746 строки
17 KiB
C
746 строки
17 KiB
C
#undef DEBUG
|
|
|
|
/*
|
|
* ARM performance counter support.
|
|
*
|
|
* Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
|
|
* Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
|
|
*
|
|
* This code is based on the sparc64 perf event code, which is in turn based
|
|
* on the x86 code. Callchain code is based on the ARM OProfile backtrace
|
|
* code.
|
|
*/
|
|
#define pr_fmt(fmt) "hw perfevents: " fmt
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
#include <asm/cputype.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/pmu.h>
|
|
#include <asm/stacktrace.h>
|
|
|
|
static struct platform_device *pmu_device;
|
|
|
|
/*
|
|
* Hardware lock to serialize accesses to PMU registers. Needed for the
|
|
* read/modify/write sequences.
|
|
*/
|
|
static DEFINE_RAW_SPINLOCK(pmu_lock);
|
|
|
|
/*
|
|
* ARMv6 supports a maximum of 3 events, starting from index 1. If we add
|
|
* another platform that supports more, we need to increase this to be the
|
|
* largest of all platforms.
|
|
*
|
|
* ARMv7 supports up to 32 events:
|
|
* cycle counter CCNT + 31 events counters CNT0..30.
|
|
* Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
|
|
*/
|
|
#define ARMPMU_MAX_HWEVENTS 33
|
|
|
|
/* The events for a given CPU. */
|
|
struct cpu_hw_events {
|
|
/*
|
|
* The events that are active on the CPU for the given index. Index 0
|
|
* is reserved.
|
|
*/
|
|
struct perf_event *events[ARMPMU_MAX_HWEVENTS];
|
|
|
|
/*
|
|
* A 1 bit for an index indicates that the counter is being used for
|
|
* an event. A 0 means that the counter can be used.
|
|
*/
|
|
unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
|
|
|
|
/*
|
|
* A 1 bit for an index indicates that the counter is actively being
|
|
* used.
|
|
*/
|
|
unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
|
|
|
|
struct arm_pmu {
|
|
enum arm_perf_pmu_ids id;
|
|
const char *name;
|
|
irqreturn_t (*handle_irq)(int irq_num, void *dev);
|
|
void (*enable)(struct hw_perf_event *evt, int idx);
|
|
void (*disable)(struct hw_perf_event *evt, int idx);
|
|
int (*get_event_idx)(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event *hwc);
|
|
u32 (*read_counter)(int idx);
|
|
void (*write_counter)(int idx, u32 val);
|
|
void (*start)(void);
|
|
void (*stop)(void);
|
|
const unsigned (*cache_map)[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
const unsigned (*event_map)[PERF_COUNT_HW_MAX];
|
|
u32 raw_event_mask;
|
|
int num_events;
|
|
u64 max_period;
|
|
};
|
|
|
|
/* Set at runtime when we know what CPU type we are. */
|
|
static const struct arm_pmu *armpmu;
|
|
|
|
enum arm_perf_pmu_ids
|
|
armpmu_get_pmu_id(void)
|
|
{
|
|
int id = -ENODEV;
|
|
|
|
if (armpmu != NULL)
|
|
id = armpmu->id;
|
|
|
|
return id;
|
|
}
|
|
EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
|
|
|
|
int
|
|
armpmu_get_max_events(void)
|
|
{
|
|
int max_events = 0;
|
|
|
|
if (armpmu != NULL)
|
|
max_events = armpmu->num_events;
|
|
|
|
return max_events;
|
|
}
|
|
EXPORT_SYMBOL_GPL(armpmu_get_max_events);
|
|
|
|
int perf_num_counters(void)
|
|
{
|
|
return armpmu_get_max_events();
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_num_counters);
|
|
|
|
#define HW_OP_UNSUPPORTED 0xFFFF
|
|
|
|
#define C(_x) \
|
|
PERF_COUNT_HW_CACHE_##_x
|
|
|
|
#define CACHE_OP_UNSUPPORTED 0xFFFF
|
|
|
|
static int
|
|
armpmu_map_cache_event(u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result, ret;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return -EINVAL;
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return -EINVAL;
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
ret = (int)(*armpmu->cache_map)[cache_type][cache_op][cache_result];
|
|
|
|
if (ret == CACHE_OP_UNSUPPORTED)
|
|
return -ENOENT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
armpmu_map_event(u64 config)
|
|
{
|
|
int mapping = (*armpmu->event_map)[config];
|
|
return mapping == HW_OP_UNSUPPORTED ? -EOPNOTSUPP : mapping;
|
|
}
|
|
|
|
static int
|
|
armpmu_map_raw_event(u64 config)
|
|
{
|
|
return (int)(config & armpmu->raw_event_mask);
|
|
}
|
|
|
|
static int
|
|
armpmu_event_set_period(struct perf_event *event,
|
|
struct hw_perf_event *hwc,
|
|
int idx)
|
|
{
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int ret = 0;
|
|
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (left > (s64)armpmu->max_period)
|
|
left = armpmu->max_period;
|
|
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u64
|
|
armpmu_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc,
|
|
int idx)
|
|
{
|
|
int shift = 64 - 32;
|
|
s64 prev_raw_count, new_raw_count;
|
|
u64 delta;
|
|
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = armpmu->read_counter(idx);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
static void
|
|
armpmu_read(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/* Don't read disabled counters! */
|
|
if (hwc->idx < 0)
|
|
return;
|
|
|
|
armpmu_event_update(event, hwc, hwc->idx);
|
|
}
|
|
|
|
static void
|
|
armpmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (!armpmu)
|
|
return;
|
|
|
|
/*
|
|
* ARM pmu always has to update the counter, so ignore
|
|
* PERF_EF_UPDATE, see comments in armpmu_start().
|
|
*/
|
|
if (!(hwc->state & PERF_HES_STOPPED)) {
|
|
armpmu->disable(hwc, hwc->idx);
|
|
barrier(); /* why? */
|
|
armpmu_event_update(event, hwc, hwc->idx);
|
|
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
armpmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
if (!armpmu)
|
|
return;
|
|
|
|
/*
|
|
* ARM pmu always has to reprogram the period, so ignore
|
|
* PERF_EF_RELOAD, see the comment below.
|
|
*/
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
|
|
|
|
hwc->state = 0;
|
|
/*
|
|
* Set the period again. Some counters can't be stopped, so when we
|
|
* were stopped we simply disabled the IRQ source and the counter
|
|
* may have been left counting. If we don't do this step then we may
|
|
* get an interrupt too soon or *way* too late if the overflow has
|
|
* happened since disabling.
|
|
*/
|
|
armpmu_event_set_period(event, hwc, hwc->idx);
|
|
armpmu->enable(hwc, hwc->idx);
|
|
}
|
|
|
|
static void
|
|
armpmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
WARN_ON(idx < 0);
|
|
|
|
clear_bit(idx, cpuc->active_mask);
|
|
armpmu_stop(event, PERF_EF_UPDATE);
|
|
cpuc->events[idx] = NULL;
|
|
clear_bit(idx, cpuc->used_mask);
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
static int
|
|
armpmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx;
|
|
int err = 0;
|
|
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
/* If we don't have a space for the counter then finish early. */
|
|
idx = armpmu->get_event_idx(cpuc, hwc);
|
|
if (idx < 0) {
|
|
err = idx;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there is an event in the counter we are going to use then make
|
|
* sure it is disabled.
|
|
*/
|
|
event->hw.idx = idx;
|
|
armpmu->disable(hwc, idx);
|
|
cpuc->events[idx] = event;
|
|
set_bit(idx, cpuc->active_mask);
|
|
|
|
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
|
|
if (flags & PERF_EF_START)
|
|
armpmu_start(event, PERF_EF_RELOAD);
|
|
|
|
/* Propagate our changes to the userspace mapping. */
|
|
perf_event_update_userpage(event);
|
|
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
return err;
|
|
}
|
|
|
|
static struct pmu pmu;
|
|
|
|
static int
|
|
validate_event(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event fake_event = event->hw;
|
|
|
|
if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
|
|
return 1;
|
|
|
|
return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
|
|
}
|
|
|
|
static int
|
|
validate_group(struct perf_event *event)
|
|
{
|
|
struct perf_event *sibling, *leader = event->group_leader;
|
|
struct cpu_hw_events fake_pmu;
|
|
|
|
memset(&fake_pmu, 0, sizeof(fake_pmu));
|
|
|
|
if (!validate_event(&fake_pmu, leader))
|
|
return -ENOSPC;
|
|
|
|
list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
|
|
if (!validate_event(&fake_pmu, sibling))
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (!validate_event(&fake_pmu, event))
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
armpmu_reserve_hardware(void)
|
|
{
|
|
int i, err = -ENODEV, irq;
|
|
|
|
pmu_device = reserve_pmu(ARM_PMU_DEVICE_CPU);
|
|
if (IS_ERR(pmu_device)) {
|
|
pr_warning("unable to reserve pmu\n");
|
|
return PTR_ERR(pmu_device);
|
|
}
|
|
|
|
init_pmu(ARM_PMU_DEVICE_CPU);
|
|
|
|
if (pmu_device->num_resources < 1) {
|
|
pr_err("no irqs for PMUs defined\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
for (i = 0; i < pmu_device->num_resources; ++i) {
|
|
irq = platform_get_irq(pmu_device, i);
|
|
if (irq < 0)
|
|
continue;
|
|
|
|
err = request_irq(irq, armpmu->handle_irq,
|
|
IRQF_DISABLED | IRQF_NOBALANCING,
|
|
"armpmu", NULL);
|
|
if (err) {
|
|
pr_warning("unable to request IRQ%d for ARM perf "
|
|
"counters\n", irq);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
for (i = i - 1; i >= 0; --i) {
|
|
irq = platform_get_irq(pmu_device, i);
|
|
if (irq >= 0)
|
|
free_irq(irq, NULL);
|
|
}
|
|
release_pmu(pmu_device);
|
|
pmu_device = NULL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
armpmu_release_hardware(void)
|
|
{
|
|
int i, irq;
|
|
|
|
for (i = pmu_device->num_resources - 1; i >= 0; --i) {
|
|
irq = platform_get_irq(pmu_device, i);
|
|
if (irq >= 0)
|
|
free_irq(irq, NULL);
|
|
}
|
|
armpmu->stop();
|
|
|
|
release_pmu(pmu_device);
|
|
pmu_device = NULL;
|
|
}
|
|
|
|
static atomic_t active_events = ATOMIC_INIT(0);
|
|
static DEFINE_MUTEX(pmu_reserve_mutex);
|
|
|
|
static void
|
|
hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
|
|
armpmu_release_hardware();
|
|
mutex_unlock(&pmu_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
static int
|
|
__hw_perf_event_init(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int mapping, err;
|
|
|
|
/* Decode the generic type into an ARM event identifier. */
|
|
if (PERF_TYPE_HARDWARE == event->attr.type) {
|
|
mapping = armpmu_map_event(event->attr.config);
|
|
} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
|
|
mapping = armpmu_map_cache_event(event->attr.config);
|
|
} else if (PERF_TYPE_RAW == event->attr.type) {
|
|
mapping = armpmu_map_raw_event(event->attr.config);
|
|
} else {
|
|
pr_debug("event type %x not supported\n", event->attr.type);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (mapping < 0) {
|
|
pr_debug("event %x:%llx not supported\n", event->attr.type,
|
|
event->attr.config);
|
|
return mapping;
|
|
}
|
|
|
|
/*
|
|
* Check whether we need to exclude the counter from certain modes.
|
|
* The ARM performance counters are on all of the time so if someone
|
|
* has asked us for some excludes then we have to fail.
|
|
*/
|
|
if (event->attr.exclude_kernel || event->attr.exclude_user ||
|
|
event->attr.exclude_hv || event->attr.exclude_idle) {
|
|
pr_debug("ARM performance counters do not support "
|
|
"mode exclusion\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/*
|
|
* We don't assign an index until we actually place the event onto
|
|
* hardware. Use -1 to signify that we haven't decided where to put it
|
|
* yet. For SMP systems, each core has it's own PMU so we can't do any
|
|
* clever allocation or constraints checking at this point.
|
|
*/
|
|
hwc->idx = -1;
|
|
|
|
/*
|
|
* Store the event encoding into the config_base field. config and
|
|
* event_base are unused as the only 2 things we need to know are
|
|
* the event mapping and the counter to use. The counter to use is
|
|
* also the indx and the config_base is the event type.
|
|
*/
|
|
hwc->config_base = (unsigned long)mapping;
|
|
hwc->config = 0;
|
|
hwc->event_base = 0;
|
|
|
|
if (!hwc->sample_period) {
|
|
hwc->sample_period = armpmu->max_period;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
err = 0;
|
|
if (event->group_leader != event) {
|
|
err = validate_group(event);
|
|
if (err)
|
|
return -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int armpmu_event_init(struct perf_event *event)
|
|
{
|
|
int err = 0;
|
|
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_RAW:
|
|
case PERF_TYPE_HARDWARE:
|
|
case PERF_TYPE_HW_CACHE:
|
|
break;
|
|
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (!armpmu)
|
|
return -ENODEV;
|
|
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
if (!atomic_inc_not_zero(&active_events)) {
|
|
if (atomic_read(&active_events) > armpmu->num_events) {
|
|
atomic_dec(&active_events);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
mutex_lock(&pmu_reserve_mutex);
|
|
if (atomic_read(&active_events) == 0) {
|
|
err = armpmu_reserve_hardware();
|
|
}
|
|
|
|
if (!err)
|
|
atomic_inc(&active_events);
|
|
mutex_unlock(&pmu_reserve_mutex);
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
err = __hw_perf_event_init(event);
|
|
if (err)
|
|
hw_perf_event_destroy(event);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void armpmu_enable(struct pmu *pmu)
|
|
{
|
|
/* Enable all of the perf events on hardware. */
|
|
int idx;
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
if (!armpmu)
|
|
return;
|
|
|
|
for (idx = 0; idx <= armpmu->num_events; ++idx) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
|
|
if (!event)
|
|
continue;
|
|
|
|
armpmu->enable(&event->hw, idx);
|
|
}
|
|
|
|
armpmu->start();
|
|
}
|
|
|
|
static void armpmu_disable(struct pmu *pmu)
|
|
{
|
|
if (armpmu)
|
|
armpmu->stop();
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = armpmu_enable,
|
|
.pmu_disable = armpmu_disable,
|
|
.event_init = armpmu_event_init,
|
|
.add = armpmu_add,
|
|
.del = armpmu_del,
|
|
.start = armpmu_start,
|
|
.stop = armpmu_stop,
|
|
.read = armpmu_read,
|
|
};
|
|
|
|
/* Include the PMU-specific implementations. */
|
|
#include "perf_event_xscale.c"
|
|
#include "perf_event_v6.c"
|
|
#include "perf_event_v7.c"
|
|
|
|
static int __init
|
|
init_hw_perf_events(void)
|
|
{
|
|
unsigned long cpuid = read_cpuid_id();
|
|
unsigned long implementor = (cpuid & 0xFF000000) >> 24;
|
|
unsigned long part_number = (cpuid & 0xFFF0);
|
|
|
|
/* ARM Ltd CPUs. */
|
|
if (0x41 == implementor) {
|
|
switch (part_number) {
|
|
case 0xB360: /* ARM1136 */
|
|
case 0xB560: /* ARM1156 */
|
|
case 0xB760: /* ARM1176 */
|
|
armpmu = armv6pmu_init();
|
|
break;
|
|
case 0xB020: /* ARM11mpcore */
|
|
armpmu = armv6mpcore_pmu_init();
|
|
break;
|
|
case 0xC080: /* Cortex-A8 */
|
|
armpmu = armv7_a8_pmu_init();
|
|
break;
|
|
case 0xC090: /* Cortex-A9 */
|
|
armpmu = armv7_a9_pmu_init();
|
|
break;
|
|
}
|
|
/* Intel CPUs [xscale]. */
|
|
} else if (0x69 == implementor) {
|
|
part_number = (cpuid >> 13) & 0x7;
|
|
switch (part_number) {
|
|
case 1:
|
|
armpmu = xscale1pmu_init();
|
|
break;
|
|
case 2:
|
|
armpmu = xscale2pmu_init();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (armpmu) {
|
|
pr_info("enabled with %s PMU driver, %d counters available\n",
|
|
armpmu->name, armpmu->num_events);
|
|
} else {
|
|
pr_info("no hardware support available\n");
|
|
}
|
|
|
|
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_hw_perf_events);
|
|
|
|
/*
|
|
* Callchain handling code.
|
|
*/
|
|
|
|
/*
|
|
* The registers we're interested in are at the end of the variable
|
|
* length saved register structure. The fp points at the end of this
|
|
* structure so the address of this struct is:
|
|
* (struct frame_tail *)(xxx->fp)-1
|
|
*
|
|
* This code has been adapted from the ARM OProfile support.
|
|
*/
|
|
struct frame_tail {
|
|
struct frame_tail __user *fp;
|
|
unsigned long sp;
|
|
unsigned long lr;
|
|
} __attribute__((packed));
|
|
|
|
/*
|
|
* Get the return address for a single stackframe and return a pointer to the
|
|
* next frame tail.
|
|
*/
|
|
static struct frame_tail __user *
|
|
user_backtrace(struct frame_tail __user *tail,
|
|
struct perf_callchain_entry *entry)
|
|
{
|
|
struct frame_tail buftail;
|
|
|
|
/* Also check accessibility of one struct frame_tail beyond */
|
|
if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
|
|
return NULL;
|
|
if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
|
|
return NULL;
|
|
|
|
perf_callchain_store(entry, buftail.lr);
|
|
|
|
/*
|
|
* Frame pointers should strictly progress back up the stack
|
|
* (towards higher addresses).
|
|
*/
|
|
if (tail >= buftail.fp)
|
|
return NULL;
|
|
|
|
return buftail.fp - 1;
|
|
}
|
|
|
|
void
|
|
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
struct frame_tail __user *tail;
|
|
|
|
|
|
tail = (struct frame_tail __user *)regs->ARM_fp - 1;
|
|
|
|
while (tail && !((unsigned long)tail & 0x3))
|
|
tail = user_backtrace(tail, entry);
|
|
}
|
|
|
|
/*
|
|
* Gets called by walk_stackframe() for every stackframe. This will be called
|
|
* whist unwinding the stackframe and is like a subroutine return so we use
|
|
* the PC.
|
|
*/
|
|
static int
|
|
callchain_trace(struct stackframe *fr,
|
|
void *data)
|
|
{
|
|
struct perf_callchain_entry *entry = data;
|
|
perf_callchain_store(entry, fr->pc);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
struct stackframe fr;
|
|
|
|
fr.fp = regs->ARM_fp;
|
|
fr.sp = regs->ARM_sp;
|
|
fr.lr = regs->ARM_lr;
|
|
fr.pc = regs->ARM_pc;
|
|
walk_stackframe(&fr, callchain_trace, entry);
|
|
}
|