. Remove it.
*/
if (name[0] == '.')
name++;
if (!strcmp(name, "_text") ||
!strcmp(name, "_etext") ||
!strcmp(name, "_sinittext") ||
!strncmp("init_module", name, 11) ||
!strncmp("cleanup_module", name, 14) ||
strstr(name, "_text_start") ||
strstr(name, "_text_end"))
return 1;
syme = symbol__priv(sym);
syme->map = map;
syme->src = NULL;
if (!sym_filter_entry && sym_filter && !strcmp(name, sym_filter)) {
/* schedule initial sym_filter_entry setup */
sym_filter_entry_sched = syme;
sym_filter = NULL;
}
for (i = 0; skip_symbols[i]; i++) {
if (!strcmp(skip_symbols[i], name)) {
syme->skip = 1;
break;
}
}
if (!syme->skip)
syme->name_len = strlen(sym->name);
return 0;
}
static void event__process_sample(const event_t *self,
struct sample_data *sample,
struct perf_session *session,
struct perf_evsel *evsel)
{
u64 ip = self->ip.ip;
struct sym_entry *syme;
struct addr_location al;
struct machine *machine;
u8 origin = self->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
++samples;
switch (origin) {
case PERF_RECORD_MISC_USER:
++us_samples;
if (hide_user_symbols)
return;
machine = perf_session__find_host_machine(session);
break;
case PERF_RECORD_MISC_KERNEL:
++kernel_samples;
if (hide_kernel_symbols)
return;
machine = perf_session__find_host_machine(session);
break;
case PERF_RECORD_MISC_GUEST_KERNEL:
++guest_kernel_samples;
machine = perf_session__find_machine(session, self->ip.pid);
break;
case PERF_RECORD_MISC_GUEST_USER:
++guest_us_samples;
/*
* TODO: we don't process guest user from host side
* except simple counting.
*/
return;
default:
return;
}
if (!machine && perf_guest) {
pr_err("Can't find guest [%d]'s kernel information\n",
self->ip.pid);
return;
}
if (self->header.misc & PERF_RECORD_MISC_EXACT_IP)
exact_samples++;
if (event__preprocess_sample(self, session, &al, sample,
symbol_filter) < 0 ||
al.filtered)
return;
if (al.sym == NULL) {
/*
* As we do lazy loading of symtabs we only will know if the
* specified vmlinux file is invalid when we actually have a
* hit in kernel space and then try to load it. So if we get
* here and there are _no_ symbols in the DSO backing the
* kernel map, bail out.
*
* We may never get here, for instance, if we use -K/
* --hide-kernel-symbols, even if the user specifies an
* invalid --vmlinux ;-)
*/
if (al.map == machine->vmlinux_maps[MAP__FUNCTION] &&
RB_EMPTY_ROOT(&al.map->dso->symbols[MAP__FUNCTION])) {
pr_err("The %s file can't be used\n",
symbol_conf.vmlinux_name);
exit(1);
}
return;
}
/* let's see, whether we need to install initial sym_filter_entry */
if (sym_filter_entry_sched) {
sym_filter_entry = sym_filter_entry_sched;
sym_filter_entry_sched = NULL;
if (parse_source(sym_filter_entry) < 0) {
struct symbol *sym = sym_entry__symbol(sym_filter_entry);
pr_err("Can't annotate %s", sym->name);
if (sym_filter_entry->map->dso->origin == DSO__ORIG_KERNEL) {
pr_err(": No vmlinux file was found in the path:\n");
machine__fprintf_vmlinux_path(machine, stderr);
} else
pr_err(".\n");
exit(1);
}
}
syme = symbol__priv(al.sym);
if (!syme->skip) {
syme->count[evsel->idx]++;
syme->origin = origin;
record_precise_ip(syme, evsel->idx, ip);
pthread_mutex_lock(&active_symbols_lock);
if (list_empty(&syme->node) || !syme->node.next)
__list_insert_active_sym(syme);
pthread_mutex_unlock(&active_symbols_lock);
}
}
struct mmap_data {
void *base;
int mask;
unsigned int prev;
};
static int perf_evsel__alloc_mmap_per_thread(struct perf_evsel *evsel,
int ncpus, int nthreads)
{
evsel->priv = xyarray__new(ncpus, nthreads, sizeof(struct mmap_data));
return evsel->priv != NULL ? 0 : -ENOMEM;
}
static void perf_evsel__free_mmap(struct perf_evsel *evsel)
{
xyarray__delete(evsel->priv);
evsel->priv = NULL;
}
static unsigned int mmap_read_head(struct mmap_data *md)
{
struct perf_event_mmap_page *pc = md->base;
int head;
head = pc->data_head;
rmb();
return head;
}
static void perf_session__mmap_read_counter(struct perf_session *self,
struct perf_evsel *evsel,
int cpu, int thread_idx)
{
struct xyarray *mmap_array = evsel->priv;
struct mmap_data *md = xyarray__entry(mmap_array, cpu, thread_idx);
unsigned int head = mmap_read_head(md);
unsigned int old = md->prev;
unsigned char *data = md->base + page_size;
struct sample_data sample;
int diff;
/*
* If we're further behind than half the buffer, there's a chance
* the writer will bite our tail and mess up the samples under us.
*
* If we somehow ended up ahead of the head, we got messed up.
*
* In either case, truncate and restart at head.
*/
diff = head - old;
if (diff > md->mask / 2 || diff < 0) {
fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
/*
* head points to a known good entry, start there.
*/
old = head;
}
for (; old != head;) {
event_t *event = (event_t *)&data[old & md->mask];
event_t event_copy;
size_t size = event->header.size;
/*
* Event straddles the mmap boundary -- header should always
* be inside due to u64 alignment of output.
*/
if ((old & md->mask) + size != ((old + size) & md->mask)) {
unsigned int offset = old;
unsigned int len = min(sizeof(*event), size), cpy;
void *dst = &event_copy;
do {
cpy = min(md->mask + 1 - (offset & md->mask), len);
memcpy(dst, &data[offset & md->mask], cpy);
offset += cpy;
dst += cpy;
len -= cpy;
} while (len);
event = &event_copy;
}
event__parse_sample(event, self, &sample);
if (event->header.type == PERF_RECORD_SAMPLE)
event__process_sample(event, &sample, self, evsel);
else
event__process(event, &sample, self);
old += size;
}
md->prev = old;
}
static struct pollfd *event_array;
static void perf_session__mmap_read(struct perf_session *self)
{
struct perf_evsel *counter;
int i, thread_index;
for (i = 0; i < cpus->nr; i++) {
list_for_each_entry(counter, &evsel_list, node) {
for (thread_index = 0;
thread_index < threads->nr;
thread_index++) {
perf_session__mmap_read_counter(self,
counter, i, thread_index);
}
}
}
}
int nr_poll;
int group_fd;
static void start_counter(int i, struct perf_evsel *evsel)
{
struct xyarray *mmap_array = evsel->priv;
struct mmap_data *mm;
struct perf_event_attr *attr;
int cpu = -1;
int thread_index;
if (target_tid == -1)
cpu = cpus->map[i];
attr = &evsel->attr;
attr->sample_type = PERF_SAMPLE_IP | PERF_SAMPLE_TID;
if (freq) {
attr->sample_type |= PERF_SAMPLE_PERIOD;
attr->freq = 1;
attr->sample_freq = freq;
}
attr->inherit = (cpu < 0) && inherit;
attr->mmap = 1;
for (thread_index = 0; thread_index < threads->nr; thread_index++) {
try_again:
FD(evsel, i, thread_index) = sys_perf_event_open(attr,
threads->map[thread_index], cpu, group_fd, 0);
if (FD(evsel, i, thread_index) < 0) {
int err = errno;
if (err == EPERM || err == EACCES)
die("Permission error - are you root?\n"
"\t Consider tweaking"
" /proc/sys/kernel/perf_event_paranoid.\n");
/*
* If it's cycles then fall back to hrtimer
* based cpu-clock-tick sw counter, which
* is always available even if no PMU support:
*/
if (attr->type == PERF_TYPE_HARDWARE
&& attr->config == PERF_COUNT_HW_CPU_CYCLES) {
if (verbose)
warning(" ... trying to fall back to cpu-clock-ticks\n");
attr->type = PERF_TYPE_SOFTWARE;
attr->config = PERF_COUNT_SW_CPU_CLOCK;
goto try_again;
}
printf("\n");
error("sys_perf_event_open() syscall returned with %d (%s). /bin/dmesg may provide additional information.\n",
FD(evsel, i, thread_index), strerror(err));
die("No CONFIG_PERF_EVENTS=y kernel support configured?\n");
exit(-1);
}
assert(FD(evsel, i, thread_index) >= 0);
fcntl(FD(evsel, i, thread_index), F_SETFL, O_NONBLOCK);
/*
* First counter acts as the group leader:
*/
if (group && group_fd == -1)
group_fd = FD(evsel, i, thread_index);
event_array[nr_poll].fd = FD(evsel, i, thread_index);
event_array[nr_poll].events = POLLIN;
nr_poll++;
mm = xyarray__entry(mmap_array, i, thread_index);
mm->prev = 0;
mm->mask = mmap_pages*page_size - 1;
mm->base = mmap(NULL, (mmap_pages+1)*page_size,
PROT_READ, MAP_SHARED, FD(evsel, i, thread_index), 0);
if (mm->base == MAP_FAILED)
die("failed to mmap with %d (%s)\n", errno, strerror(errno));
}
}
static int __cmd_top(void)
{
pthread_t thread;
struct perf_evsel *counter;
int i, ret;
/*
* FIXME: perf_session__new should allow passing a O_MMAP, so that all this
* mmap reading, etc is encapsulated in it. Use O_WRONLY for now.
*/
struct perf_session *session = perf_session__new(NULL, O_WRONLY, false, false, NULL);
if (session == NULL)
return -ENOMEM;
if (target_tid != -1)
event__synthesize_thread_map(threads, event__process, session);
else
event__synthesize_threads(event__process, session);
for (i = 0; i < cpus->nr; i++) {
group_fd = -1;
list_for_each_entry(counter, &evsel_list, node)
start_counter(i, counter);
}
/* Wait for a minimal set of events before starting the snapshot */
poll(&event_array[0], nr_poll, 100);
perf_session__mmap_read(session);
if (pthread_create(&thread, NULL, display_thread, session)) {
printf("Could not create display thread.\n");
exit(-1);
}
if (realtime_prio) {
struct sched_param param;
param.sched_priority = realtime_prio;
if (sched_setscheduler(0, SCHED_FIFO, &param)) {
printf("Could not set realtime priority.\n");
exit(-1);
}
}
while (1) {
int hits = samples;
perf_session__mmap_read(session);
if (hits == samples)
ret = poll(event_array, nr_poll, 100);
}
return 0;
}
static const char * const top_usage[] = {
"perf top [<options>]",
NULL
};
static const struct option options[] = {
OPT_CALLBACK('e', "event", NULL, "event",
"event selector. use 'perf list' to list available events",
parse_events),
OPT_INTEGER('c', "count", &default_interval,
"event period to sample"),
OPT_INTEGER('p', "pid", &target_pid,
"profile events on existing process id"),
OPT_INTEGER('t', "tid", &target_tid,
"profile events on existing thread id"),
OPT_BOOLEAN('a', "all-cpus", &system_wide,
"system-wide collection from all CPUs"),
OPT_STRING('C', "cpu", &cpu_list, "cpu",
"list of cpus to monitor"),
OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
"file", "vmlinux pathname"),
OPT_BOOLEAN('K', "hide_kernel_symbols", &hide_kernel_symbols,
"hide kernel symbols"),
OPT_UINTEGER('m', "mmap-pages", &mmap_pages, "number of mmap data pages"),
OPT_INTEGER('r', "realtime", &realtime_prio,
"collect data with this RT SCHED_FIFO priority"),
OPT_INTEGER('d', "delay", &delay_secs,
"number of seconds to delay between refreshes"),
OPT_BOOLEAN('D', "dump-symtab", &dump_symtab,
"dump the symbol table used for profiling"),
OPT_INTEGER('f', "count-filter", &count_filter,
"only display functions with more events than this"),
OPT_BOOLEAN('g', "group", &group,
"put the counters into a counter group"),
OPT_BOOLEAN('i', "inherit", &inherit,
"child tasks inherit counters"),
OPT_STRING('s', "sym-annotate", &sym_filter, "symbol name",
"symbol to annotate"),
OPT_BOOLEAN('z', "zero", &zero,
"zero history across updates"),
OPT_INTEGER('F', "freq", &freq,
"profile at this frequency"),
OPT_INTEGER('E', "entries", &print_entries,
"display this many functions"),
OPT_BOOLEAN('U', "hide_user_symbols", &hide_user_symbols,
"hide user symbols"),
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show counter open errors, etc)"),
OPT_END()
};
int cmd_top(int argc, const char **argv, const char *prefix __used)
{
struct perf_evsel *pos;
int status = -ENOMEM;
page_size = sysconf(_SC_PAGE_SIZE);
argc = parse_options(argc, argv, options, top_usage, 0);
if (argc)
usage_with_options(top_usage, options);
if (target_pid != -1)
target_tid = target_pid;
threads = thread_map__new(target_pid, target_tid);
if (threads == NULL) {
pr_err("Problems finding threads of monitor\n");
usage_with_options(top_usage, options);
}
event_array = malloc((sizeof(struct pollfd) *
MAX_NR_CPUS * MAX_COUNTERS * threads->nr));
if (!event_array)
return -ENOMEM;
/* CPU and PID are mutually exclusive */
if (target_tid > 0 && cpu_list) {
printf("WARNING: PID switch overriding CPU\n");
sleep(1);
cpu_list = NULL;
}
if (!nr_counters && perf_evsel_list__create_default() < 0) {
pr_err("Not enough memory for event selector list\n");
return -ENOMEM;
}
if (delay_secs < 1)
delay_secs = 1;
/*
* User specified count overrides default frequency.
*/
if (default_interval)
freq = 0;
else if (freq) {
default_interval = freq;
} else {
fprintf(stderr, "frequency and count are zero, aborting\n");
exit(EXIT_FAILURE);
}
if (target_tid != -1)
cpus = cpu_map__dummy_new();
else
cpus = cpu_map__new(cpu_list);
if (cpus == NULL)
usage_with_options(top_usage, options);
list_for_each_entry(pos, &evsel_list, node) {
if (perf_evsel__alloc_mmap_per_thread(pos, cpus->nr, threads->nr) < 0 ||
perf_evsel__alloc_fd(pos, cpus->nr, threads->nr) < 0)
goto out_free_fd;
/*
* Fill in the ones not specifically initialized via -c:
*/
if (pos->attr.sample_period)
continue;
pos->attr.sample_period = default_interval;
}
sym_evsel = list_entry(evsel_list.next, struct perf_evsel, node);
symbol_conf.priv_size = (sizeof(struct sym_entry) +
(nr_counters + 1) * sizeof(unsigned long));
symbol_conf.try_vmlinux_path = (symbol_conf.vmlinux_name == NULL);
if (symbol__init() < 0)
return -1;
get_term_dimensions(&winsize);
if (print_entries == 0) {
update_print_entries(&winsize);
signal(SIGWINCH, sig_winch_handler);
}
status = __cmd_top();
out_free_fd:
list_for_each_entry(pos, &evsel_list, node)
perf_evsel__free_mmap(pos);
perf_evsel_list__delete();
return status;
}