222 строки
6.5 KiB
C
222 строки
6.5 KiB
C
/* include/asm-generic/tlb.h
|
|
*
|
|
* Generic TLB shootdown code
|
|
*
|
|
* Copyright 2001 Red Hat, Inc.
|
|
* Based on code from mm/memory.c Copyright Linus Torvalds and others.
|
|
*
|
|
* Copyright 2011 Red Hat, Inc., Peter Zijlstra
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#ifndef _ASM_GENERIC__TLB_H
|
|
#define _ASM_GENERIC__TLB_H
|
|
|
|
#include <linux/swap.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
|
|
/*
|
|
* Semi RCU freeing of the page directories.
|
|
*
|
|
* This is needed by some architectures to implement software pagetable walkers.
|
|
*
|
|
* gup_fast() and other software pagetable walkers do a lockless page-table
|
|
* walk and therefore needs some synchronization with the freeing of the page
|
|
* directories. The chosen means to accomplish that is by disabling IRQs over
|
|
* the walk.
|
|
*
|
|
* Architectures that use IPIs to flush TLBs will then automagically DTRT,
|
|
* since we unlink the page, flush TLBs, free the page. Since the disabling of
|
|
* IRQs delays the completion of the TLB flush we can never observe an already
|
|
* freed page.
|
|
*
|
|
* Architectures that do not have this (PPC) need to delay the freeing by some
|
|
* other means, this is that means.
|
|
*
|
|
* What we do is batch the freed directory pages (tables) and RCU free them.
|
|
* We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
|
|
* holds off grace periods.
|
|
*
|
|
* However, in order to batch these pages we need to allocate storage, this
|
|
* allocation is deep inside the MM code and can thus easily fail on memory
|
|
* pressure. To guarantee progress we fall back to single table freeing, see
|
|
* the implementation of tlb_remove_table_one().
|
|
*
|
|
*/
|
|
struct mmu_table_batch {
|
|
struct rcu_head rcu;
|
|
unsigned int nr;
|
|
void *tables[0];
|
|
};
|
|
|
|
#define MAX_TABLE_BATCH \
|
|
((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
|
|
|
|
extern void tlb_table_flush(struct mmu_gather *tlb);
|
|
extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* If we can't allocate a page to make a big batch of page pointers
|
|
* to work on, then just handle a few from the on-stack structure.
|
|
*/
|
|
#define MMU_GATHER_BUNDLE 8
|
|
|
|
struct mmu_gather_batch {
|
|
struct mmu_gather_batch *next;
|
|
unsigned int nr;
|
|
unsigned int max;
|
|
struct page *pages[0];
|
|
};
|
|
|
|
#define MAX_GATHER_BATCH \
|
|
((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
|
|
|
|
/*
|
|
* Limit the maximum number of mmu_gather batches to reduce a risk of soft
|
|
* lockups for non-preemptible kernels on huge machines when a lot of memory
|
|
* is zapped during unmapping.
|
|
* 10K pages freed at once should be safe even without a preemption point.
|
|
*/
|
|
#define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
|
|
|
|
/* struct mmu_gather is an opaque type used by the mm code for passing around
|
|
* any data needed by arch specific code for tlb_remove_page.
|
|
*/
|
|
struct mmu_gather {
|
|
struct mm_struct *mm;
|
|
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
|
|
struct mmu_table_batch *batch;
|
|
#endif
|
|
unsigned long start;
|
|
unsigned long end;
|
|
/* we are in the middle of an operation to clear
|
|
* a full mm and can make some optimizations */
|
|
unsigned int fullmm : 1,
|
|
/* we have performed an operation which
|
|
* requires a complete flush of the tlb */
|
|
need_flush_all : 1;
|
|
|
|
struct mmu_gather_batch *active;
|
|
struct mmu_gather_batch local;
|
|
struct page *__pages[MMU_GATHER_BUNDLE];
|
|
unsigned int batch_count;
|
|
};
|
|
|
|
#define HAVE_GENERIC_MMU_GATHER
|
|
|
|
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end);
|
|
void tlb_flush_mmu(struct mmu_gather *tlb);
|
|
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start,
|
|
unsigned long end);
|
|
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page);
|
|
|
|
/* tlb_remove_page
|
|
* Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
|
|
* required.
|
|
*/
|
|
static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
|
|
{
|
|
if (!__tlb_remove_page(tlb, page))
|
|
tlb_flush_mmu(tlb);
|
|
}
|
|
|
|
static inline void __tlb_adjust_range(struct mmu_gather *tlb,
|
|
unsigned long address)
|
|
{
|
|
tlb->start = min(tlb->start, address);
|
|
tlb->end = max(tlb->end, address + PAGE_SIZE);
|
|
}
|
|
|
|
static inline void __tlb_reset_range(struct mmu_gather *tlb)
|
|
{
|
|
if (tlb->fullmm) {
|
|
tlb->start = tlb->end = ~0;
|
|
} else {
|
|
tlb->start = TASK_SIZE;
|
|
tlb->end = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In the case of tlb vma handling, we can optimise these away in the
|
|
* case where we're doing a full MM flush. When we're doing a munmap,
|
|
* the vmas are adjusted to only cover the region to be torn down.
|
|
*/
|
|
#ifndef tlb_start_vma
|
|
#define tlb_start_vma(tlb, vma) do { } while (0)
|
|
#endif
|
|
|
|
#define __tlb_end_vma(tlb, vma) \
|
|
do { \
|
|
if (!tlb->fullmm && tlb->end) { \
|
|
tlb_flush(tlb); \
|
|
__tlb_reset_range(tlb); \
|
|
} \
|
|
} while (0)
|
|
|
|
#ifndef tlb_end_vma
|
|
#define tlb_end_vma __tlb_end_vma
|
|
#endif
|
|
|
|
#ifndef __tlb_remove_tlb_entry
|
|
#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
|
|
#endif
|
|
|
|
/**
|
|
* tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
|
|
*
|
|
* Record the fact that pte's were really unmapped by updating the range,
|
|
* so we can later optimise away the tlb invalidate. This helps when
|
|
* userspace is unmapping already-unmapped pages, which happens quite a lot.
|
|
*/
|
|
#define tlb_remove_tlb_entry(tlb, ptep, address) \
|
|
do { \
|
|
__tlb_adjust_range(tlb, address); \
|
|
__tlb_remove_tlb_entry(tlb, ptep, address); \
|
|
} while (0)
|
|
|
|
/**
|
|
* tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
|
|
* This is a nop so far, because only x86 needs it.
|
|
*/
|
|
#ifndef __tlb_remove_pmd_tlb_entry
|
|
#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
|
|
#endif
|
|
|
|
#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
|
|
do { \
|
|
__tlb_adjust_range(tlb, address); \
|
|
__tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
|
|
} while (0)
|
|
|
|
#define pte_free_tlb(tlb, ptep, address) \
|
|
do { \
|
|
__tlb_adjust_range(tlb, address); \
|
|
__pte_free_tlb(tlb, ptep, address); \
|
|
} while (0)
|
|
|
|
#ifndef __ARCH_HAS_4LEVEL_HACK
|
|
#define pud_free_tlb(tlb, pudp, address) \
|
|
do { \
|
|
__tlb_adjust_range(tlb, address); \
|
|
__pud_free_tlb(tlb, pudp, address); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define pmd_free_tlb(tlb, pmdp, address) \
|
|
do { \
|
|
__tlb_adjust_range(tlb, address); \
|
|
__pmd_free_tlb(tlb, pmdp, address); \
|
|
} while (0)
|
|
|
|
#define tlb_migrate_finish(mm) do {} while (0)
|
|
|
|
#endif /* _ASM_GENERIC__TLB_H */
|