WSL2-Linux-Kernel/Documentation/filesystems/caching/fscache.txt

334 строки
14 KiB
Plaintext

==========================
General Filesystem Caching
==========================
========
OVERVIEW
========
This facility is a general purpose cache for network filesystems, though it
could be used for caching other things such as ISO9660 filesystems too.
FS-Cache mediates between cache backends (such as CacheFS) and network
filesystems:
+---------+
| | +--------------+
| NFS |--+ | |
| | | +-->| CacheFS |
+---------+ | +----------+ | | /dev/hda5 |
| | | | +--------------+
+---------+ +-->| | |
| | | |--+
| AFS |----->| FS-Cache |
| | | |--+
+---------+ +-->| | |
| | | | +--------------+
+---------+ | +----------+ | | |
| | | +-->| CacheFiles |
| ISOFS |--+ | /var/cache |
| | +--------------+
+---------+
Or to look at it another way, FS-Cache is a module that provides a caching
facility to a network filesystem such that the cache is transparent to the
user:
+---------+
| |
| Server |
| |
+---------+
| NETWORK
~~~~~|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
| +----------+
V | |
+---------+ | |
| | | |
| NFS |----->| FS-Cache |
| | | |--+
+---------+ | | | +--------------+ +--------------+
| | | | | | | |
V +----------+ +-->| CacheFiles |-->| Ext3 |
+---------+ | /var/cache | | /dev/sda6 |
| | +--------------+ +--------------+
| VFS | ^ ^
| | | |
+---------+ +--------------+ |
| KERNEL SPACE | |
~~~~~|~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~|~~~~~~|~~~~
| USER SPACE | |
V | |
+---------+ +--------------+
| | | |
| Process | | cachefilesd |
| | | |
+---------+ +--------------+
FS-Cache does not follow the idea of completely loading every netfs file
opened in its entirety into a cache before permitting it to be accessed and
then serving the pages out of that cache rather than the netfs inode because:
(1) It must be practical to operate without a cache.
(2) The size of any accessible file must not be limited to the size of the
cache.
(3) The combined size of all opened files (this includes mapped libraries)
must not be limited to the size of the cache.
(4) The user should not be forced to download an entire file just to do a
one-off access of a small portion of it (such as might be done with the
"file" program).
It instead serves the cache out in PAGE_SIZE chunks as and when requested by
the netfs('s) using it.
FS-Cache provides the following facilities:
(1) More than one cache can be used at once. Caches can be selected
explicitly by use of tags.
(2) Caches can be added / removed at any time.
(3) The netfs is provided with an interface that allows either party to
withdraw caching facilities from a file (required for (2)).
(4) The interface to the netfs returns as few errors as possible, preferring
rather to let the netfs remain oblivious.
(5) Cookies are used to represent indices, files and other objects to the
netfs. The simplest cookie is just a NULL pointer - indicating nothing
cached there.
(6) The netfs is allowed to propose - dynamically - any index hierarchy it
desires, though it must be aware that the index search function is
recursive, stack space is limited, and indices can only be children of
indices.
(7) Data I/O is done direct to and from the netfs's pages. The netfs
indicates that page A is at index B of the data-file represented by cookie
C, and that it should be read or written. The cache backend may or may
not start I/O on that page, but if it does, a netfs callback will be
invoked to indicate completion. The I/O may be either synchronous or
asynchronous.
(8) Cookies can be "retired" upon release. At this point FS-Cache will mark
them as obsolete and the index hierarchy rooted at that point will get
recycled.
(9) The netfs provides a "match" function for index searches. In addition to
saying whether a match was made or not, this can also specify that an
entry should be updated or deleted.
(10) As much as possible is done asynchronously.
FS-Cache maintains a virtual indexing tree in which all indices, files, objects
and pages are kept. Bits of this tree may actually reside in one or more
caches.
FSDEF
|
+------------------------------------+
| |
NFS AFS
| |
+--------------------------+ +-----------+
| | | |
homedir mirror afs.org redhat.com
| | |
+------------+ +---------------+ +----------+
| | | | | |
00001 00002 00007 00125 vol00001 vol00002
| | | | |
+---+---+ +-----+ +---+ +------+------+ +-----+----+
| | | | | | | | | | | | |
PG0 PG1 PG2 PG0 XATTR PG0 PG1 DIRENT DIRENT DIRENT R/W R/O Bak
| |
PG0 +-------+
| |
00001 00003
|
+---+---+
| | |
PG0 PG1 PG2
In the example above, you can see two netfs's being backed: NFS and AFS. These
have different index hierarchies:
(*) The NFS primary index contains per-server indices. Each server index is
indexed by NFS file handles to get data file objects. Each data file
objects can have an array of pages, but may also have further child
objects, such as extended attributes and directory entries. Extended
attribute objects themselves have page-array contents.
(*) The AFS primary index contains per-cell indices. Each cell index contains
per-logical-volume indices. Each of volume index contains up to three
indices for the read-write, read-only and backup mirrors of those volumes.
Each of these contains vnode data file objects, each of which contains an
array of pages.
The very top index is the FS-Cache master index in which individual netfs's
have entries.
Any index object may reside in more than one cache, provided it only has index
children. Any index with non-index object children will be assumed to only
reside in one cache.
The netfs API to FS-Cache can be found in:
Documentation/filesystems/caching/netfs-api.txt
The cache backend API to FS-Cache can be found in:
Documentation/filesystems/caching/backend-api.txt
A description of the internal representations and object state machine can be
found in:
Documentation/filesystems/caching/object.txt
=======================
STATISTICAL INFORMATION
=======================
If FS-Cache is compiled with the following options enabled:
CONFIG_FSCACHE_STATS=y
CONFIG_FSCACHE_HISTOGRAM=y
then it will gather certain statistics and display them through a number of
proc files.
(*) /proc/fs/fscache/stats
This shows counts of a number of events that can happen in FS-Cache:
CLASS EVENT MEANING
======= ======= =======================================================
Cookies idx=N Number of index cookies allocated
dat=N Number of data storage cookies allocated
spc=N Number of special cookies allocated
Objects alc=N Number of objects allocated
nal=N Number of object allocation failures
avl=N Number of objects that reached the available state
ded=N Number of objects that reached the dead state
ChkAux non=N Number of objects that didn't have a coherency check
ok=N Number of objects that passed a coherency check
upd=N Number of objects that needed a coherency data update
obs=N Number of objects that were declared obsolete
Pages mrk=N Number of pages marked as being cached
unc=N Number of uncache page requests seen
Acquire n=N Number of acquire cookie requests seen
nul=N Number of acq reqs given a NULL parent
noc=N Number of acq reqs rejected due to no cache available
ok=N Number of acq reqs succeeded
nbf=N Number of acq reqs rejected due to error
oom=N Number of acq reqs failed on ENOMEM
Lookups n=N Number of lookup calls made on cache backends
neg=N Number of negative lookups made
pos=N Number of positive lookups made
crt=N Number of objects created by lookup
Updates n=N Number of update cookie requests seen
nul=N Number of upd reqs given a NULL parent
run=N Number of upd reqs granted CPU time
Relinqs n=N Number of relinquish cookie requests seen
nul=N Number of rlq reqs given a NULL parent
wcr=N Number of rlq reqs waited on completion of creation
AttrChg n=N Number of attribute changed requests seen
ok=N Number of attr changed requests queued
nbf=N Number of attr changed rejected -ENOBUFS
oom=N Number of attr changed failed -ENOMEM
run=N Number of attr changed ops given CPU time
Allocs n=N Number of allocation requests seen
ok=N Number of successful alloc reqs
wt=N Number of alloc reqs that waited on lookup completion
nbf=N Number of alloc reqs rejected -ENOBUFS
ops=N Number of alloc reqs submitted
owt=N Number of alloc reqs waited for CPU time
Retrvls n=N Number of retrieval (read) requests seen
ok=N Number of successful retr reqs
wt=N Number of retr reqs that waited on lookup completion
nod=N Number of retr reqs returned -ENODATA
nbf=N Number of retr reqs rejected -ENOBUFS
int=N Number of retr reqs aborted -ERESTARTSYS
oom=N Number of retr reqs failed -ENOMEM
ops=N Number of retr reqs submitted
owt=N Number of retr reqs waited for CPU time
Stores n=N Number of storage (write) requests seen
ok=N Number of successful store reqs
agn=N Number of store reqs on a page already pending storage
nbf=N Number of store reqs rejected -ENOBUFS
oom=N Number of store reqs failed -ENOMEM
ops=N Number of store reqs submitted
run=N Number of store reqs granted CPU time
Ops pend=N Number of times async ops added to pending queues
run=N Number of times async ops given CPU time
enq=N Number of times async ops queued for processing
dfr=N Number of async ops queued for deferred release
rel=N Number of async ops released
gc=N Number of deferred-release async ops garbage collected
(*) /proc/fs/fscache/histogram
cat /proc/fs/fscache/histogram
JIFS SECS OBJ INST OP RUNS OBJ RUNS RETRV DLY RETRIEVLS
===== ===== ========= ========= ========= ========= =========
This shows the breakdown of the number of times each amount of time
between 0 jiffies and HZ-1 jiffies a variety of tasks took to run. The
columns are as follows:
COLUMN TIME MEASUREMENT
======= =======================================================
OBJ INST Length of time to instantiate an object
OP RUNS Length of time a call to process an operation took
OBJ RUNS Length of time a call to process an object event took
RETRV DLY Time between an requesting a read and lookup completing
RETRIEVLS Time between beginning and end of a retrieval
Each row shows the number of events that took a particular range of times.
Each step is 1 jiffy in size. The JIFS column indicates the particular
jiffy range covered, and the SECS field the equivalent number of seconds.
=========
DEBUGGING
=========
If CONFIG_FSCACHE_DEBUG is enabled, the FS-Cache facility can have runtime
debugging enabled by adjusting the value in:
/sys/module/fscache/parameters/debug
This is a bitmask of debugging streams to enable:
BIT VALUE STREAM POINT
======= ======= =============================== =======================
0 1 Cache management Function entry trace
1 2 Function exit trace
2 4 General
3 8 Cookie management Function entry trace
4 16 Function exit trace
5 32 General
6 64 Page handling Function entry trace
7 128 Function exit trace
8 256 General
9 512 Operation management Function entry trace
10 1024 Function exit trace
11 2048 General
The appropriate set of values should be OR'd together and the result written to
the control file. For example:
echo $((1|8|64)) >/sys/module/fscache/parameters/debug
will turn on all function entry debugging.