815 строки
25 KiB
C
815 строки
25 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* pptt.c - parsing of Processor Properties Topology Table (PPTT)
|
|
*
|
|
* Copyright (C) 2018, ARM
|
|
*
|
|
* This file implements parsing of the Processor Properties Topology Table
|
|
* which is optionally used to describe the processor and cache topology.
|
|
* Due to the relative pointers used throughout the table, this doesn't
|
|
* leverage the existing subtable parsing in the kernel.
|
|
*
|
|
* The PPTT structure is an inverted tree, with each node potentially
|
|
* holding one or two inverted tree data structures describing
|
|
* the caches available at that level. Each cache structure optionally
|
|
* contains properties describing the cache at a given level which can be
|
|
* used to override hardware probed values.
|
|
*/
|
|
#define pr_fmt(fmt) "ACPI PPTT: " fmt
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/cacheinfo.h>
|
|
#include <acpi/processor.h>
|
|
|
|
static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
|
|
u32 pptt_ref)
|
|
{
|
|
struct acpi_subtable_header *entry;
|
|
|
|
/* there isn't a subtable at reference 0 */
|
|
if (pptt_ref < sizeof(struct acpi_subtable_header))
|
|
return NULL;
|
|
|
|
if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
|
|
return NULL;
|
|
|
|
entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
|
|
|
|
if (entry->length == 0)
|
|
return NULL;
|
|
|
|
if (pptt_ref + entry->length > table_hdr->length)
|
|
return NULL;
|
|
|
|
return entry;
|
|
}
|
|
|
|
static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
|
|
u32 pptt_ref)
|
|
{
|
|
return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
|
|
}
|
|
|
|
static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
|
|
u32 pptt_ref)
|
|
{
|
|
return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
|
|
}
|
|
|
|
static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
|
|
struct acpi_pptt_processor *node,
|
|
int resource)
|
|
{
|
|
u32 *ref;
|
|
|
|
if (resource >= node->number_of_priv_resources)
|
|
return NULL;
|
|
|
|
ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
|
|
ref += resource;
|
|
|
|
return fetch_pptt_subtable(table_hdr, *ref);
|
|
}
|
|
|
|
static inline bool acpi_pptt_match_type(int table_type, int type)
|
|
{
|
|
return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
|
|
table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
|
|
}
|
|
|
|
/**
|
|
* acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
|
|
* @table_hdr: Pointer to the head of the PPTT table
|
|
* @local_level: passed res reflects this cache level
|
|
* @split_levels: Number of split cache levels (data/instruction).
|
|
* @res: cache resource in the PPTT we want to walk
|
|
* @found: returns a pointer to the requested level if found
|
|
* @level: the requested cache level
|
|
* @type: the requested cache type
|
|
*
|
|
* Attempt to find a given cache level, while counting the max number
|
|
* of cache levels for the cache node.
|
|
*
|
|
* Given a pptt resource, verify that it is a cache node, then walk
|
|
* down each level of caches, counting how many levels are found
|
|
* as well as checking the cache type (icache, dcache, unified). If a
|
|
* level & type match, then we set found, and continue the search.
|
|
* Once the entire cache branch has been walked return its max
|
|
* depth.
|
|
*
|
|
* Return: The cache structure and the level we terminated with.
|
|
*/
|
|
static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
|
|
unsigned int local_level,
|
|
unsigned int *split_levels,
|
|
struct acpi_subtable_header *res,
|
|
struct acpi_pptt_cache **found,
|
|
unsigned int level, int type)
|
|
{
|
|
struct acpi_pptt_cache *cache;
|
|
|
|
if (res->type != ACPI_PPTT_TYPE_CACHE)
|
|
return 0;
|
|
|
|
cache = (struct acpi_pptt_cache *) res;
|
|
while (cache) {
|
|
local_level++;
|
|
|
|
if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) {
|
|
cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
|
|
continue;
|
|
}
|
|
|
|
if (split_levels &&
|
|
(acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) ||
|
|
acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR)))
|
|
*split_levels = local_level;
|
|
|
|
if (local_level == level &&
|
|
acpi_pptt_match_type(cache->attributes, type)) {
|
|
if (*found != NULL && cache != *found)
|
|
pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
|
|
|
|
pr_debug("Found cache @ level %u\n", level);
|
|
*found = cache;
|
|
/*
|
|
* continue looking at this node's resource list
|
|
* to verify that we don't find a duplicate
|
|
* cache node.
|
|
*/
|
|
}
|
|
cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
|
|
}
|
|
return local_level;
|
|
}
|
|
|
|
static struct acpi_pptt_cache *
|
|
acpi_find_cache_level(struct acpi_table_header *table_hdr,
|
|
struct acpi_pptt_processor *cpu_node,
|
|
unsigned int *starting_level, unsigned int *split_levels,
|
|
unsigned int level, int type)
|
|
{
|
|
struct acpi_subtable_header *res;
|
|
unsigned int number_of_levels = *starting_level;
|
|
int resource = 0;
|
|
struct acpi_pptt_cache *ret = NULL;
|
|
unsigned int local_level;
|
|
|
|
/* walk down from processor node */
|
|
while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
|
|
resource++;
|
|
|
|
local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
|
|
split_levels, res, &ret,
|
|
level, type);
|
|
/*
|
|
* we are looking for the max depth. Since its potentially
|
|
* possible for a given node to have resources with differing
|
|
* depths verify that the depth we have found is the largest.
|
|
*/
|
|
if (number_of_levels < local_level)
|
|
number_of_levels = local_level;
|
|
}
|
|
if (number_of_levels > *starting_level)
|
|
*starting_level = number_of_levels;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache
|
|
* levels and split cache levels (data/instruction).
|
|
* @table_hdr: Pointer to the head of the PPTT table
|
|
* @cpu_node: processor node we wish to count caches for
|
|
* @levels: Number of levels if success.
|
|
* @split_levels: Number of split cache levels (data/instruction) if
|
|
* success. Can by NULL.
|
|
*
|
|
* Given a processor node containing a processing unit, walk into it and count
|
|
* how many levels exist solely for it, and then walk up each level until we hit
|
|
* the root node (ignore the package level because it may be possible to have
|
|
* caches that exist across packages). Count the number of cache levels and
|
|
* split cache levels (data/instruction) that exist at each level on the way
|
|
* up.
|
|
*/
|
|
static void acpi_count_levels(struct acpi_table_header *table_hdr,
|
|
struct acpi_pptt_processor *cpu_node,
|
|
unsigned int *levels, unsigned int *split_levels)
|
|
{
|
|
do {
|
|
acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0);
|
|
cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
|
|
} while (cpu_node);
|
|
}
|
|
|
|
/**
|
|
* acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
|
|
* @table_hdr: Pointer to the head of the PPTT table
|
|
* @node: passed node is checked to see if its a leaf
|
|
*
|
|
* Determine if the *node parameter is a leaf node by iterating the
|
|
* PPTT table, looking for nodes which reference it.
|
|
*
|
|
* Return: 0 if we find a node referencing the passed node (or table error),
|
|
* or 1 if we don't.
|
|
*/
|
|
static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
|
|
struct acpi_pptt_processor *node)
|
|
{
|
|
struct acpi_subtable_header *entry;
|
|
unsigned long table_end;
|
|
u32 node_entry;
|
|
struct acpi_pptt_processor *cpu_node;
|
|
u32 proc_sz;
|
|
|
|
if (table_hdr->revision > 1)
|
|
return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
|
|
|
|
table_end = (unsigned long)table_hdr + table_hdr->length;
|
|
node_entry = ACPI_PTR_DIFF(node, table_hdr);
|
|
entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
|
|
sizeof(struct acpi_table_pptt));
|
|
proc_sz = sizeof(struct acpi_pptt_processor *);
|
|
|
|
while ((unsigned long)entry + proc_sz < table_end) {
|
|
cpu_node = (struct acpi_pptt_processor *)entry;
|
|
if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
|
|
cpu_node->parent == node_entry)
|
|
return 0;
|
|
if (entry->length == 0)
|
|
return 0;
|
|
entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
|
|
entry->length);
|
|
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* acpi_find_processor_node() - Given a PPTT table find the requested processor
|
|
* @table_hdr: Pointer to the head of the PPTT table
|
|
* @acpi_cpu_id: CPU we are searching for
|
|
*
|
|
* Find the subtable entry describing the provided processor.
|
|
* This is done by iterating the PPTT table looking for processor nodes
|
|
* which have an acpi_processor_id that matches the acpi_cpu_id parameter
|
|
* passed into the function. If we find a node that matches this criteria
|
|
* we verify that its a leaf node in the topology rather than depending
|
|
* on the valid flag, which doesn't need to be set for leaf nodes.
|
|
*
|
|
* Return: NULL, or the processors acpi_pptt_processor*
|
|
*/
|
|
static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
|
|
u32 acpi_cpu_id)
|
|
{
|
|
struct acpi_subtable_header *entry;
|
|
unsigned long table_end;
|
|
struct acpi_pptt_processor *cpu_node;
|
|
u32 proc_sz;
|
|
|
|
table_end = (unsigned long)table_hdr + table_hdr->length;
|
|
entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
|
|
sizeof(struct acpi_table_pptt));
|
|
proc_sz = sizeof(struct acpi_pptt_processor *);
|
|
|
|
/* find the processor structure associated with this cpuid */
|
|
while ((unsigned long)entry + proc_sz < table_end) {
|
|
cpu_node = (struct acpi_pptt_processor *)entry;
|
|
|
|
if (entry->length == 0) {
|
|
pr_warn("Invalid zero length subtable\n");
|
|
break;
|
|
}
|
|
if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
|
|
acpi_cpu_id == cpu_node->acpi_processor_id &&
|
|
acpi_pptt_leaf_node(table_hdr, cpu_node)) {
|
|
return (struct acpi_pptt_processor *)entry;
|
|
}
|
|
|
|
entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
|
|
entry->length);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static u8 acpi_cache_type(enum cache_type type)
|
|
{
|
|
switch (type) {
|
|
case CACHE_TYPE_DATA:
|
|
pr_debug("Looking for data cache\n");
|
|
return ACPI_PPTT_CACHE_TYPE_DATA;
|
|
case CACHE_TYPE_INST:
|
|
pr_debug("Looking for instruction cache\n");
|
|
return ACPI_PPTT_CACHE_TYPE_INSTR;
|
|
default:
|
|
case CACHE_TYPE_UNIFIED:
|
|
pr_debug("Looking for unified cache\n");
|
|
/*
|
|
* It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
|
|
* contains the bit pattern that will match both
|
|
* ACPI unified bit patterns because we use it later
|
|
* to match both cases.
|
|
*/
|
|
return ACPI_PPTT_CACHE_TYPE_UNIFIED;
|
|
}
|
|
}
|
|
|
|
static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
|
|
u32 acpi_cpu_id,
|
|
enum cache_type type,
|
|
unsigned int level,
|
|
struct acpi_pptt_processor **node)
|
|
{
|
|
unsigned int total_levels = 0;
|
|
struct acpi_pptt_cache *found = NULL;
|
|
struct acpi_pptt_processor *cpu_node;
|
|
u8 acpi_type = acpi_cache_type(type);
|
|
|
|
pr_debug("Looking for CPU %d's level %u cache type %d\n",
|
|
acpi_cpu_id, level, acpi_type);
|
|
|
|
cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
|
|
|
|
while (cpu_node && !found) {
|
|
found = acpi_find_cache_level(table_hdr, cpu_node,
|
|
&total_levels, NULL, level, acpi_type);
|
|
*node = cpu_node;
|
|
cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/**
|
|
* update_cache_properties() - Update cacheinfo for the given processor
|
|
* @this_leaf: Kernel cache info structure being updated
|
|
* @found_cache: The PPTT node describing this cache instance
|
|
* @cpu_node: A unique reference to describe this cache instance
|
|
* @revision: The revision of the PPTT table
|
|
*
|
|
* The ACPI spec implies that the fields in the cache structures are used to
|
|
* extend and correct the information probed from the hardware. Lets only
|
|
* set fields that we determine are VALID.
|
|
*
|
|
* Return: nothing. Side effect of updating the global cacheinfo
|
|
*/
|
|
static void update_cache_properties(struct cacheinfo *this_leaf,
|
|
struct acpi_pptt_cache *found_cache,
|
|
struct acpi_pptt_processor *cpu_node,
|
|
u8 revision)
|
|
{
|
|
struct acpi_pptt_cache_v1* found_cache_v1;
|
|
|
|
this_leaf->fw_token = cpu_node;
|
|
if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
|
|
this_leaf->size = found_cache->size;
|
|
if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
|
|
this_leaf->coherency_line_size = found_cache->line_size;
|
|
if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
|
|
this_leaf->number_of_sets = found_cache->number_of_sets;
|
|
if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
|
|
this_leaf->ways_of_associativity = found_cache->associativity;
|
|
if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
|
|
switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
|
|
case ACPI_PPTT_CACHE_POLICY_WT:
|
|
this_leaf->attributes = CACHE_WRITE_THROUGH;
|
|
break;
|
|
case ACPI_PPTT_CACHE_POLICY_WB:
|
|
this_leaf->attributes = CACHE_WRITE_BACK;
|
|
break;
|
|
}
|
|
}
|
|
if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
|
|
switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
|
|
case ACPI_PPTT_CACHE_READ_ALLOCATE:
|
|
this_leaf->attributes |= CACHE_READ_ALLOCATE;
|
|
break;
|
|
case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
|
|
this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
|
|
break;
|
|
case ACPI_PPTT_CACHE_RW_ALLOCATE:
|
|
case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
|
|
this_leaf->attributes |=
|
|
CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If cache type is NOCACHE, then the cache hasn't been specified
|
|
* via other mechanisms. Update the type if a cache type has been
|
|
* provided.
|
|
*
|
|
* Note, we assume such caches are unified based on conventional system
|
|
* design and known examples. Significant work is required elsewhere to
|
|
* fully support data/instruction only type caches which are only
|
|
* specified in PPTT.
|
|
*/
|
|
if (this_leaf->type == CACHE_TYPE_NOCACHE &&
|
|
found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
|
|
this_leaf->type = CACHE_TYPE_UNIFIED;
|
|
|
|
if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
|
|
found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
|
|
found_cache, sizeof(struct acpi_pptt_cache));
|
|
this_leaf->id = found_cache_v1->cache_id;
|
|
this_leaf->attributes |= CACHE_ID;
|
|
}
|
|
}
|
|
|
|
static void cache_setup_acpi_cpu(struct acpi_table_header *table,
|
|
unsigned int cpu)
|
|
{
|
|
struct acpi_pptt_cache *found_cache;
|
|
struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
|
|
u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
|
|
struct cacheinfo *this_leaf;
|
|
unsigned int index = 0;
|
|
struct acpi_pptt_processor *cpu_node = NULL;
|
|
|
|
while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
|
|
this_leaf = this_cpu_ci->info_list + index;
|
|
found_cache = acpi_find_cache_node(table, acpi_cpu_id,
|
|
this_leaf->type,
|
|
this_leaf->level,
|
|
&cpu_node);
|
|
pr_debug("found = %p %p\n", found_cache, cpu_node);
|
|
if (found_cache)
|
|
update_cache_properties(this_leaf, found_cache,
|
|
ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
|
|
table->revision);
|
|
|
|
index++;
|
|
}
|
|
}
|
|
|
|
static bool flag_identical(struct acpi_table_header *table_hdr,
|
|
struct acpi_pptt_processor *cpu)
|
|
{
|
|
struct acpi_pptt_processor *next;
|
|
|
|
/* heterogeneous machines must use PPTT revision > 1 */
|
|
if (table_hdr->revision < 2)
|
|
return false;
|
|
|
|
/* Locate the last node in the tree with IDENTICAL set */
|
|
if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
|
|
next = fetch_pptt_node(table_hdr, cpu->parent);
|
|
if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Passing level values greater than this will result in search termination */
|
|
#define PPTT_ABORT_PACKAGE 0xFF
|
|
|
|
static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
|
|
struct acpi_pptt_processor *cpu,
|
|
int level, int flag)
|
|
{
|
|
struct acpi_pptt_processor *prev_node;
|
|
|
|
while (cpu && level) {
|
|
/* special case the identical flag to find last identical */
|
|
if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
|
|
if (flag_identical(table_hdr, cpu))
|
|
break;
|
|
} else if (cpu->flags & flag)
|
|
break;
|
|
pr_debug("level %d\n", level);
|
|
prev_node = fetch_pptt_node(table_hdr, cpu->parent);
|
|
if (prev_node == NULL)
|
|
break;
|
|
cpu = prev_node;
|
|
level--;
|
|
}
|
|
return cpu;
|
|
}
|
|
|
|
static void acpi_pptt_warn_missing(void)
|
|
{
|
|
pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
|
|
}
|
|
|
|
/**
|
|
* topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
|
|
* @table: Pointer to the head of the PPTT table
|
|
* @cpu: Kernel logical CPU number
|
|
* @level: A level that terminates the search
|
|
* @flag: A flag which terminates the search
|
|
*
|
|
* Get a unique value given a CPU, and a topology level, that can be
|
|
* matched to determine which cpus share common topological features
|
|
* at that level.
|
|
*
|
|
* Return: Unique value, or -ENOENT if unable to locate CPU
|
|
*/
|
|
static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
|
|
unsigned int cpu, int level, int flag)
|
|
{
|
|
struct acpi_pptt_processor *cpu_node;
|
|
u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
|
|
|
|
cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
|
|
if (cpu_node) {
|
|
cpu_node = acpi_find_processor_tag(table, cpu_node,
|
|
level, flag);
|
|
/*
|
|
* As per specification if the processor structure represents
|
|
* an actual processor, then ACPI processor ID must be valid.
|
|
* For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
|
|
* should be set if the UID is valid
|
|
*/
|
|
if (level == 0 ||
|
|
cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
|
|
return cpu_node->acpi_processor_id;
|
|
return ACPI_PTR_DIFF(cpu_node, table);
|
|
}
|
|
pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
|
|
cpu, acpi_cpu_id);
|
|
return -ENOENT;
|
|
}
|
|
|
|
|
|
static struct acpi_table_header *acpi_get_pptt(void)
|
|
{
|
|
static struct acpi_table_header *pptt;
|
|
static bool is_pptt_checked;
|
|
acpi_status status;
|
|
|
|
/*
|
|
* PPTT will be used at runtime on every CPU hotplug in path, so we
|
|
* don't need to call acpi_put_table() to release the table mapping.
|
|
*/
|
|
if (!pptt && !is_pptt_checked) {
|
|
status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
|
|
if (ACPI_FAILURE(status))
|
|
acpi_pptt_warn_missing();
|
|
|
|
is_pptt_checked = true;
|
|
}
|
|
|
|
return pptt;
|
|
}
|
|
|
|
static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
|
|
{
|
|
struct acpi_table_header *table;
|
|
int retval;
|
|
|
|
table = acpi_get_pptt();
|
|
if (!table)
|
|
return -ENOENT;
|
|
|
|
retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
|
|
pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
|
|
cpu, level, retval);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* check_acpi_cpu_flag() - Determine if CPU node has a flag set
|
|
* @cpu: Kernel logical CPU number
|
|
* @rev: The minimum PPTT revision defining the flag
|
|
* @flag: The flag itself
|
|
*
|
|
* Check the node representing a CPU for a given flag.
|
|
*
|
|
* Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
|
|
* the table revision isn't new enough.
|
|
* 1, any passed flag set
|
|
* 0, flag unset
|
|
*/
|
|
static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
|
|
{
|
|
struct acpi_table_header *table;
|
|
u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
|
|
struct acpi_pptt_processor *cpu_node = NULL;
|
|
int ret = -ENOENT;
|
|
|
|
table = acpi_get_pptt();
|
|
if (!table)
|
|
return -ENOENT;
|
|
|
|
if (table->revision >= rev)
|
|
cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
|
|
|
|
if (cpu_node)
|
|
ret = (cpu_node->flags & flag) != 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* acpi_get_cache_info() - Determine the number of cache levels and
|
|
* split cache levels (data/instruction) and for a PE.
|
|
* @cpu: Kernel logical CPU number
|
|
* @levels: Number of levels if success.
|
|
* @split_levels: Number of levels being split (i.e. data/instruction)
|
|
* if success. Can by NULL.
|
|
*
|
|
* Given a logical CPU number, returns the number of levels of cache represented
|
|
* in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
|
|
* indicating we didn't find any cache levels.
|
|
*
|
|
* Return: -ENOENT if no PPTT table or no PPTT processor struct found.
|
|
* 0 on success.
|
|
*/
|
|
int acpi_get_cache_info(unsigned int cpu, unsigned int *levels,
|
|
unsigned int *split_levels)
|
|
{
|
|
struct acpi_pptt_processor *cpu_node;
|
|
struct acpi_table_header *table;
|
|
u32 acpi_cpu_id;
|
|
|
|
*levels = 0;
|
|
if (split_levels)
|
|
*split_levels = 0;
|
|
|
|
table = acpi_get_pptt();
|
|
if (!table)
|
|
return -ENOENT;
|
|
|
|
pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu);
|
|
|
|
acpi_cpu_id = get_acpi_id_for_cpu(cpu);
|
|
cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
|
|
if (!cpu_node)
|
|
return -ENOENT;
|
|
|
|
acpi_count_levels(table, cpu_node, levels, split_levels);
|
|
|
|
pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
|
|
*levels, split_levels ? *split_levels : -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cache_setup_acpi() - Override CPU cache topology with data from the PPTT
|
|
* @cpu: Kernel logical CPU number
|
|
*
|
|
* Updates the global cache info provided by cpu_get_cacheinfo()
|
|
* when there are valid properties in the acpi_pptt_cache nodes. A
|
|
* successful parse may not result in any updates if none of the
|
|
* cache levels have any valid flags set. Further, a unique value is
|
|
* associated with each known CPU cache entry. This unique value
|
|
* can be used to determine whether caches are shared between CPUs.
|
|
*
|
|
* Return: -ENOENT on failure to find table, or 0 on success
|
|
*/
|
|
int cache_setup_acpi(unsigned int cpu)
|
|
{
|
|
struct acpi_table_header *table;
|
|
|
|
table = acpi_get_pptt();
|
|
if (!table)
|
|
return -ENOENT;
|
|
|
|
pr_debug("Cache Setup ACPI CPU %d\n", cpu);
|
|
|
|
cache_setup_acpi_cpu(table, cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
|
|
* @cpu: Kernel logical CPU number
|
|
*
|
|
* Return: 1, a thread
|
|
* 0, not a thread
|
|
* -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
|
|
* the table revision isn't new enough.
|
|
*/
|
|
int acpi_pptt_cpu_is_thread(unsigned int cpu)
|
|
{
|
|
return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
|
|
}
|
|
|
|
/**
|
|
* find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
|
|
* @cpu: Kernel logical CPU number
|
|
* @level: The topological level for which we would like a unique ID
|
|
*
|
|
* Determine a topology unique ID for each thread/core/cluster/mc_grouping
|
|
* /socket/etc. This ID can then be used to group peers, which will have
|
|
* matching ids.
|
|
*
|
|
* The search terminates when either the requested level is found or
|
|
* we reach a root node. Levels beyond the termination point will return the
|
|
* same unique ID. The unique id for level 0 is the acpi processor id. All
|
|
* other levels beyond this use a generated value to uniquely identify
|
|
* a topological feature.
|
|
*
|
|
* Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
|
|
* Otherwise returns a value which represents a unique topological feature.
|
|
*/
|
|
int find_acpi_cpu_topology(unsigned int cpu, int level)
|
|
{
|
|
return find_acpi_cpu_topology_tag(cpu, level, 0);
|
|
}
|
|
|
|
/**
|
|
* find_acpi_cpu_topology_package() - Determine a unique CPU package value
|
|
* @cpu: Kernel logical CPU number
|
|
*
|
|
* Determine a topology unique package ID for the given CPU.
|
|
* This ID can then be used to group peers, which will have matching ids.
|
|
*
|
|
* The search terminates when either a level is found with the PHYSICAL_PACKAGE
|
|
* flag set or we reach a root node.
|
|
*
|
|
* Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
|
|
* Otherwise returns a value which represents the package for this CPU.
|
|
*/
|
|
int find_acpi_cpu_topology_package(unsigned int cpu)
|
|
{
|
|
return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
|
|
ACPI_PPTT_PHYSICAL_PACKAGE);
|
|
}
|
|
|
|
/**
|
|
* find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
|
|
* @cpu: Kernel logical CPU number
|
|
*
|
|
* Determine a topology unique cluster ID for the given CPU/thread.
|
|
* This ID can then be used to group peers, which will have matching ids.
|
|
*
|
|
* The cluster, if present is the level of topology above CPUs. In a
|
|
* multi-thread CPU, it will be the level above the CPU, not the thread.
|
|
* It may not exist in single CPU systems. In simple multi-CPU systems,
|
|
* it may be equal to the package topology level.
|
|
*
|
|
* Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
|
|
* or there is no toplogy level above the CPU..
|
|
* Otherwise returns a value which represents the package for this CPU.
|
|
*/
|
|
|
|
int find_acpi_cpu_topology_cluster(unsigned int cpu)
|
|
{
|
|
struct acpi_table_header *table;
|
|
struct acpi_pptt_processor *cpu_node, *cluster_node;
|
|
u32 acpi_cpu_id;
|
|
int retval;
|
|
int is_thread;
|
|
|
|
table = acpi_get_pptt();
|
|
if (!table)
|
|
return -ENOENT;
|
|
|
|
acpi_cpu_id = get_acpi_id_for_cpu(cpu);
|
|
cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
|
|
if (!cpu_node || !cpu_node->parent)
|
|
return -ENOENT;
|
|
|
|
is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
|
|
cluster_node = fetch_pptt_node(table, cpu_node->parent);
|
|
if (!cluster_node)
|
|
return -ENOENT;
|
|
|
|
if (is_thread) {
|
|
if (!cluster_node->parent)
|
|
return -ENOENT;
|
|
|
|
cluster_node = fetch_pptt_node(table, cluster_node->parent);
|
|
if (!cluster_node)
|
|
return -ENOENT;
|
|
}
|
|
if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
|
|
retval = cluster_node->acpi_processor_id;
|
|
else
|
|
retval = ACPI_PTR_DIFF(cluster_node, table);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
|
|
* @cpu: Kernel logical CPU number
|
|
*
|
|
* Determine a unique heterogeneous tag for the given CPU. CPUs with the same
|
|
* implementation should have matching tags.
|
|
*
|
|
* The returned tag can be used to group peers with identical implementation.
|
|
*
|
|
* The search terminates when a level is found with the identical implementation
|
|
* flag set or we reach a root node.
|
|
*
|
|
* Due to limitations in the PPTT data structure, there may be rare situations
|
|
* where two cores in a heterogeneous machine may be identical, but won't have
|
|
* the same tag.
|
|
*
|
|
* Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
|
|
* Otherwise returns a value which represents a group of identical cores
|
|
* similar to this CPU.
|
|
*/
|
|
int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
|
|
{
|
|
return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
|
|
ACPI_PPTT_ACPI_IDENTICAL);
|
|
}
|