1819 строки
51 KiB
C
1819 строки
51 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* SCTP kernel implementation
|
|
* (C) Copyright IBM Corp. 2001, 2004
|
|
* Copyright (c) 1999 Cisco, Inc.
|
|
* Copyright (c) 1999-2001 Motorola, Inc.
|
|
*
|
|
* This file is part of the SCTP kernel implementation
|
|
*
|
|
* These functions work with the state functions in sctp_sm_statefuns.c
|
|
* to implement that state operations. These functions implement the
|
|
* steps which require modifying existing data structures.
|
|
*
|
|
* Please send any bug reports or fixes you make to the
|
|
* email address(es):
|
|
* lksctp developers <linux-sctp@vger.kernel.org>
|
|
*
|
|
* Written or modified by:
|
|
* La Monte H.P. Yarroll <piggy@acm.org>
|
|
* Karl Knutson <karl@athena.chicago.il.us>
|
|
* Jon Grimm <jgrimm@austin.ibm.com>
|
|
* Hui Huang <hui.huang@nokia.com>
|
|
* Dajiang Zhang <dajiang.zhang@nokia.com>
|
|
* Daisy Chang <daisyc@us.ibm.com>
|
|
* Sridhar Samudrala <sri@us.ibm.com>
|
|
* Ardelle Fan <ardelle.fan@intel.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/skbuff.h>
|
|
#include <linux/types.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/gfp.h>
|
|
#include <net/sock.h>
|
|
#include <net/sctp/sctp.h>
|
|
#include <net/sctp/sm.h>
|
|
#include <net/sctp/stream_sched.h>
|
|
|
|
static int sctp_cmd_interpreter(enum sctp_event_type event_type,
|
|
union sctp_subtype subtype,
|
|
enum sctp_state state,
|
|
struct sctp_endpoint *ep,
|
|
struct sctp_association *asoc,
|
|
void *event_arg,
|
|
enum sctp_disposition status,
|
|
struct sctp_cmd_seq *commands,
|
|
gfp_t gfp);
|
|
static int sctp_side_effects(enum sctp_event_type event_type,
|
|
union sctp_subtype subtype,
|
|
enum sctp_state state,
|
|
struct sctp_endpoint *ep,
|
|
struct sctp_association **asoc,
|
|
void *event_arg,
|
|
enum sctp_disposition status,
|
|
struct sctp_cmd_seq *commands,
|
|
gfp_t gfp);
|
|
|
|
/********************************************************************
|
|
* Helper functions
|
|
********************************************************************/
|
|
|
|
/* A helper function for delayed processing of INET ECN CE bit. */
|
|
static void sctp_do_ecn_ce_work(struct sctp_association *asoc,
|
|
__u32 lowest_tsn)
|
|
{
|
|
/* Save the TSN away for comparison when we receive CWR */
|
|
|
|
asoc->last_ecne_tsn = lowest_tsn;
|
|
asoc->need_ecne = 1;
|
|
}
|
|
|
|
/* Helper function for delayed processing of SCTP ECNE chunk. */
|
|
/* RFC 2960 Appendix A
|
|
*
|
|
* RFC 2481 details a specific bit for a sender to send in
|
|
* the header of its next outbound TCP segment to indicate to
|
|
* its peer that it has reduced its congestion window. This
|
|
* is termed the CWR bit. For SCTP the same indication is made
|
|
* by including the CWR chunk. This chunk contains one data
|
|
* element, i.e. the TSN number that was sent in the ECNE chunk.
|
|
* This element represents the lowest TSN number in the datagram
|
|
* that was originally marked with the CE bit.
|
|
*/
|
|
static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc,
|
|
__u32 lowest_tsn,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
struct sctp_chunk *repl;
|
|
|
|
/* Our previously transmitted packet ran into some congestion
|
|
* so we should take action by reducing cwnd and ssthresh
|
|
* and then ACK our peer that we we've done so by
|
|
* sending a CWR.
|
|
*/
|
|
|
|
/* First, try to determine if we want to actually lower
|
|
* our cwnd variables. Only lower them if the ECNE looks more
|
|
* recent than the last response.
|
|
*/
|
|
if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
|
|
struct sctp_transport *transport;
|
|
|
|
/* Find which transport's congestion variables
|
|
* need to be adjusted.
|
|
*/
|
|
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
|
|
|
|
/* Update the congestion variables. */
|
|
if (transport)
|
|
sctp_transport_lower_cwnd(transport,
|
|
SCTP_LOWER_CWND_ECNE);
|
|
asoc->last_cwr_tsn = lowest_tsn;
|
|
}
|
|
|
|
/* Always try to quiet the other end. In case of lost CWR,
|
|
* resend last_cwr_tsn.
|
|
*/
|
|
repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
|
|
|
|
/* If we run out of memory, it will look like a lost CWR. We'll
|
|
* get back in sync eventually.
|
|
*/
|
|
return repl;
|
|
}
|
|
|
|
/* Helper function to do delayed processing of ECN CWR chunk. */
|
|
static void sctp_do_ecn_cwr_work(struct sctp_association *asoc,
|
|
__u32 lowest_tsn)
|
|
{
|
|
/* Turn off ECNE getting auto-prepended to every outgoing
|
|
* packet
|
|
*/
|
|
asoc->need_ecne = 0;
|
|
}
|
|
|
|
/* Generate SACK if necessary. We call this at the end of a packet. */
|
|
static int sctp_gen_sack(struct sctp_association *asoc, int force,
|
|
struct sctp_cmd_seq *commands)
|
|
{
|
|
struct sctp_transport *trans = asoc->peer.last_data_from;
|
|
__u32 ctsn, max_tsn_seen;
|
|
struct sctp_chunk *sack;
|
|
int error = 0;
|
|
|
|
if (force ||
|
|
(!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) ||
|
|
(trans && (trans->param_flags & SPP_SACKDELAY_DISABLE)))
|
|
asoc->peer.sack_needed = 1;
|
|
|
|
ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
|
|
max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
|
|
|
|
/* From 12.2 Parameters necessary per association (i.e. the TCB):
|
|
*
|
|
* Ack State : This flag indicates if the next received packet
|
|
* : is to be responded to with a SACK. ...
|
|
* : When DATA chunks are out of order, SACK's
|
|
* : are not delayed (see Section 6).
|
|
*
|
|
* [This is actually not mentioned in Section 6, but we
|
|
* implement it here anyway. --piggy]
|
|
*/
|
|
if (max_tsn_seen != ctsn)
|
|
asoc->peer.sack_needed = 1;
|
|
|
|
/* From 6.2 Acknowledgement on Reception of DATA Chunks:
|
|
*
|
|
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
|
|
* an acknowledgement SHOULD be generated for at least every
|
|
* second packet (not every second DATA chunk) received, and
|
|
* SHOULD be generated within 200 ms of the arrival of any
|
|
* unacknowledged DATA chunk. ...
|
|
*/
|
|
if (!asoc->peer.sack_needed) {
|
|
asoc->peer.sack_cnt++;
|
|
|
|
/* Set the SACK delay timeout based on the
|
|
* SACK delay for the last transport
|
|
* data was received from, or the default
|
|
* for the association.
|
|
*/
|
|
if (trans) {
|
|
/* We will need a SACK for the next packet. */
|
|
if (asoc->peer.sack_cnt >= trans->sackfreq - 1)
|
|
asoc->peer.sack_needed = 1;
|
|
|
|
asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
|
|
trans->sackdelay;
|
|
} else {
|
|
/* We will need a SACK for the next packet. */
|
|
if (asoc->peer.sack_cnt >= asoc->sackfreq - 1)
|
|
asoc->peer.sack_needed = 1;
|
|
|
|
asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] =
|
|
asoc->sackdelay;
|
|
}
|
|
|
|
/* Restart the SACK timer. */
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
|
|
} else {
|
|
__u32 old_a_rwnd = asoc->a_rwnd;
|
|
|
|
asoc->a_rwnd = asoc->rwnd;
|
|
sack = sctp_make_sack(asoc);
|
|
if (!sack) {
|
|
asoc->a_rwnd = old_a_rwnd;
|
|
goto nomem;
|
|
}
|
|
|
|
asoc->peer.sack_needed = 0;
|
|
asoc->peer.sack_cnt = 0;
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack));
|
|
|
|
/* Stop the SACK timer. */
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
|
|
}
|
|
|
|
return error;
|
|
nomem:
|
|
error = -ENOMEM;
|
|
return error;
|
|
}
|
|
|
|
/* When the T3-RTX timer expires, it calls this function to create the
|
|
* relevant state machine event.
|
|
*/
|
|
void sctp_generate_t3_rtx_event(struct timer_list *t)
|
|
{
|
|
struct sctp_transport *transport =
|
|
from_timer(transport, t, T3_rtx_timer);
|
|
struct sctp_association *asoc = transport->asoc;
|
|
struct sock *sk = asoc->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
int error;
|
|
|
|
/* Check whether a task is in the sock. */
|
|
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
pr_debug("%s: sock is busy\n", __func__);
|
|
|
|
/* Try again later. */
|
|
if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
|
|
sctp_transport_hold(transport);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Run through the state machine. */
|
|
error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
|
|
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
|
|
asoc->state,
|
|
asoc->ep, asoc,
|
|
transport, GFP_ATOMIC);
|
|
|
|
if (error)
|
|
sk->sk_err = -error;
|
|
|
|
out_unlock:
|
|
bh_unlock_sock(sk);
|
|
sctp_transport_put(transport);
|
|
}
|
|
|
|
/* This is a sa interface for producing timeout events. It works
|
|
* for timeouts which use the association as their parameter.
|
|
*/
|
|
static void sctp_generate_timeout_event(struct sctp_association *asoc,
|
|
enum sctp_event_timeout timeout_type)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
int error = 0;
|
|
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
pr_debug("%s: sock is busy: timer %d\n", __func__,
|
|
timeout_type);
|
|
|
|
/* Try again later. */
|
|
if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
|
|
sctp_association_hold(asoc);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Is this association really dead and just waiting around for
|
|
* the timer to let go of the reference?
|
|
*/
|
|
if (asoc->base.dead)
|
|
goto out_unlock;
|
|
|
|
/* Run through the state machine. */
|
|
error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
|
|
SCTP_ST_TIMEOUT(timeout_type),
|
|
asoc->state, asoc->ep, asoc,
|
|
(void *)timeout_type, GFP_ATOMIC);
|
|
|
|
if (error)
|
|
sk->sk_err = -error;
|
|
|
|
out_unlock:
|
|
bh_unlock_sock(sk);
|
|
sctp_association_put(asoc);
|
|
}
|
|
|
|
static void sctp_generate_t1_cookie_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_COOKIE]);
|
|
|
|
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
|
|
}
|
|
|
|
static void sctp_generate_t1_init_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T1_INIT]);
|
|
|
|
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
|
|
}
|
|
|
|
static void sctp_generate_t2_shutdown_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN]);
|
|
|
|
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
|
|
}
|
|
|
|
static void sctp_generate_t4_rto_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_T4_RTO]);
|
|
|
|
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO);
|
|
}
|
|
|
|
static void sctp_generate_t5_shutdown_guard_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t,
|
|
timers[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]);
|
|
|
|
sctp_generate_timeout_event(asoc,
|
|
SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
|
|
|
|
} /* sctp_generate_t5_shutdown_guard_event() */
|
|
|
|
static void sctp_generate_autoclose_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_AUTOCLOSE]);
|
|
|
|
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
|
|
}
|
|
|
|
/* Generate a heart beat event. If the sock is busy, reschedule. Make
|
|
* sure that the transport is still valid.
|
|
*/
|
|
void sctp_generate_heartbeat_event(struct timer_list *t)
|
|
{
|
|
struct sctp_transport *transport = from_timer(transport, t, hb_timer);
|
|
struct sctp_association *asoc = transport->asoc;
|
|
struct sock *sk = asoc->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
u32 elapsed, timeout;
|
|
int error = 0;
|
|
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
pr_debug("%s: sock is busy\n", __func__);
|
|
|
|
/* Try again later. */
|
|
if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
|
|
sctp_transport_hold(transport);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Check if we should still send the heartbeat or reschedule */
|
|
elapsed = jiffies - transport->last_time_sent;
|
|
timeout = sctp_transport_timeout(transport);
|
|
if (elapsed < timeout) {
|
|
elapsed = timeout - elapsed;
|
|
if (!mod_timer(&transport->hb_timer, jiffies + elapsed))
|
|
sctp_transport_hold(transport);
|
|
goto out_unlock;
|
|
}
|
|
|
|
error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
|
|
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
|
|
asoc->state, asoc->ep, asoc,
|
|
transport, GFP_ATOMIC);
|
|
|
|
if (error)
|
|
sk->sk_err = -error;
|
|
|
|
out_unlock:
|
|
bh_unlock_sock(sk);
|
|
sctp_transport_put(transport);
|
|
}
|
|
|
|
/* Handle the timeout of the ICMP protocol unreachable timer. Trigger
|
|
* the correct state machine transition that will close the association.
|
|
*/
|
|
void sctp_generate_proto_unreach_event(struct timer_list *t)
|
|
{
|
|
struct sctp_transport *transport =
|
|
from_timer(transport, t, proto_unreach_timer);
|
|
struct sctp_association *asoc = transport->asoc;
|
|
struct sock *sk = asoc->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
pr_debug("%s: sock is busy\n", __func__);
|
|
|
|
/* Try again later. */
|
|
if (!mod_timer(&transport->proto_unreach_timer,
|
|
jiffies + (HZ/20)))
|
|
sctp_transport_hold(transport);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Is this structure just waiting around for us to actually
|
|
* get destroyed?
|
|
*/
|
|
if (asoc->base.dead)
|
|
goto out_unlock;
|
|
|
|
sctp_do_sm(net, SCTP_EVENT_T_OTHER,
|
|
SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
|
|
asoc->state, asoc->ep, asoc, transport, GFP_ATOMIC);
|
|
|
|
out_unlock:
|
|
bh_unlock_sock(sk);
|
|
sctp_transport_put(transport);
|
|
}
|
|
|
|
/* Handle the timeout of the RE-CONFIG timer. */
|
|
void sctp_generate_reconf_event(struct timer_list *t)
|
|
{
|
|
struct sctp_transport *transport =
|
|
from_timer(transport, t, reconf_timer);
|
|
struct sctp_association *asoc = transport->asoc;
|
|
struct sock *sk = asoc->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
int error = 0;
|
|
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
pr_debug("%s: sock is busy\n", __func__);
|
|
|
|
/* Try again later. */
|
|
if (!mod_timer(&transport->reconf_timer, jiffies + (HZ / 20)))
|
|
sctp_transport_hold(transport);
|
|
goto out_unlock;
|
|
}
|
|
|
|
error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
|
|
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_RECONF),
|
|
asoc->state, asoc->ep, asoc,
|
|
transport, GFP_ATOMIC);
|
|
|
|
if (error)
|
|
sk->sk_err = -error;
|
|
|
|
out_unlock:
|
|
bh_unlock_sock(sk);
|
|
sctp_transport_put(transport);
|
|
}
|
|
|
|
/* Handle the timeout of the probe timer. */
|
|
void sctp_generate_probe_event(struct timer_list *t)
|
|
{
|
|
struct sctp_transport *transport = from_timer(transport, t, probe_timer);
|
|
struct sctp_association *asoc = transport->asoc;
|
|
struct sock *sk = asoc->base.sk;
|
|
struct net *net = sock_net(sk);
|
|
int error = 0;
|
|
|
|
bh_lock_sock(sk);
|
|
if (sock_owned_by_user(sk)) {
|
|
pr_debug("%s: sock is busy\n", __func__);
|
|
|
|
/* Try again later. */
|
|
if (!mod_timer(&transport->probe_timer, jiffies + (HZ / 20)))
|
|
sctp_transport_hold(transport);
|
|
goto out_unlock;
|
|
}
|
|
|
|
error = sctp_do_sm(net, SCTP_EVENT_T_TIMEOUT,
|
|
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_PROBE),
|
|
asoc->state, asoc->ep, asoc,
|
|
transport, GFP_ATOMIC);
|
|
|
|
if (error)
|
|
sk->sk_err = -error;
|
|
|
|
out_unlock:
|
|
bh_unlock_sock(sk);
|
|
sctp_transport_put(transport);
|
|
}
|
|
|
|
/* Inject a SACK Timeout event into the state machine. */
|
|
static void sctp_generate_sack_event(struct timer_list *t)
|
|
{
|
|
struct sctp_association *asoc =
|
|
from_timer(asoc, t, timers[SCTP_EVENT_TIMEOUT_SACK]);
|
|
|
|
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
|
|
}
|
|
|
|
sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
|
|
[SCTP_EVENT_TIMEOUT_NONE] = NULL,
|
|
[SCTP_EVENT_TIMEOUT_T1_COOKIE] = sctp_generate_t1_cookie_event,
|
|
[SCTP_EVENT_TIMEOUT_T1_INIT] = sctp_generate_t1_init_event,
|
|
[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = sctp_generate_t2_shutdown_event,
|
|
[SCTP_EVENT_TIMEOUT_T3_RTX] = NULL,
|
|
[SCTP_EVENT_TIMEOUT_T4_RTO] = sctp_generate_t4_rto_event,
|
|
[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] =
|
|
sctp_generate_t5_shutdown_guard_event,
|
|
[SCTP_EVENT_TIMEOUT_HEARTBEAT] = NULL,
|
|
[SCTP_EVENT_TIMEOUT_RECONF] = NULL,
|
|
[SCTP_EVENT_TIMEOUT_SACK] = sctp_generate_sack_event,
|
|
[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sctp_generate_autoclose_event,
|
|
};
|
|
|
|
|
|
/* RFC 2960 8.2 Path Failure Detection
|
|
*
|
|
* When its peer endpoint is multi-homed, an endpoint should keep a
|
|
* error counter for each of the destination transport addresses of the
|
|
* peer endpoint.
|
|
*
|
|
* Each time the T3-rtx timer expires on any address, or when a
|
|
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
|
|
* the error counter of that destination address will be incremented.
|
|
* When the value in the error counter exceeds the protocol parameter
|
|
* 'Path.Max.Retrans' of that destination address, the endpoint should
|
|
* mark the destination transport address as inactive, and a
|
|
* notification SHOULD be sent to the upper layer.
|
|
*
|
|
*/
|
|
static void sctp_do_8_2_transport_strike(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc,
|
|
struct sctp_transport *transport,
|
|
int is_hb)
|
|
{
|
|
/* The check for association's overall error counter exceeding the
|
|
* threshold is done in the state function.
|
|
*/
|
|
/* We are here due to a timer expiration. If the timer was
|
|
* not a HEARTBEAT, then normal error tracking is done.
|
|
* If the timer was a heartbeat, we only increment error counts
|
|
* when we already have an outstanding HEARTBEAT that has not
|
|
* been acknowledged.
|
|
* Additionally, some tranport states inhibit error increments.
|
|
*/
|
|
if (!is_hb) {
|
|
asoc->overall_error_count++;
|
|
if (transport->state != SCTP_INACTIVE)
|
|
transport->error_count++;
|
|
} else if (transport->hb_sent) {
|
|
if (transport->state != SCTP_UNCONFIRMED)
|
|
asoc->overall_error_count++;
|
|
if (transport->state != SCTP_INACTIVE)
|
|
transport->error_count++;
|
|
}
|
|
|
|
/* If the transport error count is greater than the pf_retrans
|
|
* threshold, and less than pathmaxrtx, and if the current state
|
|
* is SCTP_ACTIVE, then mark this transport as Partially Failed,
|
|
* see SCTP Quick Failover Draft, section 5.1
|
|
*/
|
|
if (asoc->base.net->sctp.pf_enable &&
|
|
transport->state == SCTP_ACTIVE &&
|
|
transport->error_count < transport->pathmaxrxt &&
|
|
transport->error_count > transport->pf_retrans) {
|
|
|
|
sctp_assoc_control_transport(asoc, transport,
|
|
SCTP_TRANSPORT_PF,
|
|
0);
|
|
|
|
/* Update the hb timer to resend a heartbeat every rto */
|
|
sctp_transport_reset_hb_timer(transport);
|
|
}
|
|
|
|
if (transport->state != SCTP_INACTIVE &&
|
|
(transport->error_count > transport->pathmaxrxt)) {
|
|
pr_debug("%s: association:%p transport addr:%pISpc failed\n",
|
|
__func__, asoc, &transport->ipaddr.sa);
|
|
|
|
sctp_assoc_control_transport(asoc, transport,
|
|
SCTP_TRANSPORT_DOWN,
|
|
SCTP_FAILED_THRESHOLD);
|
|
}
|
|
|
|
if (transport->error_count > transport->ps_retrans &&
|
|
asoc->peer.primary_path == transport &&
|
|
asoc->peer.active_path != transport)
|
|
sctp_assoc_set_primary(asoc, asoc->peer.active_path);
|
|
|
|
/* E2) For the destination address for which the timer
|
|
* expires, set RTO <- RTO * 2 ("back off the timer"). The
|
|
* maximum value discussed in rule C7 above (RTO.max) may be
|
|
* used to provide an upper bound to this doubling operation.
|
|
*
|
|
* Special Case: the first HB doesn't trigger exponential backoff.
|
|
* The first unacknowledged HB triggers it. We do this with a flag
|
|
* that indicates that we have an outstanding HB.
|
|
*/
|
|
if (!is_hb || transport->hb_sent) {
|
|
transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
|
|
sctp_max_rto(asoc, transport);
|
|
}
|
|
}
|
|
|
|
/* Worker routine to handle INIT command failure. */
|
|
static void sctp_cmd_init_failed(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc,
|
|
unsigned int error)
|
|
{
|
|
struct sctp_ulpevent *event;
|
|
|
|
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_CANT_STR_ASSOC,
|
|
(__u16)error, 0, 0, NULL,
|
|
GFP_ATOMIC);
|
|
|
|
if (event)
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
SCTP_ULPEVENT(event));
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
|
|
|
/* SEND_FAILED sent later when cleaning up the association. */
|
|
asoc->outqueue.error = error;
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
}
|
|
|
|
/* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
|
|
static void sctp_cmd_assoc_failed(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc,
|
|
enum sctp_event_type event_type,
|
|
union sctp_subtype subtype,
|
|
struct sctp_chunk *chunk,
|
|
unsigned int error)
|
|
{
|
|
struct sctp_ulpevent *event;
|
|
struct sctp_chunk *abort;
|
|
|
|
/* Cancel any partial delivery in progress. */
|
|
asoc->stream.si->abort_pd(&asoc->ulpq, GFP_ATOMIC);
|
|
|
|
if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT)
|
|
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
|
|
(__u16)error, 0, 0, chunk,
|
|
GFP_ATOMIC);
|
|
else
|
|
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
|
|
(__u16)error, 0, 0, NULL,
|
|
GFP_ATOMIC);
|
|
if (event)
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
|
|
SCTP_ULPEVENT(event));
|
|
|
|
if (asoc->overall_error_count >= asoc->max_retrans) {
|
|
abort = sctp_make_violation_max_retrans(asoc, chunk);
|
|
if (abort)
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
SCTP_CHUNK(abort));
|
|
}
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
|
|
SCTP_STATE(SCTP_STATE_CLOSED));
|
|
|
|
/* SEND_FAILED sent later when cleaning up the association. */
|
|
asoc->outqueue.error = error;
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
|
|
}
|
|
|
|
/* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
|
|
* inside the cookie. In reality, this is only used for INIT-ACK processing
|
|
* since all other cases use "temporary" associations and can do all
|
|
* their work in statefuns directly.
|
|
*/
|
|
static int sctp_cmd_process_init(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk,
|
|
struct sctp_init_chunk *peer_init,
|
|
gfp_t gfp)
|
|
{
|
|
int error;
|
|
|
|
/* We only process the init as a sideeffect in a single
|
|
* case. This is when we process the INIT-ACK. If we
|
|
* fail during INIT processing (due to malloc problems),
|
|
* just return the error and stop processing the stack.
|
|
*/
|
|
if (!sctp_process_init(asoc, chunk, sctp_source(chunk), peer_init, gfp))
|
|
error = -ENOMEM;
|
|
else
|
|
error = 0;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Helper function to break out starting up of heartbeat timers. */
|
|
static void sctp_cmd_hb_timers_start(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sctp_transport *t;
|
|
|
|
/* Start a heartbeat timer for each transport on the association.
|
|
* hold a reference on the transport to make sure none of
|
|
* the needed data structures go away.
|
|
*/
|
|
list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
|
|
sctp_transport_reset_hb_timer(t);
|
|
}
|
|
|
|
static void sctp_cmd_hb_timers_stop(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sctp_transport *t;
|
|
|
|
/* Stop all heartbeat timers. */
|
|
|
|
list_for_each_entry(t, &asoc->peer.transport_addr_list,
|
|
transports) {
|
|
if (del_timer(&t->hb_timer))
|
|
sctp_transport_put(t);
|
|
}
|
|
}
|
|
|
|
/* Helper function to stop any pending T3-RTX timers */
|
|
static void sctp_cmd_t3_rtx_timers_stop(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sctp_transport *t;
|
|
|
|
list_for_each_entry(t, &asoc->peer.transport_addr_list,
|
|
transports) {
|
|
if (del_timer(&t->T3_rtx_timer))
|
|
sctp_transport_put(t);
|
|
}
|
|
}
|
|
|
|
|
|
/* Helper function to handle the reception of an HEARTBEAT ACK. */
|
|
static void sctp_cmd_transport_on(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc,
|
|
struct sctp_transport *t,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
struct sctp_sender_hb_info *hbinfo;
|
|
int was_unconfirmed = 0;
|
|
|
|
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
|
|
* HEARTBEAT should clear the error counter of the destination
|
|
* transport address to which the HEARTBEAT was sent.
|
|
*/
|
|
t->error_count = 0;
|
|
|
|
/*
|
|
* Although RFC4960 specifies that the overall error count must
|
|
* be cleared when a HEARTBEAT ACK is received, we make an
|
|
* exception while in SHUTDOWN PENDING. If the peer keeps its
|
|
* window shut forever, we may never be able to transmit our
|
|
* outstanding data and rely on the retransmission limit be reached
|
|
* to shutdown the association.
|
|
*/
|
|
if (t->asoc->state < SCTP_STATE_SHUTDOWN_PENDING)
|
|
t->asoc->overall_error_count = 0;
|
|
|
|
/* Clear the hb_sent flag to signal that we had a good
|
|
* acknowledgement.
|
|
*/
|
|
t->hb_sent = 0;
|
|
|
|
/* Mark the destination transport address as active if it is not so
|
|
* marked.
|
|
*/
|
|
if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) {
|
|
was_unconfirmed = 1;
|
|
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
|
|
SCTP_HEARTBEAT_SUCCESS);
|
|
}
|
|
|
|
if (t->state == SCTP_PF)
|
|
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
|
|
SCTP_HEARTBEAT_SUCCESS);
|
|
|
|
/* HB-ACK was received for a the proper HB. Consider this
|
|
* forward progress.
|
|
*/
|
|
if (t->dst)
|
|
sctp_transport_dst_confirm(t);
|
|
|
|
/* The receiver of the HEARTBEAT ACK should also perform an
|
|
* RTT measurement for that destination transport address
|
|
* using the time value carried in the HEARTBEAT ACK chunk.
|
|
* If the transport's rto_pending variable has been cleared,
|
|
* it was most likely due to a retransmit. However, we want
|
|
* to re-enable it to properly update the rto.
|
|
*/
|
|
if (t->rto_pending == 0)
|
|
t->rto_pending = 1;
|
|
|
|
hbinfo = (struct sctp_sender_hb_info *)chunk->skb->data;
|
|
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
|
|
|
|
/* Update the heartbeat timer. */
|
|
sctp_transport_reset_hb_timer(t);
|
|
|
|
if (was_unconfirmed && asoc->peer.transport_count == 1)
|
|
sctp_transport_immediate_rtx(t);
|
|
}
|
|
|
|
|
|
/* Helper function to process the process SACK command. */
|
|
static int sctp_cmd_process_sack(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
int err = 0;
|
|
|
|
if (sctp_outq_sack(&asoc->outqueue, chunk)) {
|
|
/* There are no more TSNs awaiting SACK. */
|
|
err = sctp_do_sm(asoc->base.net, SCTP_EVENT_T_OTHER,
|
|
SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
|
|
asoc->state, asoc->ep, asoc, NULL,
|
|
GFP_ATOMIC);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
|
|
* the transport for a shutdown chunk.
|
|
*/
|
|
static void sctp_cmd_setup_t2(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
struct sctp_transport *t;
|
|
|
|
if (chunk->transport)
|
|
t = chunk->transport;
|
|
else {
|
|
t = sctp_assoc_choose_alter_transport(asoc,
|
|
asoc->shutdown_last_sent_to);
|
|
chunk->transport = t;
|
|
}
|
|
asoc->shutdown_last_sent_to = t;
|
|
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
|
|
}
|
|
|
|
/* Helper function to change the state of an association. */
|
|
static void sctp_cmd_new_state(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc,
|
|
enum sctp_state state)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
|
|
asoc->state = state;
|
|
|
|
pr_debug("%s: asoc:%p[%s]\n", __func__, asoc, sctp_state_tbl[state]);
|
|
|
|
if (sctp_style(sk, TCP)) {
|
|
/* Change the sk->sk_state of a TCP-style socket that has
|
|
* successfully completed a connect() call.
|
|
*/
|
|
if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED))
|
|
inet_sk_set_state(sk, SCTP_SS_ESTABLISHED);
|
|
|
|
/* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */
|
|
if (sctp_state(asoc, SHUTDOWN_RECEIVED) &&
|
|
sctp_sstate(sk, ESTABLISHED)) {
|
|
inet_sk_set_state(sk, SCTP_SS_CLOSING);
|
|
sk->sk_shutdown |= RCV_SHUTDOWN;
|
|
}
|
|
}
|
|
|
|
if (sctp_state(asoc, COOKIE_WAIT)) {
|
|
/* Reset init timeouts since they may have been
|
|
* increased due to timer expirations.
|
|
*/
|
|
asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] =
|
|
asoc->rto_initial;
|
|
asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] =
|
|
asoc->rto_initial;
|
|
}
|
|
|
|
if (sctp_state(asoc, ESTABLISHED)) {
|
|
kfree(asoc->peer.cookie);
|
|
asoc->peer.cookie = NULL;
|
|
}
|
|
|
|
if (sctp_state(asoc, ESTABLISHED) ||
|
|
sctp_state(asoc, CLOSED) ||
|
|
sctp_state(asoc, SHUTDOWN_RECEIVED)) {
|
|
/* Wake up any processes waiting in the asoc's wait queue in
|
|
* sctp_wait_for_connect() or sctp_wait_for_sndbuf().
|
|
*/
|
|
if (waitqueue_active(&asoc->wait))
|
|
wake_up_interruptible(&asoc->wait);
|
|
|
|
/* Wake up any processes waiting in the sk's sleep queue of
|
|
* a TCP-style or UDP-style peeled-off socket in
|
|
* sctp_wait_for_accept() or sctp_wait_for_packet().
|
|
* For a UDP-style socket, the waiters are woken up by the
|
|
* notifications.
|
|
*/
|
|
if (!sctp_style(sk, UDP))
|
|
sk->sk_state_change(sk);
|
|
}
|
|
|
|
if (sctp_state(asoc, SHUTDOWN_PENDING) &&
|
|
!sctp_outq_is_empty(&asoc->outqueue))
|
|
sctp_outq_uncork(&asoc->outqueue, GFP_ATOMIC);
|
|
}
|
|
|
|
/* Helper function to delete an association. */
|
|
static void sctp_cmd_delete_tcb(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
|
|
/* If it is a non-temporary association belonging to a TCP-style
|
|
* listening socket that is not closed, do not free it so that accept()
|
|
* can pick it up later.
|
|
*/
|
|
if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) &&
|
|
(!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK))
|
|
return;
|
|
|
|
sctp_association_free(asoc);
|
|
}
|
|
|
|
/*
|
|
* ADDIP Section 4.1 ASCONF Chunk Procedures
|
|
* A4) Start a T-4 RTO timer, using the RTO value of the selected
|
|
* destination address (we use active path instead of primary path just
|
|
* because primary path may be inactive.
|
|
*/
|
|
static void sctp_cmd_setup_t4(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
struct sctp_transport *t;
|
|
|
|
t = sctp_assoc_choose_alter_transport(asoc, chunk->transport);
|
|
asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto;
|
|
chunk->transport = t;
|
|
}
|
|
|
|
/* Process an incoming Operation Error Chunk. */
|
|
static void sctp_cmd_process_operr(struct sctp_cmd_seq *cmds,
|
|
struct sctp_association *asoc,
|
|
struct sctp_chunk *chunk)
|
|
{
|
|
struct sctp_errhdr *err_hdr;
|
|
struct sctp_ulpevent *ev;
|
|
|
|
while (chunk->chunk_end > chunk->skb->data) {
|
|
err_hdr = (struct sctp_errhdr *)(chunk->skb->data);
|
|
|
|
ev = sctp_ulpevent_make_remote_error(asoc, chunk, 0,
|
|
GFP_ATOMIC);
|
|
if (!ev)
|
|
return;
|
|
|
|
asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
|
|
|
|
switch (err_hdr->cause) {
|
|
case SCTP_ERROR_UNKNOWN_CHUNK:
|
|
{
|
|
struct sctp_chunkhdr *unk_chunk_hdr;
|
|
|
|
unk_chunk_hdr = (struct sctp_chunkhdr *)
|
|
err_hdr->variable;
|
|
switch (unk_chunk_hdr->type) {
|
|
/* ADDIP 4.1 A9) If the peer responds to an ASCONF with
|
|
* an ERROR chunk reporting that it did not recognized
|
|
* the ASCONF chunk type, the sender of the ASCONF MUST
|
|
* NOT send any further ASCONF chunks and MUST stop its
|
|
* T-4 timer.
|
|
*/
|
|
case SCTP_CID_ASCONF:
|
|
if (asoc->peer.asconf_capable == 0)
|
|
break;
|
|
|
|
asoc->peer.asconf_capable = 0;
|
|
sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP,
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Helper function to remove the association non-primary peer
|
|
* transports.
|
|
*/
|
|
static void sctp_cmd_del_non_primary(struct sctp_association *asoc)
|
|
{
|
|
struct sctp_transport *t;
|
|
struct list_head *temp;
|
|
struct list_head *pos;
|
|
|
|
list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
|
|
t = list_entry(pos, struct sctp_transport, transports);
|
|
if (!sctp_cmp_addr_exact(&t->ipaddr,
|
|
&asoc->peer.primary_addr)) {
|
|
sctp_assoc_rm_peer(asoc, t);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Helper function to set sk_err on a 1-1 style socket. */
|
|
static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error)
|
|
{
|
|
struct sock *sk = asoc->base.sk;
|
|
|
|
if (!sctp_style(sk, UDP))
|
|
sk->sk_err = error;
|
|
}
|
|
|
|
/* Helper function to generate an association change event */
|
|
static void sctp_cmd_assoc_change(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc,
|
|
u8 state)
|
|
{
|
|
struct sctp_ulpevent *ev;
|
|
|
|
ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0,
|
|
asoc->c.sinit_num_ostreams,
|
|
asoc->c.sinit_max_instreams,
|
|
NULL, GFP_ATOMIC);
|
|
if (ev)
|
|
asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
|
|
}
|
|
|
|
static void sctp_cmd_peer_no_auth(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sctp_ulpevent *ev;
|
|
|
|
ev = sctp_ulpevent_make_authkey(asoc, 0, SCTP_AUTH_NO_AUTH, GFP_ATOMIC);
|
|
if (ev)
|
|
asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
|
|
}
|
|
|
|
/* Helper function to generate an adaptation indication event */
|
|
static void sctp_cmd_adaptation_ind(struct sctp_cmd_seq *commands,
|
|
struct sctp_association *asoc)
|
|
{
|
|
struct sctp_ulpevent *ev;
|
|
|
|
ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC);
|
|
|
|
if (ev)
|
|
asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
|
|
}
|
|
|
|
|
|
static void sctp_cmd_t1_timer_update(struct sctp_association *asoc,
|
|
enum sctp_event_timeout timer,
|
|
char *name)
|
|
{
|
|
struct sctp_transport *t;
|
|
|
|
t = asoc->init_last_sent_to;
|
|
asoc->init_err_counter++;
|
|
|
|
if (t->init_sent_count > (asoc->init_cycle + 1)) {
|
|
asoc->timeouts[timer] *= 2;
|
|
if (asoc->timeouts[timer] > asoc->max_init_timeo) {
|
|
asoc->timeouts[timer] = asoc->max_init_timeo;
|
|
}
|
|
asoc->init_cycle++;
|
|
|
|
pr_debug("%s: T1[%s] timeout adjustment init_err_counter:%d"
|
|
" cycle:%d timeout:%ld\n", __func__, name,
|
|
asoc->init_err_counter, asoc->init_cycle,
|
|
asoc->timeouts[timer]);
|
|
}
|
|
|
|
}
|
|
|
|
/* Send the whole message, chunk by chunk, to the outqueue.
|
|
* This way the whole message is queued up and bundling if
|
|
* encouraged for small fragments.
|
|
*/
|
|
static void sctp_cmd_send_msg(struct sctp_association *asoc,
|
|
struct sctp_datamsg *msg, gfp_t gfp)
|
|
{
|
|
struct sctp_chunk *chunk;
|
|
|
|
list_for_each_entry(chunk, &msg->chunks, frag_list)
|
|
sctp_outq_tail(&asoc->outqueue, chunk, gfp);
|
|
|
|
asoc->outqueue.sched->enqueue(&asoc->outqueue, msg);
|
|
}
|
|
|
|
|
|
/* These three macros allow us to pull the debugging code out of the
|
|
* main flow of sctp_do_sm() to keep attention focused on the real
|
|
* functionality there.
|
|
*/
|
|
#define debug_pre_sfn() \
|
|
pr_debug("%s[pre-fn]: ep:%p, %s, %s, asoc:%p[%s], %s\n", __func__, \
|
|
ep, sctp_evttype_tbl[event_type], (*debug_fn)(subtype), \
|
|
asoc, sctp_state_tbl[state], state_fn->name)
|
|
|
|
#define debug_post_sfn() \
|
|
pr_debug("%s[post-fn]: asoc:%p, status:%s\n", __func__, asoc, \
|
|
sctp_status_tbl[status])
|
|
|
|
#define debug_post_sfx() \
|
|
pr_debug("%s[post-sfx]: error:%d, asoc:%p[%s]\n", __func__, error, \
|
|
asoc, sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
|
|
sctp_assoc2id(asoc))) ? asoc->state : SCTP_STATE_CLOSED])
|
|
|
|
/*
|
|
* This is the master state machine processing function.
|
|
*
|
|
* If you want to understand all of lksctp, this is a
|
|
* good place to start.
|
|
*/
|
|
int sctp_do_sm(struct net *net, enum sctp_event_type event_type,
|
|
union sctp_subtype subtype, enum sctp_state state,
|
|
struct sctp_endpoint *ep, struct sctp_association *asoc,
|
|
void *event_arg, gfp_t gfp)
|
|
{
|
|
typedef const char *(printfn_t)(union sctp_subtype);
|
|
static printfn_t *table[] = {
|
|
NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
|
|
};
|
|
printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
|
|
const struct sctp_sm_table_entry *state_fn;
|
|
struct sctp_cmd_seq commands;
|
|
enum sctp_disposition status;
|
|
int error = 0;
|
|
|
|
/* Look up the state function, run it, and then process the
|
|
* side effects. These three steps are the heart of lksctp.
|
|
*/
|
|
state_fn = sctp_sm_lookup_event(net, event_type, state, subtype);
|
|
|
|
sctp_init_cmd_seq(&commands);
|
|
|
|
debug_pre_sfn();
|
|
status = state_fn->fn(net, ep, asoc, subtype, event_arg, &commands);
|
|
debug_post_sfn();
|
|
|
|
error = sctp_side_effects(event_type, subtype, state,
|
|
ep, &asoc, event_arg, status,
|
|
&commands, gfp);
|
|
debug_post_sfx();
|
|
|
|
return error;
|
|
}
|
|
|
|
/*****************************************************************
|
|
* This the master state function side effect processing function.
|
|
*****************************************************************/
|
|
static int sctp_side_effects(enum sctp_event_type event_type,
|
|
union sctp_subtype subtype,
|
|
enum sctp_state state,
|
|
struct sctp_endpoint *ep,
|
|
struct sctp_association **asoc,
|
|
void *event_arg,
|
|
enum sctp_disposition status,
|
|
struct sctp_cmd_seq *commands,
|
|
gfp_t gfp)
|
|
{
|
|
int error;
|
|
|
|
/* FIXME - Most of the dispositions left today would be categorized
|
|
* as "exceptional" dispositions. For those dispositions, it
|
|
* may not be proper to run through any of the commands at all.
|
|
* For example, the command interpreter might be run only with
|
|
* disposition SCTP_DISPOSITION_CONSUME.
|
|
*/
|
|
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
|
|
ep, *asoc,
|
|
event_arg, status,
|
|
commands, gfp)))
|
|
goto bail;
|
|
|
|
switch (status) {
|
|
case SCTP_DISPOSITION_DISCARD:
|
|
pr_debug("%s: ignored sctp protocol event - state:%d, "
|
|
"event_type:%d, event_id:%d\n", __func__, state,
|
|
event_type, subtype.chunk);
|
|
break;
|
|
|
|
case SCTP_DISPOSITION_NOMEM:
|
|
/* We ran out of memory, so we need to discard this
|
|
* packet.
|
|
*/
|
|
/* BUG--we should now recover some memory, probably by
|
|
* reneging...
|
|
*/
|
|
error = -ENOMEM;
|
|
break;
|
|
|
|
case SCTP_DISPOSITION_DELETE_TCB:
|
|
case SCTP_DISPOSITION_ABORT:
|
|
/* This should now be a command. */
|
|
*asoc = NULL;
|
|
break;
|
|
|
|
case SCTP_DISPOSITION_CONSUME:
|
|
/*
|
|
* We should no longer have much work to do here as the
|
|
* real work has been done as explicit commands above.
|
|
*/
|
|
break;
|
|
|
|
case SCTP_DISPOSITION_VIOLATION:
|
|
net_err_ratelimited("protocol violation state %d chunkid %d\n",
|
|
state, subtype.chunk);
|
|
break;
|
|
|
|
case SCTP_DISPOSITION_NOT_IMPL:
|
|
pr_warn("unimplemented feature in state %d, event_type %d, event_id %d\n",
|
|
state, event_type, subtype.chunk);
|
|
break;
|
|
|
|
case SCTP_DISPOSITION_BUG:
|
|
pr_err("bug in state %d, event_type %d, event_id %d\n",
|
|
state, event_type, subtype.chunk);
|
|
BUG();
|
|
break;
|
|
|
|
default:
|
|
pr_err("impossible disposition %d in state %d, event_type %d, event_id %d\n",
|
|
status, state, event_type, subtype.chunk);
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
bail:
|
|
return error;
|
|
}
|
|
|
|
/********************************************************************
|
|
* 2nd Level Abstractions
|
|
********************************************************************/
|
|
|
|
/* This is the side-effect interpreter. */
|
|
static int sctp_cmd_interpreter(enum sctp_event_type event_type,
|
|
union sctp_subtype subtype,
|
|
enum sctp_state state,
|
|
struct sctp_endpoint *ep,
|
|
struct sctp_association *asoc,
|
|
void *event_arg,
|
|
enum sctp_disposition status,
|
|
struct sctp_cmd_seq *commands,
|
|
gfp_t gfp)
|
|
{
|
|
struct sctp_sock *sp = sctp_sk(ep->base.sk);
|
|
struct sctp_chunk *chunk = NULL, *new_obj;
|
|
struct sctp_packet *packet;
|
|
struct sctp_sackhdr sackh;
|
|
struct timer_list *timer;
|
|
struct sctp_transport *t;
|
|
unsigned long timeout;
|
|
struct sctp_cmd *cmd;
|
|
int local_cork = 0;
|
|
int error = 0;
|
|
int force;
|
|
|
|
if (SCTP_EVENT_T_TIMEOUT != event_type)
|
|
chunk = event_arg;
|
|
|
|
/* Note: This whole file is a huge candidate for rework.
|
|
* For example, each command could either have its own handler, so
|
|
* the loop would look like:
|
|
* while (cmds)
|
|
* cmd->handle(x, y, z)
|
|
* --jgrimm
|
|
*/
|
|
while (NULL != (cmd = sctp_next_cmd(commands))) {
|
|
switch (cmd->verb) {
|
|
case SCTP_CMD_NOP:
|
|
/* Do nothing. */
|
|
break;
|
|
|
|
case SCTP_CMD_NEW_ASOC:
|
|
/* Register a new association. */
|
|
if (local_cork) {
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
local_cork = 0;
|
|
}
|
|
|
|
/* Register with the endpoint. */
|
|
asoc = cmd->obj.asoc;
|
|
BUG_ON(asoc->peer.primary_path == NULL);
|
|
sctp_endpoint_add_asoc(ep, asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_PURGE_OUTQUEUE:
|
|
sctp_outq_teardown(&asoc->outqueue);
|
|
break;
|
|
|
|
case SCTP_CMD_DELETE_TCB:
|
|
if (local_cork) {
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
local_cork = 0;
|
|
}
|
|
/* Delete the current association. */
|
|
sctp_cmd_delete_tcb(commands, asoc);
|
|
asoc = NULL;
|
|
break;
|
|
|
|
case SCTP_CMD_NEW_STATE:
|
|
/* Enter a new state. */
|
|
sctp_cmd_new_state(commands, asoc, cmd->obj.state);
|
|
break;
|
|
|
|
case SCTP_CMD_REPORT_TSN:
|
|
/* Record the arrival of a TSN. */
|
|
error = sctp_tsnmap_mark(&asoc->peer.tsn_map,
|
|
cmd->obj.u32, NULL);
|
|
break;
|
|
|
|
case SCTP_CMD_REPORT_FWDTSN:
|
|
asoc->stream.si->report_ftsn(&asoc->ulpq, cmd->obj.u32);
|
|
break;
|
|
|
|
case SCTP_CMD_PROCESS_FWDTSN:
|
|
asoc->stream.si->handle_ftsn(&asoc->ulpq,
|
|
cmd->obj.chunk);
|
|
break;
|
|
|
|
case SCTP_CMD_GEN_SACK:
|
|
/* Generate a Selective ACK.
|
|
* The argument tells us whether to just count
|
|
* the packet and MAYBE generate a SACK, or
|
|
* force a SACK out.
|
|
*/
|
|
force = cmd->obj.i32;
|
|
error = sctp_gen_sack(asoc, force, commands);
|
|
break;
|
|
|
|
case SCTP_CMD_PROCESS_SACK:
|
|
/* Process an inbound SACK. */
|
|
error = sctp_cmd_process_sack(commands, asoc,
|
|
cmd->obj.chunk);
|
|
break;
|
|
|
|
case SCTP_CMD_GEN_INIT_ACK:
|
|
/* Generate an INIT ACK chunk. */
|
|
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
|
|
0);
|
|
if (!new_obj) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
SCTP_CHUNK(new_obj));
|
|
break;
|
|
|
|
case SCTP_CMD_PEER_INIT:
|
|
/* Process a unified INIT from the peer.
|
|
* Note: Only used during INIT-ACK processing. If
|
|
* there is an error just return to the outter
|
|
* layer which will bail.
|
|
*/
|
|
error = sctp_cmd_process_init(commands, asoc, chunk,
|
|
cmd->obj.init, gfp);
|
|
break;
|
|
|
|
case SCTP_CMD_GEN_COOKIE_ECHO:
|
|
/* Generate a COOKIE ECHO chunk. */
|
|
new_obj = sctp_make_cookie_echo(asoc, chunk);
|
|
if (!new_obj) {
|
|
if (cmd->obj.chunk)
|
|
sctp_chunk_free(cmd->obj.chunk);
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
SCTP_CHUNK(new_obj));
|
|
|
|
/* If there is an ERROR chunk to be sent along with
|
|
* the COOKIE_ECHO, send it, too.
|
|
*/
|
|
if (cmd->obj.chunk)
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
SCTP_CHUNK(cmd->obj.chunk));
|
|
|
|
if (new_obj->transport) {
|
|
new_obj->transport->init_sent_count++;
|
|
asoc->init_last_sent_to = new_obj->transport;
|
|
}
|
|
|
|
/* FIXME - Eventually come up with a cleaner way to
|
|
* enabling COOKIE-ECHO + DATA bundling during
|
|
* multihoming stale cookie scenarios, the following
|
|
* command plays with asoc->peer.retran_path to
|
|
* avoid the problem of sending the COOKIE-ECHO and
|
|
* DATA in different paths, which could result
|
|
* in the association being ABORTed if the DATA chunk
|
|
* is processed first by the server. Checking the
|
|
* init error counter simply causes this command
|
|
* to be executed only during failed attempts of
|
|
* association establishment.
|
|
*/
|
|
if ((asoc->peer.retran_path !=
|
|
asoc->peer.primary_path) &&
|
|
(asoc->init_err_counter > 0)) {
|
|
sctp_add_cmd_sf(commands,
|
|
SCTP_CMD_FORCE_PRIM_RETRAN,
|
|
SCTP_NULL());
|
|
}
|
|
|
|
break;
|
|
|
|
case SCTP_CMD_GEN_SHUTDOWN:
|
|
/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
|
|
* Reset error counts.
|
|
*/
|
|
asoc->overall_error_count = 0;
|
|
|
|
/* Generate a SHUTDOWN chunk. */
|
|
new_obj = sctp_make_shutdown(asoc, chunk);
|
|
if (!new_obj) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
SCTP_CHUNK(new_obj));
|
|
break;
|
|
|
|
case SCTP_CMD_CHUNK_ULP:
|
|
/* Send a chunk to the sockets layer. */
|
|
pr_debug("%s: sm_sideff: chunk_up:%p, ulpq:%p\n",
|
|
__func__, cmd->obj.chunk, &asoc->ulpq);
|
|
|
|
asoc->stream.si->ulpevent_data(&asoc->ulpq,
|
|
cmd->obj.chunk,
|
|
GFP_ATOMIC);
|
|
break;
|
|
|
|
case SCTP_CMD_EVENT_ULP:
|
|
/* Send a notification to the sockets layer. */
|
|
pr_debug("%s: sm_sideff: event_up:%p, ulpq:%p\n",
|
|
__func__, cmd->obj.ulpevent, &asoc->ulpq);
|
|
|
|
asoc->stream.si->enqueue_event(&asoc->ulpq,
|
|
cmd->obj.ulpevent);
|
|
break;
|
|
|
|
case SCTP_CMD_REPLY:
|
|
/* If an caller has not already corked, do cork. */
|
|
if (!asoc->outqueue.cork) {
|
|
sctp_outq_cork(&asoc->outqueue);
|
|
local_cork = 1;
|
|
}
|
|
/* Send a chunk to our peer. */
|
|
sctp_outq_tail(&asoc->outqueue, cmd->obj.chunk, gfp);
|
|
break;
|
|
|
|
case SCTP_CMD_SEND_PKT:
|
|
/* Send a full packet to our peer. */
|
|
packet = cmd->obj.packet;
|
|
sctp_packet_transmit(packet, gfp);
|
|
sctp_ootb_pkt_free(packet);
|
|
break;
|
|
|
|
case SCTP_CMD_T1_RETRAN:
|
|
/* Mark a transport for retransmission. */
|
|
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
|
|
SCTP_RTXR_T1_RTX);
|
|
break;
|
|
|
|
case SCTP_CMD_RETRAN:
|
|
/* Mark a transport for retransmission. */
|
|
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
|
|
SCTP_RTXR_T3_RTX);
|
|
break;
|
|
|
|
case SCTP_CMD_ECN_CE:
|
|
/* Do delayed CE processing. */
|
|
sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
|
|
break;
|
|
|
|
case SCTP_CMD_ECN_ECNE:
|
|
/* Do delayed ECNE processing. */
|
|
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
|
|
chunk);
|
|
if (new_obj)
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
|
|
SCTP_CHUNK(new_obj));
|
|
break;
|
|
|
|
case SCTP_CMD_ECN_CWR:
|
|
/* Do delayed CWR processing. */
|
|
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
|
|
break;
|
|
|
|
case SCTP_CMD_SETUP_T2:
|
|
sctp_cmd_setup_t2(commands, asoc, cmd->obj.chunk);
|
|
break;
|
|
|
|
case SCTP_CMD_TIMER_START_ONCE:
|
|
timer = &asoc->timers[cmd->obj.to];
|
|
|
|
if (timer_pending(timer))
|
|
break;
|
|
fallthrough;
|
|
|
|
case SCTP_CMD_TIMER_START:
|
|
timer = &asoc->timers[cmd->obj.to];
|
|
timeout = asoc->timeouts[cmd->obj.to];
|
|
BUG_ON(!timeout);
|
|
|
|
/*
|
|
* SCTP has a hard time with timer starts. Because we process
|
|
* timer starts as side effects, it can be hard to tell if we
|
|
* have already started a timer or not, which leads to BUG
|
|
* halts when we call add_timer. So here, instead of just starting
|
|
* a timer, if the timer is already started, and just mod
|
|
* the timer with the shorter of the two expiration times
|
|
*/
|
|
if (!timer_pending(timer))
|
|
sctp_association_hold(asoc);
|
|
timer_reduce(timer, jiffies + timeout);
|
|
break;
|
|
|
|
case SCTP_CMD_TIMER_RESTART:
|
|
timer = &asoc->timers[cmd->obj.to];
|
|
timeout = asoc->timeouts[cmd->obj.to];
|
|
if (!mod_timer(timer, jiffies + timeout))
|
|
sctp_association_hold(asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_TIMER_STOP:
|
|
timer = &asoc->timers[cmd->obj.to];
|
|
if (del_timer(timer))
|
|
sctp_association_put(asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_INIT_CHOOSE_TRANSPORT:
|
|
chunk = cmd->obj.chunk;
|
|
t = sctp_assoc_choose_alter_transport(asoc,
|
|
asoc->init_last_sent_to);
|
|
asoc->init_last_sent_to = t;
|
|
chunk->transport = t;
|
|
t->init_sent_count++;
|
|
/* Set the new transport as primary */
|
|
sctp_assoc_set_primary(asoc, t);
|
|
break;
|
|
|
|
case SCTP_CMD_INIT_RESTART:
|
|
/* Do the needed accounting and updates
|
|
* associated with restarting an initialization
|
|
* timer. Only multiply the timeout by two if
|
|
* all transports have been tried at the current
|
|
* timeout.
|
|
*/
|
|
sctp_cmd_t1_timer_update(asoc,
|
|
SCTP_EVENT_TIMEOUT_T1_INIT,
|
|
"INIT");
|
|
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART,
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
|
|
break;
|
|
|
|
case SCTP_CMD_COOKIEECHO_RESTART:
|
|
/* Do the needed accounting and updates
|
|
* associated with restarting an initialization
|
|
* timer. Only multiply the timeout by two if
|
|
* all transports have been tried at the current
|
|
* timeout.
|
|
*/
|
|
sctp_cmd_t1_timer_update(asoc,
|
|
SCTP_EVENT_TIMEOUT_T1_COOKIE,
|
|
"COOKIE");
|
|
|
|
/* If we've sent any data bundled with
|
|
* COOKIE-ECHO we need to resend.
|
|
*/
|
|
list_for_each_entry(t, &asoc->peer.transport_addr_list,
|
|
transports) {
|
|
sctp_retransmit_mark(&asoc->outqueue, t,
|
|
SCTP_RTXR_T1_RTX);
|
|
}
|
|
|
|
sctp_add_cmd_sf(commands,
|
|
SCTP_CMD_TIMER_RESTART,
|
|
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE));
|
|
break;
|
|
|
|
case SCTP_CMD_INIT_FAILED:
|
|
sctp_cmd_init_failed(commands, asoc, cmd->obj.u16);
|
|
break;
|
|
|
|
case SCTP_CMD_ASSOC_FAILED:
|
|
sctp_cmd_assoc_failed(commands, asoc, event_type,
|
|
subtype, chunk, cmd->obj.u16);
|
|
break;
|
|
|
|
case SCTP_CMD_INIT_COUNTER_INC:
|
|
asoc->init_err_counter++;
|
|
break;
|
|
|
|
case SCTP_CMD_INIT_COUNTER_RESET:
|
|
asoc->init_err_counter = 0;
|
|
asoc->init_cycle = 0;
|
|
list_for_each_entry(t, &asoc->peer.transport_addr_list,
|
|
transports) {
|
|
t->init_sent_count = 0;
|
|
}
|
|
break;
|
|
|
|
case SCTP_CMD_REPORT_DUP:
|
|
sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
|
|
cmd->obj.u32);
|
|
break;
|
|
|
|
case SCTP_CMD_REPORT_BAD_TAG:
|
|
pr_debug("%s: vtag mismatch!\n", __func__);
|
|
break;
|
|
|
|
case SCTP_CMD_STRIKE:
|
|
/* Mark one strike against a transport. */
|
|
sctp_do_8_2_transport_strike(commands, asoc,
|
|
cmd->obj.transport, 0);
|
|
break;
|
|
|
|
case SCTP_CMD_TRANSPORT_IDLE:
|
|
t = cmd->obj.transport;
|
|
sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
|
|
break;
|
|
|
|
case SCTP_CMD_TRANSPORT_HB_SENT:
|
|
t = cmd->obj.transport;
|
|
sctp_do_8_2_transport_strike(commands, asoc,
|
|
t, 1);
|
|
t->hb_sent = 1;
|
|
break;
|
|
|
|
case SCTP_CMD_TRANSPORT_ON:
|
|
t = cmd->obj.transport;
|
|
sctp_cmd_transport_on(commands, asoc, t, chunk);
|
|
break;
|
|
|
|
case SCTP_CMD_HB_TIMERS_START:
|
|
sctp_cmd_hb_timers_start(commands, asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_HB_TIMER_UPDATE:
|
|
t = cmd->obj.transport;
|
|
sctp_transport_reset_hb_timer(t);
|
|
break;
|
|
|
|
case SCTP_CMD_HB_TIMERS_STOP:
|
|
sctp_cmd_hb_timers_stop(commands, asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_PROBE_TIMER_UPDATE:
|
|
t = cmd->obj.transport;
|
|
sctp_transport_reset_probe_timer(t);
|
|
break;
|
|
|
|
case SCTP_CMD_REPORT_ERROR:
|
|
error = cmd->obj.error;
|
|
break;
|
|
|
|
case SCTP_CMD_PROCESS_CTSN:
|
|
/* Dummy up a SACK for processing. */
|
|
sackh.cum_tsn_ack = cmd->obj.be32;
|
|
sackh.a_rwnd = htonl(asoc->peer.rwnd +
|
|
asoc->outqueue.outstanding_bytes);
|
|
sackh.num_gap_ack_blocks = 0;
|
|
sackh.num_dup_tsns = 0;
|
|
chunk->subh.sack_hdr = &sackh;
|
|
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
|
|
SCTP_CHUNK(chunk));
|
|
break;
|
|
|
|
case SCTP_CMD_DISCARD_PACKET:
|
|
/* We need to discard the whole packet.
|
|
* Uncork the queue since there might be
|
|
* responses pending
|
|
*/
|
|
chunk->pdiscard = 1;
|
|
if (asoc) {
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
local_cork = 0;
|
|
}
|
|
break;
|
|
|
|
case SCTP_CMD_RTO_PENDING:
|
|
t = cmd->obj.transport;
|
|
t->rto_pending = 1;
|
|
break;
|
|
|
|
case SCTP_CMD_PART_DELIVER:
|
|
asoc->stream.si->start_pd(&asoc->ulpq, GFP_ATOMIC);
|
|
break;
|
|
|
|
case SCTP_CMD_RENEGE:
|
|
asoc->stream.si->renege_events(&asoc->ulpq,
|
|
cmd->obj.chunk,
|
|
GFP_ATOMIC);
|
|
break;
|
|
|
|
case SCTP_CMD_SETUP_T4:
|
|
sctp_cmd_setup_t4(commands, asoc, cmd->obj.chunk);
|
|
break;
|
|
|
|
case SCTP_CMD_PROCESS_OPERR:
|
|
sctp_cmd_process_operr(commands, asoc, chunk);
|
|
break;
|
|
case SCTP_CMD_CLEAR_INIT_TAG:
|
|
asoc->peer.i.init_tag = 0;
|
|
break;
|
|
case SCTP_CMD_DEL_NON_PRIMARY:
|
|
sctp_cmd_del_non_primary(asoc);
|
|
break;
|
|
case SCTP_CMD_T3_RTX_TIMERS_STOP:
|
|
sctp_cmd_t3_rtx_timers_stop(commands, asoc);
|
|
break;
|
|
case SCTP_CMD_FORCE_PRIM_RETRAN:
|
|
t = asoc->peer.retran_path;
|
|
asoc->peer.retran_path = asoc->peer.primary_path;
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
local_cork = 0;
|
|
asoc->peer.retran_path = t;
|
|
break;
|
|
case SCTP_CMD_SET_SK_ERR:
|
|
sctp_cmd_set_sk_err(asoc, cmd->obj.error);
|
|
break;
|
|
case SCTP_CMD_ASSOC_CHANGE:
|
|
sctp_cmd_assoc_change(commands, asoc,
|
|
cmd->obj.u8);
|
|
break;
|
|
case SCTP_CMD_ADAPTATION_IND:
|
|
sctp_cmd_adaptation_ind(commands, asoc);
|
|
break;
|
|
case SCTP_CMD_PEER_NO_AUTH:
|
|
sctp_cmd_peer_no_auth(commands, asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_ASSOC_SHKEY:
|
|
error = sctp_auth_asoc_init_active_key(asoc,
|
|
GFP_ATOMIC);
|
|
break;
|
|
case SCTP_CMD_UPDATE_INITTAG:
|
|
asoc->peer.i.init_tag = cmd->obj.u32;
|
|
break;
|
|
case SCTP_CMD_SEND_MSG:
|
|
if (!asoc->outqueue.cork) {
|
|
sctp_outq_cork(&asoc->outqueue);
|
|
local_cork = 1;
|
|
}
|
|
sctp_cmd_send_msg(asoc, cmd->obj.msg, gfp);
|
|
break;
|
|
case SCTP_CMD_PURGE_ASCONF_QUEUE:
|
|
sctp_asconf_queue_teardown(asoc);
|
|
break;
|
|
|
|
case SCTP_CMD_SET_ASOC:
|
|
if (asoc && local_cork) {
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
local_cork = 0;
|
|
}
|
|
asoc = cmd->obj.asoc;
|
|
break;
|
|
|
|
default:
|
|
pr_warn("Impossible command: %u\n",
|
|
cmd->verb);
|
|
break;
|
|
}
|
|
|
|
if (error) {
|
|
cmd = sctp_next_cmd(commands);
|
|
while (cmd) {
|
|
if (cmd->verb == SCTP_CMD_REPLY)
|
|
sctp_chunk_free(cmd->obj.chunk);
|
|
cmd = sctp_next_cmd(commands);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If this is in response to a received chunk, wait until
|
|
* we are done with the packet to open the queue so that we don't
|
|
* send multiple packets in response to a single request.
|
|
*/
|
|
if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) {
|
|
if (chunk->end_of_packet || chunk->singleton)
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
} else if (local_cork)
|
|
sctp_outq_uncork(&asoc->outqueue, gfp);
|
|
|
|
if (sp->data_ready_signalled)
|
|
sp->data_ready_signalled = 0;
|
|
|
|
return error;
|
|
}
|