WSL2-Linux-Kernel/arch/x86/kvm/vmx.c

11660 строки
330 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "irq.h"
#include "mmu.h"
#include "cpuid.h"
#include "lapic.h"
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sched.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/trace_events.h>
#include <linux/slab.h>
#include <linux/tboot.h>
#include <linux/hrtimer.h>
#include "kvm_cache_regs.h"
#include "x86.h"
#include <asm/cpu.h>
#include <asm/io.h>
#include <asm/desc.h>
#include <asm/vmx.h>
#include <asm/virtext.h>
#include <asm/mce.h>
#include <asm/fpu/internal.h>
#include <asm/perf_event.h>
#include <asm/debugreg.h>
#include <asm/kexec.h>
#include <asm/apic.h>
#include <asm/irq_remapping.h>
#include "trace.h"
#include "pmu.h"
#define __ex(x) __kvm_handle_fault_on_reboot(x)
#define __ex_clear(x, reg) \
____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static const struct x86_cpu_id vmx_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_VMX),
{}
};
MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
static bool __read_mostly enable_vpid = 1;
module_param_named(vpid, enable_vpid, bool, 0444);
static bool __read_mostly flexpriority_enabled = 1;
module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
static bool __read_mostly enable_ept = 1;
module_param_named(ept, enable_ept, bool, S_IRUGO);
static bool __read_mostly enable_unrestricted_guest = 1;
module_param_named(unrestricted_guest,
enable_unrestricted_guest, bool, S_IRUGO);
static bool __read_mostly enable_ept_ad_bits = 1;
module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
static bool __read_mostly emulate_invalid_guest_state = true;
module_param(emulate_invalid_guest_state, bool, S_IRUGO);
static bool __read_mostly vmm_exclusive = 1;
module_param(vmm_exclusive, bool, S_IRUGO);
static bool __read_mostly fasteoi = 1;
module_param(fasteoi, bool, S_IRUGO);
static bool __read_mostly enable_apicv = 1;
module_param(enable_apicv, bool, S_IRUGO);
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
* use VMX instructions.
*/
static bool __read_mostly nested = 0;
module_param(nested, bool, S_IRUGO);
static u64 __read_mostly host_xss;
static bool __read_mostly enable_pml = 1;
module_param_named(pml, enable_pml, bool, S_IRUGO);
#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
static int __read_mostly cpu_preemption_timer_multi;
static bool __read_mostly enable_preemption_timer = 1;
#ifdef CONFIG_X86_64
module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
#endif
#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
#define KVM_VM_CR0_ALWAYS_ON \
(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
#define KVM_CR4_GUEST_OWNED_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
| X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
/*
* Hyper-V requires all of these, so mark them as supported even though
* they are just treated the same as all-context.
*/
#define VMX_VPID_EXTENT_SUPPORTED_MASK \
(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
* executions of PAUSE in a loop. Also indicate if ple enabled.
* According to test, this time is usually smaller than 128 cycles.
* ple_window: upper bound on the amount of time a guest is allowed to execute
* in a PAUSE loop. Tests indicate that most spinlocks are held for
* less than 2^12 cycles
* Time is measured based on a counter that runs at the same rate as the TSC,
* refer SDM volume 3b section 21.6.13 & 22.1.3.
*/
#define KVM_VMX_DEFAULT_PLE_GAP 128
#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
module_param(ple_gap, int, S_IRUGO);
static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
module_param(ple_window, int, S_IRUGO);
/* Default doubles per-vcpu window every exit. */
static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
module_param(ple_window_grow, int, S_IRUGO);
/* Default resets per-vcpu window every exit to ple_window. */
static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
module_param(ple_window_shrink, int, S_IRUGO);
/* Default is to compute the maximum so we can never overflow. */
static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
module_param(ple_window_max, int, S_IRUGO);
extern const ulong vmx_return;
#define NR_AUTOLOAD_MSRS 8
#define VMCS02_POOL_SIZE 1
struct vmcs {
u32 revision_id;
u32 abort;
char data[0];
};
/*
* Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
* remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
* loaded on this CPU (so we can clear them if the CPU goes down).
*/
struct loaded_vmcs {
struct vmcs *vmcs;
struct vmcs *shadow_vmcs;
int cpu;
int launched;
struct list_head loaded_vmcss_on_cpu_link;
};
struct shared_msr_entry {
unsigned index;
u64 data;
u64 mask;
};
/*
* struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
* single nested guest (L2), hence the name vmcs12. Any VMX implementation has
* a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
* stored in guest memory specified by VMPTRLD, but is opaque to the guest,
* which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
* More than one of these structures may exist, if L1 runs multiple L2 guests.
* nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
* underlying hardware which will be used to run L2.
* This structure is packed to ensure that its layout is identical across
* machines (necessary for live migration).
* If there are changes in this struct, VMCS12_REVISION must be changed.
*/
typedef u64 natural_width;
struct __packed vmcs12 {
/* According to the Intel spec, a VMCS region must start with the
* following two fields. Then follow implementation-specific data.
*/
u32 revision_id;
u32 abort;
u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
u32 padding[7]; /* room for future expansion */
u64 io_bitmap_a;
u64 io_bitmap_b;
u64 msr_bitmap;
u64 vm_exit_msr_store_addr;
u64 vm_exit_msr_load_addr;
u64 vm_entry_msr_load_addr;
u64 tsc_offset;
u64 virtual_apic_page_addr;
u64 apic_access_addr;
u64 posted_intr_desc_addr;
u64 ept_pointer;
u64 eoi_exit_bitmap0;
u64 eoi_exit_bitmap1;
u64 eoi_exit_bitmap2;
u64 eoi_exit_bitmap3;
u64 xss_exit_bitmap;
u64 guest_physical_address;
u64 vmcs_link_pointer;
u64 guest_ia32_debugctl;
u64 guest_ia32_pat;
u64 guest_ia32_efer;
u64 guest_ia32_perf_global_ctrl;
u64 guest_pdptr0;
u64 guest_pdptr1;
u64 guest_pdptr2;
u64 guest_pdptr3;
u64 guest_bndcfgs;
u64 host_ia32_pat;
u64 host_ia32_efer;
u64 host_ia32_perf_global_ctrl;
u64 padding64[8]; /* room for future expansion */
/*
* To allow migration of L1 (complete with its L2 guests) between
* machines of different natural widths (32 or 64 bit), we cannot have
* unsigned long fields with no explict size. We use u64 (aliased
* natural_width) instead. Luckily, x86 is little-endian.
*/
natural_width cr0_guest_host_mask;
natural_width cr4_guest_host_mask;
natural_width cr0_read_shadow;
natural_width cr4_read_shadow;
natural_width cr3_target_value0;
natural_width cr3_target_value1;
natural_width cr3_target_value2;
natural_width cr3_target_value3;
natural_width exit_qualification;
natural_width guest_linear_address;
natural_width guest_cr0;
natural_width guest_cr3;
natural_width guest_cr4;
natural_width guest_es_base;
natural_width guest_cs_base;
natural_width guest_ss_base;
natural_width guest_ds_base;
natural_width guest_fs_base;
natural_width guest_gs_base;
natural_width guest_ldtr_base;
natural_width guest_tr_base;
natural_width guest_gdtr_base;
natural_width guest_idtr_base;
natural_width guest_dr7;
natural_width guest_rsp;
natural_width guest_rip;
natural_width guest_rflags;
natural_width guest_pending_dbg_exceptions;
natural_width guest_sysenter_esp;
natural_width guest_sysenter_eip;
natural_width host_cr0;
natural_width host_cr3;
natural_width host_cr4;
natural_width host_fs_base;
natural_width host_gs_base;
natural_width host_tr_base;
natural_width host_gdtr_base;
natural_width host_idtr_base;
natural_width host_ia32_sysenter_esp;
natural_width host_ia32_sysenter_eip;
natural_width host_rsp;
natural_width host_rip;
natural_width paddingl[8]; /* room for future expansion */
u32 pin_based_vm_exec_control;
u32 cpu_based_vm_exec_control;
u32 exception_bitmap;
u32 page_fault_error_code_mask;
u32 page_fault_error_code_match;
u32 cr3_target_count;
u32 vm_exit_controls;
u32 vm_exit_msr_store_count;
u32 vm_exit_msr_load_count;
u32 vm_entry_controls;
u32 vm_entry_msr_load_count;
u32 vm_entry_intr_info_field;
u32 vm_entry_exception_error_code;
u32 vm_entry_instruction_len;
u32 tpr_threshold;
u32 secondary_vm_exec_control;
u32 vm_instruction_error;
u32 vm_exit_reason;
u32 vm_exit_intr_info;
u32 vm_exit_intr_error_code;
u32 idt_vectoring_info_field;
u32 idt_vectoring_error_code;
u32 vm_exit_instruction_len;
u32 vmx_instruction_info;
u32 guest_es_limit;
u32 guest_cs_limit;
u32 guest_ss_limit;
u32 guest_ds_limit;
u32 guest_fs_limit;
u32 guest_gs_limit;
u32 guest_ldtr_limit;
u32 guest_tr_limit;
u32 guest_gdtr_limit;
u32 guest_idtr_limit;
u32 guest_es_ar_bytes;
u32 guest_cs_ar_bytes;
u32 guest_ss_ar_bytes;
u32 guest_ds_ar_bytes;
u32 guest_fs_ar_bytes;
u32 guest_gs_ar_bytes;
u32 guest_ldtr_ar_bytes;
u32 guest_tr_ar_bytes;
u32 guest_interruptibility_info;
u32 guest_activity_state;
u32 guest_sysenter_cs;
u32 host_ia32_sysenter_cs;
u32 vmx_preemption_timer_value;
u32 padding32[7]; /* room for future expansion */
u16 virtual_processor_id;
u16 posted_intr_nv;
u16 guest_es_selector;
u16 guest_cs_selector;
u16 guest_ss_selector;
u16 guest_ds_selector;
u16 guest_fs_selector;
u16 guest_gs_selector;
u16 guest_ldtr_selector;
u16 guest_tr_selector;
u16 guest_intr_status;
u16 host_es_selector;
u16 host_cs_selector;
u16 host_ss_selector;
u16 host_ds_selector;
u16 host_fs_selector;
u16 host_gs_selector;
u16 host_tr_selector;
};
/*
* VMCS12_REVISION is an arbitrary id that should be changed if the content or
* layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
* VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
*/
#define VMCS12_REVISION 0x11e57ed0
/*
* VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
* and any VMCS region. Although only sizeof(struct vmcs12) are used by the
* current implementation, 4K are reserved to avoid future complications.
*/
#define VMCS12_SIZE 0x1000
/* Used to remember the last vmcs02 used for some recently used vmcs12s */
struct vmcs02_list {
struct list_head list;
gpa_t vmptr;
struct loaded_vmcs vmcs02;
};
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
gpa_t vmxon_ptr;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/* The host-usable pointer to the above */
struct page *current_vmcs12_page;
struct vmcs12 *current_vmcs12;
/*
* Cache of the guest's VMCS, existing outside of guest memory.
* Loaded from guest memory during VMPTRLD. Flushed to guest
* memory during VMXOFF, VMCLEAR, VMPTRLD.
*/
struct vmcs12 *cached_vmcs12;
/*
* Indicates if the shadow vmcs must be updated with the
* data hold by vmcs12
*/
bool sync_shadow_vmcs;
/* vmcs02_list cache of VMCSs recently used to run L2 guests */
struct list_head vmcs02_pool;
int vmcs02_num;
bool change_vmcs01_virtual_x2apic_mode;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/*
* Guest pages referred to in vmcs02 with host-physical pointers, so
* we must keep them pinned while L2 runs.
*/
struct page *apic_access_page;
struct page *virtual_apic_page;
struct page *pi_desc_page;
struct pi_desc *pi_desc;
bool pi_pending;
u16 posted_intr_nv;
unsigned long *msr_bitmap;
struct hrtimer preemption_timer;
bool preemption_timer_expired;
/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
u64 vmcs01_debugctl;
u16 vpid02;
u16 last_vpid;
/*
* We only store the "true" versions of the VMX capability MSRs. We
* generate the "non-true" versions by setting the must-be-1 bits
* according to the SDM.
*/
u32 nested_vmx_procbased_ctls_low;
u32 nested_vmx_procbased_ctls_high;
u32 nested_vmx_secondary_ctls_low;
u32 nested_vmx_secondary_ctls_high;
u32 nested_vmx_pinbased_ctls_low;
u32 nested_vmx_pinbased_ctls_high;
u32 nested_vmx_exit_ctls_low;
u32 nested_vmx_exit_ctls_high;
u32 nested_vmx_entry_ctls_low;
u32 nested_vmx_entry_ctls_high;
u32 nested_vmx_misc_low;
u32 nested_vmx_misc_high;
u32 nested_vmx_ept_caps;
u32 nested_vmx_vpid_caps;
u64 nested_vmx_basic;
u64 nested_vmx_cr0_fixed0;
u64 nested_vmx_cr0_fixed1;
u64 nested_vmx_cr4_fixed0;
u64 nested_vmx_cr4_fixed1;
u64 nested_vmx_vmcs_enum;
};
#define POSTED_INTR_ON 0
#define POSTED_INTR_SN 1
/* Posted-Interrupt Descriptor */
struct pi_desc {
u32 pir[8]; /* Posted interrupt requested */
union {
struct {
/* bit 256 - Outstanding Notification */
u16 on : 1,
/* bit 257 - Suppress Notification */
sn : 1,
/* bit 271:258 - Reserved */
rsvd_1 : 14;
/* bit 279:272 - Notification Vector */
u8 nv;
/* bit 287:280 - Reserved */
u8 rsvd_2;
/* bit 319:288 - Notification Destination */
u32 ndst;
};
u64 control;
};
u32 rsvd[6];
} __aligned(64);
static bool pi_test_and_set_on(struct pi_desc *pi_desc)
{
return test_and_set_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
{
return test_and_clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
{
return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
}
static inline void pi_clear_sn(struct pi_desc *pi_desc)
{
return clear_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline void pi_set_sn(struct pi_desc *pi_desc)
{
return set_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
static inline void pi_clear_on(struct pi_desc *pi_desc)
{
clear_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_on(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_ON,
(unsigned long *)&pi_desc->control);
}
static inline int pi_test_sn(struct pi_desc *pi_desc)
{
return test_bit(POSTED_INTR_SN,
(unsigned long *)&pi_desc->control);
}
struct vcpu_vmx {
struct kvm_vcpu vcpu;
unsigned long host_rsp;
u8 fail;
bool nmi_known_unmasked;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
struct shared_msr_entry *guest_msrs;
int nmsrs;
int save_nmsrs;
unsigned long host_idt_base;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
u32 vm_entry_controls_shadow;
u32 vm_exit_controls_shadow;
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
bool __launched; /* temporary, used in vmx_vcpu_run */
struct msr_autoload {
unsigned nr;
struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
} msr_autoload;
struct {
int loaded;
u16 fs_sel, gs_sel, ldt_sel;
#ifdef CONFIG_X86_64
u16 ds_sel, es_sel;
#endif
int gs_ldt_reload_needed;
int fs_reload_needed;
u64 msr_host_bndcfgs;
unsigned long vmcs_host_cr4; /* May not match real cr4 */
} host_state;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
/* Support for vnmi-less CPUs */
int soft_vnmi_blocked;
ktime_t entry_time;
s64 vnmi_blocked_time;
u32 exit_reason;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
/* Dynamic PLE window. */
int ple_window;
bool ple_window_dirty;
/* Support for PML */
#define PML_ENTITY_NUM 512
struct page *pml_pg;
/* apic deadline value in host tsc */
u64 hv_deadline_tsc;
u64 current_tsc_ratio;
bool guest_pkru_valid;
u32 guest_pkru;
u32 host_pkru;
/*
* Only bits masked by msr_ia32_feature_control_valid_bits can be set in
* msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
* in msr_ia32_feature_control_valid_bits.
*/
u64 msr_ia32_feature_control;
u64 msr_ia32_feature_control_valid_bits;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
{
return &(to_vmx(vcpu)->pi_desc);
}
#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
[number##_HIGH] = VMCS12_OFFSET(name)+4
static unsigned long shadow_read_only_fields[] = {
/*
* We do NOT shadow fields that are modified when L0
* traps and emulates any vmx instruction (e.g. VMPTRLD,
* VMXON...) executed by L1.
* For example, VM_INSTRUCTION_ERROR is read
* by L1 if a vmx instruction fails (part of the error path).
* Note the code assumes this logic. If for some reason
* we start shadowing these fields then we need to
* force a shadow sync when L0 emulates vmx instructions
* (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
* by nested_vmx_failValid)
*/
VM_EXIT_REASON,
VM_EXIT_INTR_INFO,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_INFO_FIELD,
IDT_VECTORING_ERROR_CODE,
VM_EXIT_INTR_ERROR_CODE,
EXIT_QUALIFICATION,
GUEST_LINEAR_ADDRESS,
GUEST_PHYSICAL_ADDRESS
};
static int max_shadow_read_only_fields =
ARRAY_SIZE(shadow_read_only_fields);
static unsigned long shadow_read_write_fields[] = {
TPR_THRESHOLD,
GUEST_RIP,
GUEST_RSP,
GUEST_CR0,
GUEST_CR3,
GUEST_CR4,
GUEST_INTERRUPTIBILITY_INFO,
GUEST_RFLAGS,
GUEST_CS_SELECTOR,
GUEST_CS_AR_BYTES,
GUEST_CS_LIMIT,
GUEST_CS_BASE,
GUEST_ES_BASE,
GUEST_BNDCFGS,
CR0_GUEST_HOST_MASK,
CR0_READ_SHADOW,
CR4_READ_SHADOW,
TSC_OFFSET,
EXCEPTION_BITMAP,
CPU_BASED_VM_EXEC_CONTROL,
VM_ENTRY_EXCEPTION_ERROR_CODE,
VM_ENTRY_INTR_INFO_FIELD,
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE,
HOST_FS_BASE,
HOST_GS_BASE,
HOST_FS_SELECTOR,
HOST_GS_SELECTOR
};
static int max_shadow_read_write_fields =
ARRAY_SIZE(shadow_read_write_fields);
static const unsigned short vmcs_field_to_offset_table[] = {
FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
FIELD(POSTED_INTR_NV, posted_intr_nv),
FIELD(GUEST_ES_SELECTOR, guest_es_selector),
FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
FIELD(GUEST_INTR_STATUS, guest_intr_status),
FIELD(HOST_ES_SELECTOR, host_es_selector),
FIELD(HOST_CS_SELECTOR, host_cs_selector),
FIELD(HOST_SS_SELECTOR, host_ss_selector),
FIELD(HOST_DS_SELECTOR, host_ds_selector),
FIELD(HOST_FS_SELECTOR, host_fs_selector),
FIELD(HOST_GS_SELECTOR, host_gs_selector),
FIELD(HOST_TR_SELECTOR, host_tr_selector),
FIELD64(IO_BITMAP_A, io_bitmap_a),
FIELD64(IO_BITMAP_B, io_bitmap_b),
FIELD64(MSR_BITMAP, msr_bitmap),
FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
FIELD64(TSC_OFFSET, tsc_offset),
FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
FIELD64(EPT_POINTER, ept_pointer),
FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
FIELD64(GUEST_PDPTR0, guest_pdptr0),
FIELD64(GUEST_PDPTR1, guest_pdptr1),
FIELD64(GUEST_PDPTR2, guest_pdptr2),
FIELD64(GUEST_PDPTR3, guest_pdptr3),
FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
FIELD64(HOST_IA32_PAT, host_ia32_pat),
FIELD64(HOST_IA32_EFER, host_ia32_efer),
FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
FIELD(EXCEPTION_BITMAP, exception_bitmap),
FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
FIELD(CR3_TARGET_COUNT, cr3_target_count),
FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
FIELD(TPR_THRESHOLD, tpr_threshold),
FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
FIELD(VM_EXIT_REASON, vm_exit_reason),
FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
FIELD(GUEST_ES_LIMIT, guest_es_limit),
FIELD(GUEST_CS_LIMIT, guest_cs_limit),
FIELD(GUEST_SS_LIMIT, guest_ss_limit),
FIELD(GUEST_DS_LIMIT, guest_ds_limit),
FIELD(GUEST_FS_LIMIT, guest_fs_limit),
FIELD(GUEST_GS_LIMIT, guest_gs_limit),
FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
FIELD(GUEST_TR_LIMIT, guest_tr_limit),
FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
FIELD(CR0_READ_SHADOW, cr0_read_shadow),
FIELD(CR4_READ_SHADOW, cr4_read_shadow),
FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
FIELD(EXIT_QUALIFICATION, exit_qualification),
FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
FIELD(GUEST_CR0, guest_cr0),
FIELD(GUEST_CR3, guest_cr3),
FIELD(GUEST_CR4, guest_cr4),
FIELD(GUEST_ES_BASE, guest_es_base),
FIELD(GUEST_CS_BASE, guest_cs_base),
FIELD(GUEST_SS_BASE, guest_ss_base),
FIELD(GUEST_DS_BASE, guest_ds_base),
FIELD(GUEST_FS_BASE, guest_fs_base),
FIELD(GUEST_GS_BASE, guest_gs_base),
FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
FIELD(GUEST_TR_BASE, guest_tr_base),
FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
FIELD(GUEST_IDTR_BASE, guest_idtr_base),
FIELD(GUEST_DR7, guest_dr7),
FIELD(GUEST_RSP, guest_rsp),
FIELD(GUEST_RIP, guest_rip),
FIELD(GUEST_RFLAGS, guest_rflags),
FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
FIELD(HOST_CR0, host_cr0),
FIELD(HOST_CR3, host_cr3),
FIELD(HOST_CR4, host_cr4),
FIELD(HOST_FS_BASE, host_fs_base),
FIELD(HOST_GS_BASE, host_gs_base),
FIELD(HOST_TR_BASE, host_tr_base),
FIELD(HOST_GDTR_BASE, host_gdtr_base),
FIELD(HOST_IDTR_BASE, host_idtr_base),
FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
FIELD(HOST_RSP, host_rsp),
FIELD(HOST_RIP, host_rip),
};
static inline short vmcs_field_to_offset(unsigned long field)
{
BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
vmcs_field_to_offset_table[field] == 0)
return -ENOENT;
return vmcs_field_to_offset_table[field];
}
static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->nested.cached_vmcs12;
}
static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
{
struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
if (is_error_page(page))
return NULL;
return page;
}
static void nested_release_page(struct page *page)
{
kvm_release_page_dirty(page);
}
static void nested_release_page_clean(struct page *page)
{
kvm_release_page_clean(page);
}
static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
static u64 construct_eptp(unsigned long root_hpa);
static void kvm_cpu_vmxon(u64 addr);
static void kvm_cpu_vmxoff(void);
static bool vmx_xsaves_supported(void);
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
static int alloc_identity_pagetable(struct kvm *kvm);
static DEFINE_PER_CPU(struct vmcs *, vmxarea);
static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
/*
* We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
* when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
*/
static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
/*
* We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
* can find which vCPU should be waken up.
*/
static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
enum {
VMX_IO_BITMAP_A,
VMX_IO_BITMAP_B,
VMX_MSR_BITMAP_LEGACY,
VMX_MSR_BITMAP_LONGMODE,
VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
VMX_MSR_BITMAP_LEGACY_X2APIC,
VMX_MSR_BITMAP_LONGMODE_X2APIC,
VMX_VMREAD_BITMAP,
VMX_VMWRITE_BITMAP,
VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
#define vmx_io_bitmap_a (vmx_bitmap[VMX_IO_BITMAP_A])
#define vmx_io_bitmap_b (vmx_bitmap[VMX_IO_BITMAP_B])
#define vmx_msr_bitmap_legacy (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
#define vmx_msr_bitmap_longmode (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
#define vmx_msr_bitmap_legacy_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
#define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
#define vmx_msr_bitmap_legacy_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
#define vmx_msr_bitmap_longmode_x2apic (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
static bool cpu_has_load_ia32_efer;
static bool cpu_has_load_perf_global_ctrl;
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
static struct vmcs_config {
int size;
int order;
u32 basic_cap;
u32 revision_id;
u32 pin_based_exec_ctrl;
u32 cpu_based_exec_ctrl;
u32 cpu_based_2nd_exec_ctrl;
u32 vmexit_ctrl;
u32 vmentry_ctrl;
} vmcs_config;
static struct vmx_capability {
u32 ept;
u32 vpid;
} vmx_capability;
#define VMX_SEGMENT_FIELD(seg) \
[VCPU_SREG_##seg] = { \
.selector = GUEST_##seg##_SELECTOR, \
.base = GUEST_##seg##_BASE, \
.limit = GUEST_##seg##_LIMIT, \
.ar_bytes = GUEST_##seg##_AR_BYTES, \
}
static const struct kvm_vmx_segment_field {
unsigned selector;
unsigned base;
unsigned limit;
unsigned ar_bytes;
} kvm_vmx_segment_fields[] = {
VMX_SEGMENT_FIELD(CS),
VMX_SEGMENT_FIELD(DS),
VMX_SEGMENT_FIELD(ES),
VMX_SEGMENT_FIELD(FS),
VMX_SEGMENT_FIELD(GS),
VMX_SEGMENT_FIELD(SS),
VMX_SEGMENT_FIELD(TR),
VMX_SEGMENT_FIELD(LDTR),
};
static u64 host_efer;
static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
/*
* Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
* away by decrementing the array size.
*/
static const u32 vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
};
static inline bool is_exception_n(u32 intr_info, u8 vector)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
}
static inline bool is_debug(u32 intr_info)
{
return is_exception_n(intr_info, DB_VECTOR);
}
static inline bool is_breakpoint(u32 intr_info)
{
return is_exception_n(intr_info, BP_VECTOR);
}
static inline bool is_page_fault(u32 intr_info)
{
return is_exception_n(intr_info, PF_VECTOR);
}
static inline bool is_no_device(u32 intr_info)
{
return is_exception_n(intr_info, NM_VECTOR);
}
static inline bool is_invalid_opcode(u32 intr_info)
{
return is_exception_n(intr_info, UD_VECTOR);
}
static inline bool is_external_interrupt(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
}
static inline bool is_machine_check(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
INTR_INFO_VALID_MASK)) ==
(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
}
static inline bool cpu_has_vmx_msr_bitmap(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
}
static inline bool cpu_has_vmx_tpr_shadow(void)
{
return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
}
static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
{
return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
}
static inline bool cpu_has_secondary_exec_ctrls(void)
{
return vmcs_config.cpu_based_exec_ctrl &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
}
static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
}
static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
}
static inline bool cpu_has_vmx_apic_register_virt(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_APIC_REGISTER_VIRT;
}
static inline bool cpu_has_vmx_virtual_intr_delivery(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
}
/*
* Comment's format: document - errata name - stepping - processor name.
* Refer from
* https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
*/
static u32 vmx_preemption_cpu_tfms[] = {
/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
0x000206E6,
/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020652,
/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
0x00020655,
/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
/*
* 320767.pdf - AAP86 - B1 -
* i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
*/
0x000106E5,
/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
0x000106A0,
/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
0x000106A1,
/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
0x000106A4,
/* 321333.pdf - AAM126 - D0 - Xeon 3500 */
/* 321324.pdf - AAK139 - D0 - Xeon 5500 */
/* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
0x000106A5,
};
static inline bool cpu_has_broken_vmx_preemption_timer(void)
{
u32 eax = cpuid_eax(0x00000001), i;
/* Clear the reserved bits */
eax &= ~(0x3U << 14 | 0xfU << 28);
for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
if (eax == vmx_preemption_cpu_tfms[i])
return true;
return false;
}
static inline bool cpu_has_vmx_preemption_timer(void)
{
return vmcs_config.pin_based_exec_ctrl &
PIN_BASED_VMX_PREEMPTION_TIMER;
}
static inline bool cpu_has_vmx_posted_intr(void)
{
return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
}
static inline bool cpu_has_vmx_apicv(void)
{
return cpu_has_vmx_apic_register_virt() &&
cpu_has_vmx_virtual_intr_delivery() &&
cpu_has_vmx_posted_intr();
}
static inline bool cpu_has_vmx_flexpriority(void)
{
return cpu_has_vmx_tpr_shadow() &&
cpu_has_vmx_virtualize_apic_accesses();
}
static inline bool cpu_has_vmx_ept_execute_only(void)
{
return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
}
static inline bool cpu_has_vmx_ept_2m_page(void)
{
return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_1g_page(void)
{
return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
}
static inline bool cpu_has_vmx_ept_4levels(void)
{
return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
}
static inline bool cpu_has_vmx_ept_ad_bits(void)
{
return vmx_capability.ept & VMX_EPT_AD_BIT;
}
static inline bool cpu_has_vmx_invept_context(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invept_global(void)
{
return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
}
static inline bool cpu_has_vmx_invvpid_single(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invvpid_global(void)
{
return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
}
static inline bool cpu_has_vmx_invvpid(void)
{
return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
}
static inline bool cpu_has_vmx_ept(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_EPT;
}
static inline bool cpu_has_vmx_unrestricted_guest(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_UNRESTRICTED_GUEST;
}
static inline bool cpu_has_vmx_ple(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_PAUSE_LOOP_EXITING;
}
static inline bool cpu_has_vmx_basic_inout(void)
{
return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
}
static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
{
return flexpriority_enabled && lapic_in_kernel(vcpu);
}
static inline bool cpu_has_vmx_vpid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_VPID;
}
static inline bool cpu_has_vmx_rdtscp(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_RDTSCP;
}
static inline bool cpu_has_vmx_invpcid(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_ENABLE_INVPCID;
}
static inline bool cpu_has_virtual_nmis(void)
{
return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool cpu_has_vmx_wbinvd_exit(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_WBINVD_EXITING;
}
static inline bool cpu_has_vmx_shadow_vmcs(void)
{
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
/* check if the cpu supports writing r/o exit information fields */
if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
return false;
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_SHADOW_VMCS;
}
static inline bool cpu_has_vmx_pml(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
}
static inline bool cpu_has_vmx_tsc_scaling(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_TSC_SCALING;
}
static inline bool report_flexpriority(void)
{
return flexpriority_enabled;
}
static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
{
return vmcs12->cpu_based_vm_exec_control & bit;
}
static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
{
return (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
(vmcs12->secondary_vm_exec_control & bit);
}
static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
}
static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control &
PIN_BASED_VMX_PREEMPTION_TIMER;
}
static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
}
static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
vmx_xsaves_supported();
}
static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
}
static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
}
static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
}
static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
{
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
}
static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
{
return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
}
static inline bool is_nmi(u32 intr_info)
{
return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
== (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
}
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
u32 exit_intr_info,
unsigned long exit_qualification);
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification);
static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
for (i = 0; i < vmx->nmsrs; ++i)
if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
return i;
return -1;
}
static inline void __invvpid(int ext, u16 vpid, gva_t gva)
{
struct {
u64 vpid : 16;
u64 rsvd : 48;
u64 gva;
} operand = { vpid, 0, gva };
asm volatile (__ex(ASM_VMX_INVVPID)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:"
: : "a"(&operand), "c"(ext) : "cc", "memory");
}
static inline void __invept(int ext, u64 eptp, gpa_t gpa)
{
struct {
u64 eptp, gpa;
} operand = {eptp, gpa};
asm volatile (__ex(ASM_VMX_INVEPT)
/* CF==1 or ZF==1 --> rc = -1 */
"; ja 1f ; ud2 ; 1:\n"
: : "a" (&operand), "c" (ext) : "cc", "memory");
}
static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
{
int i;
i = __find_msr_index(vmx, msr);
if (i >= 0)
return &vmx->guest_msrs[i];
return NULL;
}
static void vmcs_clear(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
{
vmcs_clear(loaded_vmcs->vmcs);
if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
vmcs_clear(loaded_vmcs->shadow_vmcs);
loaded_vmcs->cpu = -1;
loaded_vmcs->launched = 0;
}
static void vmcs_load(struct vmcs *vmcs)
{
u64 phys_addr = __pa(vmcs);
u8 error;
asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
vmcs, phys_addr);
}
#ifdef CONFIG_KEXEC_CORE
/*
* This bitmap is used to indicate whether the vmclear
* operation is enabled on all cpus. All disabled by
* default.
*/
static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
static inline void crash_enable_local_vmclear(int cpu)
{
cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline void crash_disable_local_vmclear(int cpu)
{
cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static inline int crash_local_vmclear_enabled(int cpu)
{
return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
}
static void crash_vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v;
if (!crash_local_vmclear_enabled(cpu))
return;
list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
vmcs_clear(v->vmcs);
}
#else
static inline void crash_enable_local_vmclear(int cpu) { }
static inline void crash_disable_local_vmclear(int cpu) { }
#endif /* CONFIG_KEXEC_CORE */
static void __loaded_vmcs_clear(void *arg)
{
struct loaded_vmcs *loaded_vmcs = arg;
int cpu = raw_smp_processor_id();
if (loaded_vmcs->cpu != cpu)
return; /* vcpu migration can race with cpu offline */
if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
per_cpu(current_vmcs, cpu) = NULL;
crash_disable_local_vmclear(cpu);
list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
/*
* we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
* is before setting loaded_vmcs->vcpu to -1 which is done in
* loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
* then adds the vmcs into percpu list before it is deleted.
*/
smp_wmb();
loaded_vmcs_init(loaded_vmcs);
crash_enable_local_vmclear(cpu);
}
static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
{
int cpu = loaded_vmcs->cpu;
if (cpu != -1)
smp_call_function_single(cpu,
__loaded_vmcs_clear, loaded_vmcs, 1);
}
static inline void vpid_sync_vcpu_single(int vpid)
{
if (vpid == 0)
return;
if (cpu_has_vmx_invvpid_single())
__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
}
static inline void vpid_sync_vcpu_global(void)
{
if (cpu_has_vmx_invvpid_global())
__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
}
static inline void vpid_sync_context(int vpid)
{
if (cpu_has_vmx_invvpid_single())
vpid_sync_vcpu_single(vpid);
else
vpid_sync_vcpu_global();
}
static inline void ept_sync_global(void)
{
if (cpu_has_vmx_invept_global())
__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
}
static inline void ept_sync_context(u64 eptp)
{
if (enable_ept) {
if (cpu_has_vmx_invept_context())
__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
else
ept_sync_global();
}
}
static __always_inline void vmcs_check16(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
"16-bit accessor invalid for 64-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
"16-bit accessor invalid for 64-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
"16-bit accessor invalid for 32-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
"16-bit accessor invalid for natural width field");
}
static __always_inline void vmcs_check32(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
"32-bit accessor invalid for 16-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
"32-bit accessor invalid for natural width field");
}
static __always_inline void vmcs_check64(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
"64-bit accessor invalid for 16-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
"64-bit accessor invalid for 64-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
"64-bit accessor invalid for 32-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
"64-bit accessor invalid for natural width field");
}
static __always_inline void vmcs_checkl(unsigned long field)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
"Natural width accessor invalid for 16-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
"Natural width accessor invalid for 64-bit field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
"Natural width accessor invalid for 64-bit high field");
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
"Natural width accessor invalid for 32-bit field");
}
static __always_inline unsigned long __vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
: "=a"(value) : "d"(field) : "cc");
return value;
}
static __always_inline u16 vmcs_read16(unsigned long field)
{
vmcs_check16(field);
return __vmcs_readl(field);
}
static __always_inline u32 vmcs_read32(unsigned long field)
{
vmcs_check32(field);
return __vmcs_readl(field);
}
static __always_inline u64 vmcs_read64(unsigned long field)
{
vmcs_check64(field);
#ifdef CONFIG_X86_64
return __vmcs_readl(field);
#else
return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
#endif
}
static __always_inline unsigned long vmcs_readl(unsigned long field)
{
vmcs_checkl(field);
return __vmcs_readl(field);
}
static noinline void vmwrite_error(unsigned long field, unsigned long value)
{
printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
dump_stack();
}
static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
{
u8 error;
asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc");
if (unlikely(error))
vmwrite_error(field, value);
}
static __always_inline void vmcs_write16(unsigned long field, u16 value)
{
vmcs_check16(field);
__vmcs_writel(field, value);
}
static __always_inline void vmcs_write32(unsigned long field, u32 value)
{
vmcs_check32(field);
__vmcs_writel(field, value);
}
static __always_inline void vmcs_write64(unsigned long field, u64 value)
{
vmcs_check64(field);
__vmcs_writel(field, value);
#ifndef CONFIG_X86_64
asm volatile ("");
__vmcs_writel(field+1, value >> 32);
#endif
}
static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
{
vmcs_checkl(field);
__vmcs_writel(field, value);
}
static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
"vmcs_clear_bits does not support 64-bit fields");
__vmcs_writel(field, __vmcs_readl(field) & ~mask);
}
static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
{
BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
"vmcs_set_bits does not support 64-bit fields");
__vmcs_writel(field, __vmcs_readl(field) | mask);
}
static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
{
vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
}
static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
{
vmcs_write32(VM_ENTRY_CONTROLS, val);
vmx->vm_entry_controls_shadow = val;
}
static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
{
if (vmx->vm_entry_controls_shadow != val)
vm_entry_controls_init(vmx, val);
}
static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
{
return vmx->vm_entry_controls_shadow;
}
static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
{
vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
}
static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
{
vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
}
static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
{
vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
}
static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
{
vmcs_write32(VM_EXIT_CONTROLS, val);
vmx->vm_exit_controls_shadow = val;
}
static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
{
if (vmx->vm_exit_controls_shadow != val)
vm_exit_controls_init(vmx, val);
}
static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
{
return vmx->vm_exit_controls_shadow;
}
static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
{
vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
}
static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
{
vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
}
static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
{
vmx->segment_cache.bitmask = 0;
}
static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
unsigned field)
{
bool ret;
u32 mask = 1 << (seg * SEG_FIELD_NR + field);
if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
vmx->segment_cache.bitmask = 0;
}
ret = vmx->segment_cache.bitmask & mask;
vmx->segment_cache.bitmask |= mask;
return ret;
}
static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
{
u16 *p = &vmx->segment_cache.seg[seg].selector;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
return *p;
}
static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
{
ulong *p = &vmx->segment_cache.seg[seg].base;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
return *p;
}
static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].limit;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
return *p;
}
static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
{
u32 *p = &vmx->segment_cache.seg[seg].ar;
if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
return *p;
}
static void update_exception_bitmap(struct kvm_vcpu *vcpu)
{
u32 eb;
eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
(1u << DB_VECTOR) | (1u << AC_VECTOR);
if ((vcpu->guest_debug &
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
(KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
eb |= 1u << BP_VECTOR;
if (to_vmx(vcpu)->rmode.vm86_active)
eb = ~0;
if (enable_ept)
eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
/* When we are running a nested L2 guest and L1 specified for it a
* certain exception bitmap, we must trap the same exceptions and pass
* them to L1. When running L2, we will only handle the exceptions
* specified above if L1 did not want them.
*/
if (is_guest_mode(vcpu))
eb |= get_vmcs12(vcpu)->exception_bitmap;
vmcs_write32(EXCEPTION_BITMAP, eb);
}
static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit)
{
vm_entry_controls_clearbit(vmx, entry);
vm_exit_controls_clearbit(vmx, exit);
}
static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
clear_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
return;
}
break;
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == m->nr)
return;
--m->nr;
m->guest[i] = m->guest[m->nr];
m->host[i] = m->host[m->nr];
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit,
unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
u64 guest_val, u64 host_val)
{
vmcs_write64(guest_val_vmcs, guest_val);
vmcs_write64(host_val_vmcs, host_val);
vm_entry_controls_setbit(vmx, entry);
vm_exit_controls_setbit(vmx, exit);
}
static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
u64 guest_val, u64 host_val)
{
unsigned i;
struct msr_autoload *m = &vmx->msr_autoload;
switch (msr) {
case MSR_EFER:
if (cpu_has_load_ia32_efer) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_EFER,
VM_EXIT_LOAD_IA32_EFER,
GUEST_IA32_EFER,
HOST_IA32_EFER,
guest_val, host_val);
return;
}
break;
case MSR_CORE_PERF_GLOBAL_CTRL:
if (cpu_has_load_perf_global_ctrl) {
add_atomic_switch_msr_special(vmx,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
GUEST_IA32_PERF_GLOBAL_CTRL,
HOST_IA32_PERF_GLOBAL_CTRL,
guest_val, host_val);
return;
}
break;
case MSR_IA32_PEBS_ENABLE:
/* PEBS needs a quiescent period after being disabled (to write
* a record). Disabling PEBS through VMX MSR swapping doesn't
* provide that period, so a CPU could write host's record into
* guest's memory.
*/
wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
}
for (i = 0; i < m->nr; ++i)
if (m->guest[i].index == msr)
break;
if (i == NR_AUTOLOAD_MSRS) {
printk_once(KERN_WARNING "Not enough msr switch entries. "
"Can't add msr %x\n", msr);
return;
} else if (i == m->nr) {
++m->nr;
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
}
m->guest[i].index = msr;
m->guest[i].value = guest_val;
m->host[i].index = msr;
m->host[i].value = host_val;
}
static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
{
u64 guest_efer = vmx->vcpu.arch.efer;
u64 ignore_bits = 0;
if (!enable_ept) {
/*
* NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
* host CPUID is more efficient than testing guest CPUID
* or CR4. Host SMEP is anyway a requirement for guest SMEP.
*/
if (boot_cpu_has(X86_FEATURE_SMEP))
guest_efer |= EFER_NX;
else if (!(guest_efer & EFER_NX))
ignore_bits |= EFER_NX;
}
/*
* LMA and LME handled by hardware; SCE meaningless outside long mode.
*/
ignore_bits |= EFER_SCE;
#ifdef CONFIG_X86_64
ignore_bits |= EFER_LMA | EFER_LME;
/* SCE is meaningful only in long mode on Intel */
if (guest_efer & EFER_LMA)
ignore_bits &= ~(u64)EFER_SCE;
#endif
clear_atomic_switch_msr(vmx, MSR_EFER);
/*
* On EPT, we can't emulate NX, so we must switch EFER atomically.
* On CPUs that support "load IA32_EFER", always switch EFER
* atomically, since it's faster than switching it manually.
*/
if (cpu_has_load_ia32_efer ||
(enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
if (!(guest_efer & EFER_LMA))
guest_efer &= ~EFER_LME;
if (guest_efer != host_efer)
add_atomic_switch_msr(vmx, MSR_EFER,
guest_efer, host_efer);
return false;
} else {
guest_efer &= ~ignore_bits;
guest_efer |= host_efer & ignore_bits;
vmx->guest_msrs[efer_offset].data = guest_efer;
vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
return true;
}
}
#ifdef CONFIG_X86_32
/*
* On 32-bit kernels, VM exits still load the FS and GS bases from the
* VMCS rather than the segment table. KVM uses this helper to figure
* out the current bases to poke them into the VMCS before entry.
*/
static unsigned long segment_base(u16 selector)
{
struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
struct desc_struct *table;
unsigned long v;
if (!(selector & ~SEGMENT_RPL_MASK))
return 0;
table = (struct desc_struct *)gdt->address;
if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
u16 ldt_selector = kvm_read_ldt();
if (!(ldt_selector & ~SEGMENT_RPL_MASK))
return 0;
table = (struct desc_struct *)segment_base(ldt_selector);
}
v = get_desc_base(&table[selector >> 3]);
return v;
}
#endif
static void vmx_save_host_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int i;
if (vmx->host_state.loaded)
return;
vmx->host_state.loaded = 1;
/*
* Set host fs and gs selectors. Unfortunately, 22.2.3 does not
* allow segment selectors with cpl > 0 or ti == 1.
*/
vmx->host_state.ldt_sel = kvm_read_ldt();
vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
savesegment(fs, vmx->host_state.fs_sel);
if (!(vmx->host_state.fs_sel & 7)) {
vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
vmx->host_state.fs_reload_needed = 0;
} else {
vmcs_write16(HOST_FS_SELECTOR, 0);
vmx->host_state.fs_reload_needed = 1;
}
savesegment(gs, vmx->host_state.gs_sel);
if (!(vmx->host_state.gs_sel & 7))
vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
else {
vmcs_write16(HOST_GS_SELECTOR, 0);
vmx->host_state.gs_ldt_reload_needed = 1;
}
#ifdef CONFIG_X86_64
savesegment(ds, vmx->host_state.ds_sel);
savesegment(es, vmx->host_state.es_sel);
#endif
#ifdef CONFIG_X86_64
vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
#else
vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
#endif
#ifdef CONFIG_X86_64
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
if (is_long_mode(&vmx->vcpu))
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (boot_cpu_has(X86_FEATURE_MPX))
rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
for (i = 0; i < vmx->save_nmsrs; ++i)
kvm_set_shared_msr(vmx->guest_msrs[i].index,
vmx->guest_msrs[i].data,
vmx->guest_msrs[i].mask);
}
static void __vmx_load_host_state(struct vcpu_vmx *vmx)
{
if (!vmx->host_state.loaded)
return;
++vmx->vcpu.stat.host_state_reload;
vmx->host_state.loaded = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu))
rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
#endif
if (vmx->host_state.gs_ldt_reload_needed) {
kvm_load_ldt(vmx->host_state.ldt_sel);
#ifdef CONFIG_X86_64
load_gs_index(vmx->host_state.gs_sel);
#else
loadsegment(gs, vmx->host_state.gs_sel);
#endif
}
if (vmx->host_state.fs_reload_needed)
loadsegment(fs, vmx->host_state.fs_sel);
#ifdef CONFIG_X86_64
if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
loadsegment(ds, vmx->host_state.ds_sel);
loadsegment(es, vmx->host_state.es_sel);
}
#endif
invalidate_tss_limit();
#ifdef CONFIG_X86_64
wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
#endif
if (vmx->host_state.msr_host_bndcfgs)
wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
load_gdt(this_cpu_ptr(&host_gdt));
}
static void vmx_load_host_state(struct vcpu_vmx *vmx)
{
preempt_disable();
__vmx_load_host_state(vmx);
preempt_enable();
}
static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
struct pi_desc old, new;
unsigned int dest;
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
do {
old.control = new.control = pi_desc->control;
/*
* If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
* are two possible cases:
* 1. After running 'pre_block', context switch
* happened. For this case, 'sn' was set in
* vmx_vcpu_put(), so we need to clear it here.
* 2. After running 'pre_block', we were blocked,
* and woken up by some other guy. For this case,
* we don't need to do anything, 'pi_post_block'
* will do everything for us. However, we cannot
* check whether it is case #1 or case #2 here
* (maybe, not needed), so we also clear sn here,
* I think it is not a big deal.
*/
if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
if (vcpu->cpu != cpu) {
dest = cpu_physical_id(cpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
}
/* set 'NV' to 'notification vector' */
new.nv = POSTED_INTR_VECTOR;
}
/* Allow posting non-urgent interrupts */
new.sn = 0;
} while (cmpxchg(&pi_desc->control, old.control,
new.control) != old.control);
}
static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
{
vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
}
/*
* Switches to specified vcpu, until a matching vcpu_put(), but assumes
* vcpu mutex is already taken.
*/
static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
if (!vmm_exclusive)
kvm_cpu_vmxon(phys_addr);
else if (!already_loaded)
loaded_vmcs_clear(vmx->loaded_vmcs);
if (!already_loaded) {
local_irq_disable();
crash_disable_local_vmclear(cpu);
/*
* Read loaded_vmcs->cpu should be before fetching
* loaded_vmcs->loaded_vmcss_on_cpu_link.
* See the comments in __loaded_vmcs_clear().
*/
smp_rmb();
list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
&per_cpu(loaded_vmcss_on_cpu, cpu));
crash_enable_local_vmclear(cpu);
local_irq_enable();
}
if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
vmcs_load(vmx->loaded_vmcs->vmcs);
}
if (!already_loaded) {
struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
unsigned long sysenter_esp;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors. See 22.2.4.
*/
vmcs_writel(HOST_TR_BASE,
(unsigned long)this_cpu_ptr(&cpu_tss));
vmcs_writel(HOST_GDTR_BASE, gdt->address);
/*
* VM exits change the host TR limit to 0x67 after a VM
* exit. This is okay, since 0x67 covers everything except
* the IO bitmap and have have code to handle the IO bitmap
* being lost after a VM exit.
*/
BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
vmx->loaded_vmcs->cpu = cpu;
}
/* Setup TSC multiplier */
if (kvm_has_tsc_control &&
vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
decache_tsc_multiplier(vmx);
vmx_vcpu_pi_load(vcpu, cpu);
vmx->host_pkru = read_pkru();
}
static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
/* Set SN when the vCPU is preempted */
if (vcpu->preempted)
pi_set_sn(pi_desc);
}
static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
{
vmx_vcpu_pi_put(vcpu);
__vmx_load_host_state(to_vmx(vcpu));
if (!vmm_exclusive) {
__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
vcpu->cpu = -1;
kvm_cpu_vmxoff();
}
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
/*
* Return the cr0 value that a nested guest would read. This is a combination
* of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
* its hypervisor (cr0_read_shadow).
*/
static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
{
return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
}
static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
{
return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
}
static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
rflags = vmcs_readl(GUEST_RFLAGS);
if (to_vmx(vcpu)->rmode.vm86_active) {
rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
save_rflags = to_vmx(vcpu)->rmode.save_rflags;
rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
}
to_vmx(vcpu)->rflags = rflags;
}
return to_vmx(vcpu)->rflags;
}
static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
to_vmx(vcpu)->rflags = rflags;
if (to_vmx(vcpu)->rmode.vm86_active) {
to_vmx(vcpu)->rmode.save_rflags = rflags;
rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
}
vmcs_writel(GUEST_RFLAGS, rflags);
}
static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
{
return to_vmx(vcpu)->guest_pkru;
}
static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
{
u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
int ret = 0;
if (interruptibility & GUEST_INTR_STATE_STI)
ret |= KVM_X86_SHADOW_INT_STI;
if (interruptibility & GUEST_INTR_STATE_MOV_SS)
ret |= KVM_X86_SHADOW_INT_MOV_SS;
return ret;
}
static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
{
u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
u32 interruptibility = interruptibility_old;
interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
if (mask & KVM_X86_SHADOW_INT_MOV_SS)
interruptibility |= GUEST_INTR_STATE_MOV_SS;
else if (mask & KVM_X86_SHADOW_INT_STI)
interruptibility |= GUEST_INTR_STATE_STI;
if ((interruptibility != interruptibility_old))
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
}
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
unsigned long rip;
rip = kvm_rip_read(vcpu);
rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_rip_write(vcpu, rip);
/* skipping an emulated instruction also counts */
vmx_set_interrupt_shadow(vcpu, 0);
}
/*
* KVM wants to inject page-faults which it got to the guest. This function
* checks whether in a nested guest, we need to inject them to L1 or L2.
*/
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (!(vmcs12->exception_bitmap & (1u << nr)))
return 0;
nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
return 1;
}
static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
bool has_error_code, u32 error_code,
bool reinject)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 intr_info = nr | INTR_INFO_VALID_MASK;
if (!reinject && is_guest_mode(vcpu) &&
nested_vmx_check_exception(vcpu, nr))
return;
if (has_error_code) {
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (kvm_exception_is_soft(nr))
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
if (kvm_exception_is_soft(nr)) {
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
} else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
}
static bool vmx_rdtscp_supported(void)
{
return cpu_has_vmx_rdtscp();
}
static bool vmx_invpcid_supported(void)
{
return cpu_has_vmx_invpcid() && enable_ept;
}
/*
* Swap MSR entry in host/guest MSR entry array.
*/
static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
{
struct shared_msr_entry tmp;
tmp = vmx->guest_msrs[to];
vmx->guest_msrs[to] = vmx->guest_msrs[from];
vmx->guest_msrs[from] = tmp;
}
static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
{
unsigned long *msr_bitmap;
if (is_guest_mode(vcpu))
msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
else if (cpu_has_secondary_exec_ctrls() &&
(vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
else
msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
} else {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
else
msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
}
} else {
if (is_long_mode(vcpu))
msr_bitmap = vmx_msr_bitmap_longmode;
else
msr_bitmap = vmx_msr_bitmap_legacy;
}
vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
}
/*
* Set up the vmcs to automatically save and restore system
* msrs. Don't touch the 64-bit msrs if the guest is in legacy
* mode, as fiddling with msrs is very expensive.
*/
static void setup_msrs(struct vcpu_vmx *vmx)
{
int save_nmsrs, index;
save_nmsrs = 0;
#ifdef CONFIG_X86_64
if (is_long_mode(&vmx->vcpu)) {
index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_LSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_CSTAR);
if (index >= 0)
move_msr_up(vmx, index, save_nmsrs++);
index = __find_msr_index(vmx, MSR_TSC_AUX);
if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
move_msr_up(vmx, index, save_nmsrs++);
/*
* MSR_STAR is only needed on long mode guests, and only
* if efer.sce is enabled.
*/
index = __find_msr_index(vmx, MSR_STAR);
if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
move_msr_up(vmx, index, save_nmsrs++);
}
#endif
index = __find_msr_index(vmx, MSR_EFER);
if (index >= 0 && update_transition_efer(vmx, index))
move_msr_up(vmx, index, save_nmsrs++);
vmx->save_nmsrs = save_nmsrs;
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(&vmx->vcpu);
}
/*
* reads and returns guest's timestamp counter "register"
* guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
* -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
*/
static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
{
u64 host_tsc, tsc_offset;
host_tsc = rdtsc();
tsc_offset = vmcs_read64(TSC_OFFSET);
return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
}
/*
* writes 'offset' into guest's timestamp counter offset register
*/
static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
{
if (is_guest_mode(vcpu)) {
/*
* We're here if L1 chose not to trap WRMSR to TSC. According
* to the spec, this should set L1's TSC; The offset that L1
* set for L2 remains unchanged, and still needs to be added
* to the newly set TSC to get L2's TSC.
*/
struct vmcs12 *vmcs12;
/* recalculate vmcs02.TSC_OFFSET: */
vmcs12 = get_vmcs12(vcpu);
vmcs_write64(TSC_OFFSET, offset +
(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
vmcs12->tsc_offset : 0));
} else {
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
vmcs_read64(TSC_OFFSET), offset);
vmcs_write64(TSC_OFFSET, offset);
}
}
static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
}
/*
* nested_vmx_allowed() checks whether a guest should be allowed to use VMX
* instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
* all guests if the "nested" module option is off, and can also be disabled
* for a single guest by disabling its VMX cpuid bit.
*/
static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
{
return nested && guest_cpuid_has_vmx(vcpu);
}
/*
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
* returned for the various VMX controls MSRs when nested VMX is enabled.
* The same values should also be used to verify that vmcs12 control fields are
* valid during nested entry from L1 to L2.
* Each of these control msrs has a low and high 32-bit half: A low bit is on
* if the corresponding bit in the (32-bit) control field *must* be on, and a
* bit in the high half is on if the corresponding bit in the control field
* may be on. See also vmx_control_verify().
*/
static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
{
/*
* Note that as a general rule, the high half of the MSRs (bits in
* the control fields which may be 1) should be initialized by the
* intersection of the underlying hardware's MSR (i.e., features which
* can be supported) and the list of features we want to expose -
* because they are known to be properly supported in our code.
* Also, usually, the low half of the MSRs (bits which must be 1) can
* be set to 0, meaning that L1 may turn off any of these bits. The
* reason is that if one of these bits is necessary, it will appear
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
* fields of vmcs01 and vmcs02, will turn these bits off - and
* nested_vmx_exit_handled() will not pass related exits to L1.
* These rules have exceptions below.
*/
/* pin-based controls */
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
vmx->nested.nested_vmx_pinbased_ctls_low,
vmx->nested.nested_vmx_pinbased_ctls_high);
vmx->nested.nested_vmx_pinbased_ctls_low |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_pinbased_ctls_high &=
PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING |
PIN_BASED_VIRTUAL_NMIS;
vmx->nested.nested_vmx_pinbased_ctls_high |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
PIN_BASED_VMX_PREEMPTION_TIMER;
if (kvm_vcpu_apicv_active(&vmx->vcpu))
vmx->nested.nested_vmx_pinbased_ctls_high |=
PIN_BASED_POSTED_INTR;
/* exit controls */
rdmsr(MSR_IA32_VMX_EXIT_CTLS,
vmx->nested.nested_vmx_exit_ctls_low,
vmx->nested.nested_vmx_exit_ctls_high);
vmx->nested.nested_vmx_exit_ctls_low =
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_exit_ctls_high &=
#ifdef CONFIG_X86_64
VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
vmx->nested.nested_vmx_exit_ctls_high |=
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
if (kvm_mpx_supported())
vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
/* We support free control of debug control saving. */
vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high);
vmx->nested.nested_vmx_entry_ctls_low =
VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_entry_ctls_high &=
#ifdef CONFIG_X86_64
VM_ENTRY_IA32E_MODE |
#endif
VM_ENTRY_LOAD_IA32_PAT;
vmx->nested.nested_vmx_entry_ctls_high |=
(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
if (kvm_mpx_supported())
vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
/* We support free control of debug control loading. */
vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high);
vmx->nested.nested_vmx_procbased_ctls_low =
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
vmx->nested.nested_vmx_procbased_ctls_high &=
CPU_BASED_VIRTUAL_INTR_PENDING |
CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
* hardware. For example, L1 can specify an MSR bitmap - and we
* can use it to avoid exits to L1 - even when L0 runs L2
* without MSR bitmaps.
*/
vmx->nested.nested_vmx_procbased_ctls_high |=
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
CPU_BASED_USE_MSR_BITMAPS;
/* We support free control of CR3 access interception. */
vmx->nested.nested_vmx_procbased_ctls_low &=
~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
/* secondary cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
vmx->nested.nested_vmx_secondary_ctls_low,
vmx->nested.nested_vmx_secondary_ctls_high);
vmx->nested.nested_vmx_secondary_ctls_low = 0;
vmx->nested.nested_vmx_secondary_ctls_high &=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_DESC |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_XSAVES;
if (enable_ept) {
/* nested EPT: emulate EPT also to L1 */
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_EPT;
vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
VMX_EPT_INVEPT_BIT;
if (cpu_has_vmx_ept_execute_only())
vmx->nested.nested_vmx_ept_caps |=
VMX_EPT_EXECUTE_ONLY_BIT;
vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
VMX_EPT_EXTENT_CONTEXT_BIT;
} else
vmx->nested.nested_vmx_ept_caps = 0;
/*
* Old versions of KVM use the single-context version without
* checking for support, so declare that it is supported even
* though it is treated as global context. The alternative is
* not failing the single-context invvpid, and it is worse.
*/
if (enable_vpid) {
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_VPID;
vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
VMX_VPID_EXTENT_SUPPORTED_MASK;
} else
vmx->nested.nested_vmx_vpid_caps = 0;
if (enable_unrestricted_guest)
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_UNRESTRICTED_GUEST;
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC,
vmx->nested.nested_vmx_misc_low,
vmx->nested.nested_vmx_misc_high);
vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
vmx->nested.nested_vmx_misc_low |=
VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
VMX_MISC_ACTIVITY_HLT;
vmx->nested.nested_vmx_misc_high = 0;
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
vmx->nested.nested_vmx_basic =
VMCS12_REVISION |
VMX_BASIC_TRUE_CTLS |
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
if (cpu_has_vmx_basic_inout())
vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
/*
* These MSRs specify bits which the guest must keep fixed on
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
* We picked the standard core2 setting.
*/
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
/* These MSRs specify bits which the guest must keep fixed off. */
rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
/* highest index: VMX_PREEMPTION_TIMER_VALUE */
vmx->nested.nested_vmx_vmcs_enum = 0x2e;
}
/*
* if fixed0[i] == 1: val[i] must be 1
* if fixed1[i] == 0: val[i] must be 0
*/
static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
{
return ((val & fixed1) | fixed0) == val;
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
return fixed_bits_valid(control, low, high);
}
static inline u64 vmx_control_msr(u32 low, u32 high)
{
return low | ((u64)high << 32);
}
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
superset &= mask;
subset &= mask;
return (superset | subset) == superset;
}
static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved =
/* feature (except bit 48; see below) */
BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
/* reserved */
BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
u64 vmx_basic = vmx->nested.nested_vmx_basic;
if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
return -EINVAL;
/*
* KVM does not emulate a version of VMX that constrains physical
* addresses of VMX structures (e.g. VMCS) to 32-bits.
*/
if (data & BIT_ULL(48))
return -EINVAL;
if (vmx_basic_vmcs_revision_id(vmx_basic) !=
vmx_basic_vmcs_revision_id(data))
return -EINVAL;
if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
return -EINVAL;
vmx->nested.nested_vmx_basic = data;
return 0;
}
static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 supported;
u32 *lowp, *highp;
switch (msr_index) {
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
highp = &vmx->nested.nested_vmx_procbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
lowp = &vmx->nested.nested_vmx_exit_ctls_low;
highp = &vmx->nested.nested_vmx_exit_ctls_high;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
lowp = &vmx->nested.nested_vmx_entry_ctls_low;
highp = &vmx->nested.nested_vmx_entry_ctls_high;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
highp = &vmx->nested.nested_vmx_secondary_ctls_high;
break;
default:
BUG();
}
supported = vmx_control_msr(*lowp, *highp);
/* Check must-be-1 bits are still 1. */
if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
return -EINVAL;
/* Check must-be-0 bits are still 0. */
if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
return -EINVAL;
*lowp = data;
*highp = data >> 32;
return 0;
}
static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved_bits =
/* feature */
BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
/* reserved */
GENMASK_ULL(13, 9) | BIT_ULL(31);
u64 vmx_misc;
vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
vmx->nested.nested_vmx_misc_high);
if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
return -EINVAL;
if ((vmx->nested.nested_vmx_pinbased_ctls_high &
PIN_BASED_VMX_PREEMPTION_TIMER) &&
vmx_misc_preemption_timer_rate(data) !=
vmx_misc_preemption_timer_rate(vmx_misc))
return -EINVAL;
if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
return -EINVAL;
if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
return -EINVAL;
if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
return -EINVAL;
vmx->nested.nested_vmx_misc_low = data;
vmx->nested.nested_vmx_misc_high = data >> 32;
return 0;
}
static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
u64 vmx_ept_vpid_cap;
vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
vmx->nested.nested_vmx_vpid_caps);
/* Every bit is either reserved or a feature bit. */
if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
return -EINVAL;
vmx->nested.nested_vmx_ept_caps = data;
vmx->nested.nested_vmx_vpid_caps = data >> 32;
return 0;
}
static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 *msr;
switch (msr_index) {
case MSR_IA32_VMX_CR0_FIXED0:
msr = &vmx->nested.nested_vmx_cr0_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED0:
msr = &vmx->nested.nested_vmx_cr4_fixed0;
break;
default:
BUG();
}
/*
* 1 bits (which indicates bits which "must-be-1" during VMX operation)
* must be 1 in the restored value.
*/
if (!is_bitwise_subset(data, *msr, -1ULL))
return -EINVAL;
*msr = data;
return 0;
}
/*
* Called when userspace is restoring VMX MSRs.
*
* Returns 0 on success, non-0 otherwise.
*/
static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
return vmx_restore_vmx_basic(vmx, data);
case MSR_IA32_VMX_PINBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
/*
* The "non-true" VMX capability MSRs are generated from the
* "true" MSRs, so we do not support restoring them directly.
*
* If userspace wants to emulate VMX_BASIC[55]=0, userspace
* should restore the "true" MSRs with the must-be-1 bits
* set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
* DEFAULT SETTINGS".
*/
return -EINVAL;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS2:
return vmx_restore_control_msr(vmx, msr_index, data);
case MSR_IA32_VMX_MISC:
return vmx_restore_vmx_misc(vmx, data);
case MSR_IA32_VMX_CR0_FIXED0:
case MSR_IA32_VMX_CR4_FIXED0:
return vmx_restore_fixed0_msr(vmx, msr_index, data);
case MSR_IA32_VMX_CR0_FIXED1:
case MSR_IA32_VMX_CR4_FIXED1:
/*
* These MSRs are generated based on the vCPU's CPUID, so we
* do not support restoring them directly.
*/
return -EINVAL;
case MSR_IA32_VMX_EPT_VPID_CAP:
return vmx_restore_vmx_ept_vpid_cap(vmx, data);
case MSR_IA32_VMX_VMCS_ENUM:
vmx->nested.nested_vmx_vmcs_enum = data;
return 0;
default:
/*
* The rest of the VMX capability MSRs do not support restore.
*/
return -EINVAL;
}
}
/* Returns 0 on success, non-0 otherwise. */
static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
*pdata = vmx->nested.nested_vmx_basic;
break;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_PINBASED_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_pinbased_ctls_low,
vmx->nested.nested_vmx_pinbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_exit_ctls_low,
vmx->nested.nested_vmx_exit_ctls_high);
if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high);
if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_MISC:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_misc_low,
vmx->nested.nested_vmx_misc_high);
break;
case MSR_IA32_VMX_CR0_FIXED0:
*pdata = vmx->nested.nested_vmx_cr0_fixed0;
break;
case MSR_IA32_VMX_CR0_FIXED1:
*pdata = vmx->nested.nested_vmx_cr0_fixed1;
break;
case MSR_IA32_VMX_CR4_FIXED0:
*pdata = vmx->nested.nested_vmx_cr4_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED1:
*pdata = vmx->nested.nested_vmx_cr4_fixed1;
break;
case MSR_IA32_VMX_VMCS_ENUM:
*pdata = vmx->nested.nested_vmx_vmcs_enum;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
*pdata = vmx_control_msr(
vmx->nested.nested_vmx_secondary_ctls_low,
vmx->nested.nested_vmx_secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
*pdata = vmx->nested.nested_vmx_ept_caps |
((u64)vmx->nested.nested_vmx_vpid_caps << 32);
break;
default:
return 1;
}
return 0;
}
static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
uint64_t val)
{
uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
return !(val & ~valid_bits);
}
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct shared_msr_entry *msr;
switch (msr_info->index) {
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
msr_info->data = vmcs_readl(GUEST_FS_BASE);
break;
case MSR_GS_BASE:
msr_info->data = vmcs_readl(GUEST_GS_BASE);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(to_vmx(vcpu));
msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
break;
#endif
case MSR_EFER:
return kvm_get_msr_common(vcpu, msr_info);
case MSR_IA32_TSC:
msr_info->data = guest_read_tsc(vcpu);
break;
case MSR_IA32_SYSENTER_CS:
msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
break;
case MSR_IA32_SYSENTER_EIP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
break;
case MSR_IA32_SYSENTER_ESP:
msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported())
return 1;
msr_info->data = vmcs_read64(GUEST_BNDCFGS);
break;
case MSR_IA32_MCG_EXT_CTL:
if (!msr_info->host_initiated &&
!(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LMCE))
return 1;
msr_info->data = vcpu->arch.mcg_ext_ctl;
break;
case MSR_IA32_FEATURE_CONTROL:
msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
break;
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!nested_vmx_allowed(vcpu))
return 1;
return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
case MSR_IA32_XSS:
if (!vmx_xsaves_supported())
return 1;
msr_info->data = vcpu->arch.ia32_xss;
break;
case MSR_TSC_AUX:
if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
return 1;
/* Otherwise falls through */
default:
msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
if (msr) {
msr_info->data = msr->data;
break;
}
return kvm_get_msr_common(vcpu, msr_info);
}
return 0;
}
static void vmx_leave_nested(struct kvm_vcpu *vcpu);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr;
int ret = 0;
u32 msr_index = msr_info->index;
u64 data = msr_info->data;
switch (msr_index) {
case MSR_EFER:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
#ifdef CONFIG_X86_64
case MSR_FS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_FS_BASE, data);
break;
case MSR_GS_BASE:
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_GS_BASE, data);
break;
case MSR_KERNEL_GS_BASE:
vmx_load_host_state(vmx);
vmx->msr_guest_kernel_gs_base = data;
break;
#endif
case MSR_IA32_SYSENTER_CS:
vmcs_write32(GUEST_SYSENTER_CS, data);
break;
case MSR_IA32_SYSENTER_EIP:
vmcs_writel(GUEST_SYSENTER_EIP, data);
break;
case MSR_IA32_SYSENTER_ESP:
vmcs_writel(GUEST_SYSENTER_ESP, data);
break;
case MSR_IA32_BNDCFGS:
if (!kvm_mpx_supported())
return 1;
vmcs_write64(GUEST_BNDCFGS, data);
break;
case MSR_IA32_TSC:
kvm_write_tsc(vcpu, msr_info);
break;
case MSR_IA32_CR_PAT:
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
return 1;
vmcs_write64(GUEST_IA32_PAT, data);
vcpu->arch.pat = data;
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_TSC_ADJUST:
ret = kvm_set_msr_common(vcpu, msr_info);
break;
case MSR_IA32_MCG_EXT_CTL:
if ((!msr_info->host_initiated &&
!(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LMCE)) ||
(data & ~MCG_EXT_CTL_LMCE_EN))
return 1;
vcpu->arch.mcg_ext_ctl = data;
break;
case MSR_IA32_FEATURE_CONTROL:
if (!vmx_feature_control_msr_valid(vcpu, data) ||
(to_vmx(vcpu)->msr_ia32_feature_control &
FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
return 1;
vmx->msr_ia32_feature_control = data;
if (msr_info->host_initiated && data == 0)
vmx_leave_nested(vcpu);
break;
case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
if (!msr_info->host_initiated)
return 1; /* they are read-only */
if (!nested_vmx_allowed(vcpu))
return 1;
return vmx_set_vmx_msr(vcpu, msr_index, data);
case MSR_IA32_XSS:
if (!vmx_xsaves_supported())
return 1;
/*
* The only supported bit as of Skylake is bit 8, but
* it is not supported on KVM.
*/
if (data != 0)
return 1;
vcpu->arch.ia32_xss = data;
if (vcpu->arch.ia32_xss != host_xss)
add_atomic_switch_msr(vmx, MSR_IA32_XSS,
vcpu->arch.ia32_xss, host_xss);
else
clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
break;
case MSR_TSC_AUX:
if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
return 1;
/* Check reserved bit, higher 32 bits should be zero */
if ((data >> 32) != 0)
return 1;
/* Otherwise falls through */
default:
msr = find_msr_entry(vmx, msr_index);
if (msr) {
u64 old_msr_data = msr->data;
msr->data = data;
if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
preempt_disable();
ret = kvm_set_shared_msr(msr->index, msr->data,
msr->mask);
preempt_enable();
if (ret)
msr->data = old_msr_data;
}
break;
}
ret = kvm_set_msr_common(vcpu, msr_info);
}
return ret;
}
static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
{
__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
switch (reg) {
case VCPU_REGS_RSP:
vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
break;
case VCPU_REGS_RIP:
vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
break;
case VCPU_EXREG_PDPTR:
if (enable_ept)
ept_save_pdptrs(vcpu);
break;
default:
break;
}
}
static __init int cpu_has_kvm_support(void)
{
return cpu_has_vmx();
}
static __init int vmx_disabled_by_bios(void)
{
u64 msr;
rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
if (msr & FEATURE_CONTROL_LOCKED) {
/* launched w/ TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& tboot_enabled())
return 1;
/* launched w/o TXT and VMX only enabled w/ TXT */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
&& !tboot_enabled()) {
printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
"activate TXT before enabling KVM\n");
return 1;
}
/* launched w/o TXT and VMX disabled */
if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
&& !tboot_enabled())
return 1;
}
return 0;
}
static void kvm_cpu_vmxon(u64 addr)
{
intel_pt_handle_vmx(1);
asm volatile (ASM_VMX_VMXON_RAX
: : "a"(&addr), "m"(addr)
: "memory", "cc");
}
static int hardware_enable(void)
{
int cpu = raw_smp_processor_id();
u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
u64 old, test_bits;
if (cr4_read_shadow() & X86_CR4_VMXE)
return -EBUSY;
INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
/*
* Now we can enable the vmclear operation in kdump
* since the loaded_vmcss_on_cpu list on this cpu
* has been initialized.
*
* Though the cpu is not in VMX operation now, there
* is no problem to enable the vmclear operation
* for the loaded_vmcss_on_cpu list is empty!
*/
crash_enable_local_vmclear(cpu);
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (tboot_enabled())
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
if ((old & test_bits) != test_bits) {
/* enable and lock */
wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
}
cr4_set_bits(X86_CR4_VMXE);
if (vmm_exclusive) {
kvm_cpu_vmxon(phys_addr);
ept_sync_global();
}
native_store_gdt(this_cpu_ptr(&host_gdt));
return 0;
}
static void vmclear_local_loaded_vmcss(void)
{
int cpu = raw_smp_processor_id();
struct loaded_vmcs *v, *n;
list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
loaded_vmcss_on_cpu_link)
__loaded_vmcs_clear(v);
}
/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
* tricks.
*/
static void kvm_cpu_vmxoff(void)
{
asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
intel_pt_handle_vmx(0);
}
static void hardware_disable(void)
{
if (vmm_exclusive) {
vmclear_local_loaded_vmcss();
kvm_cpu_vmxoff();
}
cr4_clear_bits(X86_CR4_VMXE);
}
static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
u32 msr, u32 *result)
{
u32 vmx_msr_low, vmx_msr_high;
u32 ctl = ctl_min | ctl_opt;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
/* Ensure minimum (required) set of control bits are supported. */
if (ctl_min & ~ctl)
return -EIO;
*result = ctl;
return 0;
}
static __init bool allow_1_setting(u32 msr, u32 ctl)
{
u32 vmx_msr_low, vmx_msr_high;
rdmsr(msr, vmx_msr_low, vmx_msr_high);
return vmx_msr_high & ctl;
}
static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
{
u32 vmx_msr_low, vmx_msr_high;
u32 min, opt, min2, opt2;
u32 _pin_based_exec_control = 0;
u32 _cpu_based_exec_control = 0;
u32 _cpu_based_2nd_exec_control = 0;
u32 _vmexit_control = 0;
u32 _vmentry_control = 0;
min = CPU_BASED_HLT_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_USE_IO_BITMAPS |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_MONITOR_EXITING |
CPU_BASED_INVLPG_EXITING |
CPU_BASED_RDPMC_EXITING;
opt = CPU_BASED_TPR_SHADOW |
CPU_BASED_USE_MSR_BITMAPS |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
&_cpu_based_exec_control) < 0)
return -EIO;
#ifdef CONFIG_X86_64
if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
~CPU_BASED_CR8_STORE_EXITING;
#endif
if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
min2 = 0;
opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_ENABLE_EPT |
SECONDARY_EXEC_UNRESTRICTED_GUEST |
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_XSAVES |
SECONDARY_EXEC_ENABLE_PML |
SECONDARY_EXEC_TSC_SCALING;
if (adjust_vmx_controls(min2, opt2,
MSR_IA32_VMX_PROCBASED_CTLS2,
&_cpu_based_2nd_exec_control) < 0)
return -EIO;
}
#ifndef CONFIG_X86_64
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
#endif
if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
_cpu_based_2nd_exec_control &= ~(
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
enabled */
_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_INVLPG_EXITING);
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
vmx_capability.ept, vmx_capability.vpid);
}
min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
#ifdef CONFIG_X86_64
min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
#endif
opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
VM_EXIT_CLEAR_BNDCFGS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
&_vmexit_control) < 0)
return -EIO;
min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
PIN_BASED_VMX_PREEMPTION_TIMER;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
&_pin_based_exec_control) < 0)
return -EIO;
if (cpu_has_broken_vmx_preemption_timer())
_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
if (!(_cpu_based_2nd_exec_control &
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
&_vmentry_control) < 0)
return -EIO;
rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
return -EIO;
#ifdef CONFIG_X86_64
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr_high & (1u<<16))
return -EIO;
#endif
/* Require Write-Back (WB) memory type for VMCS accesses. */
if (((vmx_msr_high >> 18) & 15) != 6)
return -EIO;
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = get_order(vmcs_conf->size);
vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
vmcs_conf->revision_id = vmx_msr_low;
vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
vmcs_conf->vmexit_ctrl = _vmexit_control;
vmcs_conf->vmentry_ctrl = _vmentry_control;
cpu_has_load_ia32_efer =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_EFER)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_EFER);
cpu_has_load_perf_global_ctrl =
allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
/*
* Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
* but due to errata below it can't be used. Workaround is to use
* msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
*
* VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
*
* AAK155 (model 26)
* AAP115 (model 30)
* AAT100 (model 37)
* BC86,AAY89,BD102 (model 44)
* BA97 (model 46)
*
*/
if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
switch (boot_cpu_data.x86_model) {
case 26:
case 30:
case 37:
case 44:
case 46:
cpu_has_load_perf_global_ctrl = false;
printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
"does not work properly. Using workaround\n");
break;
default:
break;
}
}
if (boot_cpu_has(X86_FEATURE_XSAVES))
rdmsrl(MSR_IA32_XSS, host_xss);
return 0;
}
static struct vmcs *alloc_vmcs_cpu(int cpu)
{
int node = cpu_to_node(cpu);
struct page *pages;
struct vmcs *vmcs;
pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
if (!pages)
return NULL;
vmcs = page_address(pages);
memset(vmcs, 0, vmcs_config.size);
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
return vmcs;
}
static struct vmcs *alloc_vmcs(void)
{
return alloc_vmcs_cpu(raw_smp_processor_id());
}
static void free_vmcs(struct vmcs *vmcs)
{
free_pages((unsigned long)vmcs, vmcs_config.order);
}
/*
* Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
*/
static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
{
if (!loaded_vmcs->vmcs)
return;
loaded_vmcs_clear(loaded_vmcs);
free_vmcs(loaded_vmcs->vmcs);
loaded_vmcs->vmcs = NULL;
WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
}
static void free_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
free_vmcs(per_cpu(vmxarea, cpu));
per_cpu(vmxarea, cpu) = NULL;
}
}
static void init_vmcs_shadow_fields(void)
{
int i, j;
/* No checks for read only fields yet */
for (i = j = 0; i < max_shadow_read_write_fields; i++) {
switch (shadow_read_write_fields[i]) {
case GUEST_BNDCFGS:
if (!kvm_mpx_supported())
continue;
break;
default:
break;
}
if (j < i)
shadow_read_write_fields[j] =
shadow_read_write_fields[i];
j++;
}
max_shadow_read_write_fields = j;
/* shadowed fields guest access without vmexit */
for (i = 0; i < max_shadow_read_write_fields; i++) {
clear_bit(shadow_read_write_fields[i],
vmx_vmwrite_bitmap);
clear_bit(shadow_read_write_fields[i],
vmx_vmread_bitmap);
}
for (i = 0; i < max_shadow_read_only_fields; i++)
clear_bit(shadow_read_only_fields[i],
vmx_vmread_bitmap);
}
static __init int alloc_kvm_area(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct vmcs *vmcs;
vmcs = alloc_vmcs_cpu(cpu);
if (!vmcs) {
free_kvm_area();
return -ENOMEM;
}
per_cpu(vmxarea, cpu) = vmcs;
}
return 0;
}
static bool emulation_required(struct kvm_vcpu *vcpu)
{
return emulate_invalid_guest_state && !guest_state_valid(vcpu);
}
static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
struct kvm_segment *save)
{
if (!emulate_invalid_guest_state) {
/*
* CS and SS RPL should be equal during guest entry according
* to VMX spec, but in reality it is not always so. Since vcpu
* is in the middle of the transition from real mode to
* protected mode it is safe to assume that RPL 0 is a good
* default value.
*/
if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
save->selector &= ~SEGMENT_RPL_MASK;
save->dpl = save->selector & SEGMENT_RPL_MASK;
save->s = 1;
}
vmx_set_segment(vcpu, save, seg);
}
static void enter_pmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Update real mode segment cache. It may be not up-to-date if sement
* register was written while vcpu was in a guest mode.
*/
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 0;
vmx_segment_cache_clear(vmx);
vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
flags = vmcs_readl(GUEST_RFLAGS);
flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
update_exception_bitmap(vcpu);
fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
struct kvm_segment var = *save;
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
if (!emulate_invalid_guest_state) {
var.selector = var.base >> 4;
var.base = var.base & 0xffff0;
var.limit = 0xffff;
var.g = 0;
var.db = 0;
var.present = 1;
var.s = 1;
var.l = 0;
var.unusable = 0;
var.type = 0x3;
var.avl = 0;
if (save->base & 0xf)
printk_once(KERN_WARNING "kvm: segment base is not "
"paragraph aligned when entering "
"protected mode (seg=%d)", seg);
}
vmcs_write16(sf->selector, var.selector);
vmcs_writel(sf->base, var.base);
vmcs_write32(sf->limit, var.limit);
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
}
static void enter_rmode(struct kvm_vcpu *vcpu)
{
unsigned long flags;
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
vmx->rmode.vm86_active = 1;
/*
* Very old userspace does not call KVM_SET_TSS_ADDR before entering
* vcpu. Warn the user that an update is overdue.
*/
if (!vcpu->kvm->arch.tss_addr)
printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
"called before entering vcpu\n");
vmx_segment_cache_clear(vmx);
vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
flags = vmcs_readl(GUEST_RFLAGS);
vmx->rmode.save_rflags = flags;
flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
vmcs_writel(GUEST_RFLAGS, flags);
vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
update_exception_bitmap(vcpu);
fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
kvm_mmu_reset_context(vcpu);
}
static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
if (!msr)
return;
/*
* Force kernel_gs_base reloading before EFER changes, as control
* of this msr depends on is_long_mode().
*/
vmx_load_host_state(to_vmx(vcpu));
vcpu->arch.efer = efer;
if (efer & EFER_LMA) {
vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
msr->data = efer;
} else {
vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
msr->data = efer & ~EFER_LME;
}
setup_msrs(vmx);
}
#ifdef CONFIG_X86_64
static void enter_lmode(struct kvm_vcpu *vcpu)
{
u32 guest_tr_ar;
vmx_segment_cache_clear(to_vmx(vcpu));
guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
pr_debug_ratelimited("%s: tss fixup for long mode. \n",
__func__);
vmcs_write32(GUEST_TR_AR_BYTES,
(guest_tr_ar & ~VMX_AR_TYPE_MASK)
| VMX_AR_TYPE_BUSY_64_TSS);
}
vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
}
static void exit_lmode(struct kvm_vcpu *vcpu)
{
vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
}
#endif
static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
{
vpid_sync_context(vpid);
if (enable_ept) {
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
}
}
static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
{
__vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
}
static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
{
if (enable_ept)
vmx_flush_tlb(vcpu);
}
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
}
static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
{
if (enable_ept && is_paging(vcpu))
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
}
static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (!test_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty))
return;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
}
}
static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
{
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
}
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_avail);
__set_bit(VCPU_EXREG_PDPTR,
(unsigned long *)&vcpu->arch.regs_dirty);
}
static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
SECONDARY_EXEC_UNRESTRICTED_GUEST &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
return fixed_bits_valid(val, fixed0, fixed1);
}
static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
return fixed_bits_valid(val, fixed0, fixed1);
}
static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
return fixed_bits_valid(val, fixed0, fixed1);
}
/* No difference in the restrictions on guest and host CR4 in VMX operation. */
#define nested_guest_cr4_valid nested_cr4_valid
#define nested_host_cr4_valid nested_cr4_valid
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
unsigned long cr0,
struct kvm_vcpu *vcpu)
{
if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
vmx_decache_cr3(vcpu);
if (!(cr0 & X86_CR0_PG)) {
/* From paging/starting to nonpaging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
} else if (!is_paging(vcpu)) {
/* From nonpaging to paging */
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
~(CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING));
vcpu->arch.cr0 = cr0;
vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
}
if (!(cr0 & X86_CR0_WP))
*hw_cr0 &= ~X86_CR0_WP;
}
static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long hw_cr0;
hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
if (enable_unrestricted_guest)
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
else {
hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
enter_pmode(vcpu);
if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
enter_rmode(vcpu);
}
#ifdef CONFIG_X86_64
if (vcpu->arch.efer & EFER_LME) {
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
enter_lmode(vcpu);
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
exit_lmode(vcpu);
}
#endif
if (enable_ept)
ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
vmcs_writel(CR0_READ_SHADOW, cr0);
vmcs_writel(GUEST_CR0, hw_cr0);
vcpu->arch.cr0 = cr0;
/* depends on vcpu->arch.cr0 to be set to a new value */
vmx->emulation_required = emulation_required(vcpu);
}
static u64 construct_eptp(unsigned long root_hpa)
{
u64 eptp;
/* TODO write the value reading from MSR */
eptp = VMX_EPT_DEFAULT_MT |
VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
if (enable_ept_ad_bits)
eptp |= VMX_EPT_AD_ENABLE_BIT;
eptp |= (root_hpa & PAGE_MASK);
return eptp;
}
static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
unsigned long guest_cr3;
u64 eptp;
guest_cr3 = cr3;
if (enable_ept) {
eptp = construct_eptp(cr3);
vmcs_write64(EPT_POINTER, eptp);
if (is_paging(vcpu) || is_guest_mode(vcpu))
guest_cr3 = kvm_read_cr3(vcpu);
else
guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
ept_load_pdptrs(vcpu);
}
vmx_flush_tlb(vcpu);
vmcs_writel(GUEST_CR3, guest_cr3);
}
static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
/*
* Pass through host's Machine Check Enable value to hw_cr4, which
* is in force while we are in guest mode. Do not let guests control
* this bit, even if host CR4.MCE == 0.
*/
unsigned long hw_cr4 =
(cr4_read_shadow() & X86_CR4_MCE) |
(cr4 & ~X86_CR4_MCE) |
(to_vmx(vcpu)->rmode.vm86_active ?
KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
if (cr4 & X86_CR4_VMXE) {
/*
* To use VMXON (and later other VMX instructions), a guest
* must first be able to turn on cr4.VMXE (see handle_vmon()).
* So basically the check on whether to allow nested VMX
* is here.
*/
if (!nested_vmx_allowed(vcpu))
return 1;
}
if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
return 1;
vcpu->arch.cr4 = cr4;
if (enable_ept) {
if (!is_paging(vcpu)) {
hw_cr4 &= ~X86_CR4_PAE;
hw_cr4 |= X86_CR4_PSE;
} else if (!(cr4 & X86_CR4_PAE)) {
hw_cr4 &= ~X86_CR4_PAE;
}
}
if (!enable_unrestricted_guest && !is_paging(vcpu))
/*
* SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
* hardware. To emulate this behavior, SMEP/SMAP/PKU needs
* to be manually disabled when guest switches to non-paging
* mode.
*
* If !enable_unrestricted_guest, the CPU is always running
* with CR0.PG=1 and CR4 needs to be modified.
* If enable_unrestricted_guest, the CPU automatically
* disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
*/
hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_CR4, hw_cr4);
return 0;
}
static void vmx_get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 ar;
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
*var = vmx->rmode.segs[seg];
if (seg == VCPU_SREG_TR
|| var->selector == vmx_read_guest_seg_selector(vmx, seg))
return;
var->base = vmx_read_guest_seg_base(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
return;
}
var->base = vmx_read_guest_seg_base(vmx, seg);
var->limit = vmx_read_guest_seg_limit(vmx, seg);
var->selector = vmx_read_guest_seg_selector(vmx, seg);
ar = vmx_read_guest_seg_ar(vmx, seg);
var->unusable = (ar >> 16) & 1;
var->type = ar & 15;
var->s = (ar >> 4) & 1;
var->dpl = (ar >> 5) & 3;
/*
* Some userspaces do not preserve unusable property. Since usable
* segment has to be present according to VMX spec we can use present
* property to amend userspace bug by making unusable segment always
* nonpresent. vmx_segment_access_rights() already marks nonpresent
* segment as unusable.
*/
var->present = !var->unusable;
var->avl = (ar >> 12) & 1;
var->l = (ar >> 13) & 1;
var->db = (ar >> 14) & 1;
var->g = (ar >> 15) & 1;
}
static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment s;
if (to_vmx(vcpu)->rmode.vm86_active) {
vmx_get_segment(vcpu, &s, seg);
return s.base;
}
return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
}
static int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (unlikely(vmx->rmode.vm86_active))
return 0;
else {
int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
return VMX_AR_DPL(ar);
}
}
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
if (var->unusable || !var->present)
ar = 1 << 16;
else {
ar = var->type & 15;
ar |= (var->s & 1) << 4;
ar |= (var->dpl & 3) << 5;
ar |= (var->present & 1) << 7;
ar |= (var->avl & 1) << 12;
ar |= (var->l & 1) << 13;
ar |= (var->db & 1) << 14;
ar |= (var->g & 1) << 15;
}
return ar;
}
static void vmx_set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmx_segment_cache_clear(vmx);
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
vmx->rmode.segs[seg] = *var;
if (seg == VCPU_SREG_TR)
vmcs_write16(sf->selector, var->selector);
else if (var->s)
fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
goto out;
}
vmcs_writel(sf->base, var->base);
vmcs_write32(sf->limit, var->limit);
vmcs_write16(sf->selector, var->selector);
/*
* Fix the "Accessed" bit in AR field of segment registers for older
* qemu binaries.
* IA32 arch specifies that at the time of processor reset the
* "Accessed" bit in the AR field of segment registers is 1. And qemu
* is setting it to 0 in the userland code. This causes invalid guest
* state vmexit when "unrestricted guest" mode is turned on.
* Fix for this setup issue in cpu_reset is being pushed in the qemu
* tree. Newer qemu binaries with that qemu fix would not need this
* kvm hack.
*/
if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
var->type |= 0x1; /* Accessed */
vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
out:
vmx->emulation_required = emulation_required(vcpu);
}
static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
*db = (ar >> 14) & 1;
*l = (ar >> 13) & 1;
}
static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
dt->address = vmcs_readl(GUEST_IDTR_BASE);
}
static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
vmcs_writel(GUEST_IDTR_BASE, dt->address);
}
static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
dt->address = vmcs_readl(GUEST_GDTR_BASE);
}
static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
{
vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
vmcs_writel(GUEST_GDTR_BASE, dt->address);
}
static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
u32 ar;
vmx_get_segment(vcpu, &var, seg);
var.dpl = 0x3;
if (seg == VCPU_SREG_CS)
var.type = 0x3;
ar = vmx_segment_access_rights(&var);
if (var.base != (var.selector << 4))
return false;
if (var.limit != 0xffff)
return false;
if (ar != 0xf3)
return false;
return true;
}
static bool code_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
unsigned int cs_rpl;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
cs_rpl = cs.selector & SEGMENT_RPL_MASK;
if (cs.unusable)
return false;
if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
return false;
if (!cs.s)
return false;
if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
if (cs.dpl > cs_rpl)
return false;
} else {
if (cs.dpl != cs_rpl)
return false;
}
if (!cs.present)
return false;
/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
return true;
}
static bool stack_segment_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ss;
unsigned int ss_rpl;
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
ss_rpl = ss.selector & SEGMENT_RPL_MASK;
if (ss.unusable)
return true;
if (ss.type != 3 && ss.type != 7)
return false;
if (!ss.s)
return false;
if (ss.dpl != ss_rpl) /* DPL != RPL */
return false;
if (!ss.present)
return false;
return true;
}
static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
{
struct kvm_segment var;
unsigned int rpl;
vmx_get_segment(vcpu, &var, seg);
rpl = var.selector & SEGMENT_RPL_MASK;
if (var.unusable)
return true;
if (!var.s)
return false;
if (!var.present)
return false;
if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
if (var.dpl < rpl) /* DPL < RPL */
return false;
}
/* TODO: Add other members to kvm_segment_field to allow checking for other access
* rights flags
*/
return true;
}
static bool tr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment tr;
vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
if (tr.unusable)
return false;
if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
return false;
if (!tr.present)
return false;
return true;
}
static bool ldtr_valid(struct kvm_vcpu *vcpu)
{
struct kvm_segment ldtr;
vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
if (ldtr.unusable)
return true;
if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
return false;
if (ldtr.type != 2)
return false;
if (!ldtr.present)
return false;
return true;
}
static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs, ss;
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
return ((cs.selector & SEGMENT_RPL_MASK) ==
(ss.selector & SEGMENT_RPL_MASK));
}
/*
* Check if guest state is valid. Returns true if valid, false if
* not.
* We assume that registers are always usable
*/
static bool guest_state_valid(struct kvm_vcpu *vcpu)
{
if (enable_unrestricted_guest)
return true;
/* real mode guest state checks */
if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
return false;
} else {
/* protected mode guest state checks */
if (!cs_ss_rpl_check(vcpu))
return false;
if (!code_segment_valid(vcpu))
return false;
if (!stack_segment_valid(vcpu))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_DS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_ES))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_FS))
return false;
if (!data_segment_valid(vcpu, VCPU_SREG_GS))
return false;
if (!tr_valid(vcpu))
return false;
if (!ldtr_valid(vcpu))
return false;
}
/* TODO:
* - Add checks on RIP
* - Add checks on RFLAGS
*/
return true;
}
static int init_rmode_tss(struct kvm *kvm)
{
gfn_t fn;
u16 data = 0;
int idx, r;
idx = srcu_read_lock(&kvm->srcu);
fn = kvm->arch.tss_addr >> PAGE_SHIFT;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
r = kvm_write_guest_page(kvm, fn++, &data,
TSS_IOPB_BASE_OFFSET, sizeof(u16));
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
if (r < 0)
goto out;
r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
if (r < 0)
goto out;
data = ~0;
r = kvm_write_guest_page(kvm, fn, &data,
RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
sizeof(u8));
out:
srcu_read_unlock(&kvm->srcu, idx);
return r;
}
static int init_rmode_identity_map(struct kvm *kvm)
{
int i, idx, r = 0;
kvm_pfn_t identity_map_pfn;
u32 tmp;
if (!enable_ept)
return 0;
/* Protect kvm->arch.ept_identity_pagetable_done. */
mutex_lock(&kvm->slots_lock);
if (likely(kvm->arch.ept_identity_pagetable_done))
goto out2;
identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
r = alloc_identity_pagetable(kvm);
if (r < 0)
goto out2;
idx = srcu_read_lock(&kvm->srcu);
r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
if (r < 0)
goto out;
/* Set up identity-mapping pagetable for EPT in real mode */
for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
r = kvm_write_guest_page(kvm, identity_map_pfn,
&tmp, i * sizeof(tmp), sizeof(tmp));
if (r < 0)
goto out;
}
kvm->arch.ept_identity_pagetable_done = true;
out:
srcu_read_unlock(&kvm->srcu, idx);
out2:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void seg_setup(int seg)
{
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
unsigned int ar;
vmcs_write16(sf->selector, 0);
vmcs_writel(sf->base, 0);
vmcs_write32(sf->limit, 0xffff);
ar = 0x93;
if (seg == VCPU_SREG_CS)
ar |= 0x08; /* code segment */
vmcs_write32(sf->ar_bytes, ar);
}
static int alloc_apic_access_page(struct kvm *kvm)
{
struct page *page;
int r = 0;
mutex_lock(&kvm->slots_lock);
if (kvm->arch.apic_access_page_done)
goto out;
r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
if (r)
goto out;
page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
if (is_error_page(page)) {
r = -EFAULT;
goto out;
}
/*
* Do not pin the page in memory, so that memory hot-unplug
* is able to migrate it.
*/
put_page(page);
kvm->arch.apic_access_page_done = true;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static int alloc_identity_pagetable(struct kvm *kvm)
{
/* Called with kvm->slots_lock held. */
int r = 0;
BUG_ON(kvm->arch.ept_identity_pagetable_done);
r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
kvm->arch.ept_identity_map_addr, PAGE_SIZE);
return r;
}
static int allocate_vpid(void)
{
int vpid;
if (!enable_vpid)
return 0;
spin_lock(&vmx_vpid_lock);
vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
if (vpid < VMX_NR_VPIDS)
__set_bit(vpid, vmx_vpid_bitmap);
else
vpid = 0;
spin_unlock(&vmx_vpid_lock);
return vpid;
}
static void free_vpid(int vpid)
{
if (!enable_vpid || vpid == 0)
return;
spin_lock(&vmx_vpid_lock);
__clear_bit(vpid, vmx_vpid_bitmap);
spin_unlock(&vmx_vpid_lock);
}
#define MSR_TYPE_R 1
#define MSR_TYPE_W 2
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return;
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R)
/* read-low */
__clear_bit(msr, msr_bitmap + 0x000 / f);
if (type & MSR_TYPE_W)
/* write-low */
__clear_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R)
/* read-high */
__clear_bit(msr, msr_bitmap + 0x400 / f);
if (type & MSR_TYPE_W)
/* write-high */
__clear_bit(msr, msr_bitmap + 0xc00 / f);
}
}
/*
* If a msr is allowed by L0, we should check whether it is allowed by L1.
* The corresponding bit will be cleared unless both of L0 and L1 allow it.
*/
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
unsigned long *msr_bitmap_nested,
u32 msr, int type)
{
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap()) {
WARN_ON(1);
return;
}
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x000 / f))
/* read-low */
__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0x800 / f))
/* write-low */
__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x400 / f))
/* read-high */
__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
/* write-high */
__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
}
}
static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
{
if (!longmode_only)
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
msr, MSR_TYPE_R | MSR_TYPE_W);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
msr, MSR_TYPE_R | MSR_TYPE_W);
}
static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
{
if (apicv_active) {
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
msr, type);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
msr, type);
} else {
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
msr, type);
__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
msr, type);
}
}
static bool vmx_get_enable_apicv(void)
{
return enable_apicv;
}
static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
void *vapic_page;
u16 status;
if (vmx->nested.pi_desc &&
vmx->nested.pi_pending) {
vmx->nested.pi_pending = false;
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
return;
max_irr = find_last_bit(
(unsigned long *)vmx->nested.pi_desc->pir, 256);
if (max_irr == 256)
return;
vapic_page = kmap(vmx->nested.virtual_apic_page);
__kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
kunmap(vmx->nested.virtual_apic_page);
status = vmcs_read16(GUEST_INTR_STATUS);
if ((u8)max_irr > ((u8)status & 0xff)) {
status &= ~0xff;
status |= (u8)max_irr;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
}
static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_SMP
if (vcpu->mode == IN_GUEST_MODE) {
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Currently, we don't support urgent interrupt,
* all interrupts are recognized as non-urgent
* interrupt, so we cannot post interrupts when
* 'SN' is set.
*
* If the vcpu is in guest mode, it means it is
* running instead of being scheduled out and
* waiting in the run queue, and that's the only
* case when 'SN' is set currently, warning if
* 'SN' is set.
*/
WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
POSTED_INTR_VECTOR);
return true;
}
#endif
return false;
}
static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (is_guest_mode(vcpu) &&
vector == vmx->nested.posted_intr_nv) {
/* the PIR and ON have been set by L1. */
kvm_vcpu_trigger_posted_interrupt(vcpu);
/*
* If a posted intr is not recognized by hardware,
* we will accomplish it in the next vmentry.
*/
vmx->nested.pi_pending = true;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 0;
}
return -1;
}
/*
* Send interrupt to vcpu via posted interrupt way.
* 1. If target vcpu is running(non-root mode), send posted interrupt
* notification to vcpu and hardware will sync PIR to vIRR atomically.
* 2. If target vcpu isn't running(root mode), kick it to pick up the
* interrupt from PIR in next vmentry.
*/
static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
if (!r)
return;
if (pi_test_and_set_pir(vector, &vmx->pi_desc))
return;
/* If a previous notification has sent the IPI, nothing to do. */
if (pi_test_and_set_on(&vmx->pi_desc))
return;
if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
kvm_vcpu_kick(vcpu);
}
/*
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
* will not change in the lifetime of the guest.
* Note that host-state that does change is set elsewhere. E.g., host-state
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
*/
static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
{
u32 low32, high32;
unsigned long tmpl;
struct desc_ptr dt;
unsigned long cr0, cr4;
cr0 = read_cr0();
WARN_ON(cr0 & X86_CR0_TS);
vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
/* Save the most likely value for this task's CR4 in the VMCS. */
cr4 = cr4_read_shadow();
vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
vmx->host_state.vmcs_host_cr4 = cr4;
vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
#ifdef CONFIG_X86_64
/*
* Load null selectors, so we can avoid reloading them in
* __vmx_load_host_state(), in case userspace uses the null selectors
* too (the expected case).
*/
vmcs_write16(HOST_DS_SELECTOR, 0);
vmcs_write16(HOST_ES_SELECTOR, 0);
#else
vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
#endif
vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
native_store_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
vmx->host_idt_base = dt.address;
vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
rdmsr(MSR_IA32_CR_PAT, low32, high32);
vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
}
}
static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
{
vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
if (enable_ept)
vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
if (is_guest_mode(&vmx->vcpu))
vmx->vcpu.arch.cr4_guest_owned_bits &=
~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
}
static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
{
u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
/* Enable the preemption timer dynamically */
pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
return pin_based_exec_ctrl;
}
static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
if (cpu_has_secondary_exec_ctrls()) {
if (kvm_vcpu_apicv_active(vcpu))
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
else
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
}
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(vcpu);
}
static u32 vmx_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
exec_control &= ~CPU_BASED_MOV_DR_EXITING;
if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
exec_control &= ~CPU_BASED_TPR_SHADOW;
#ifdef CONFIG_X86_64
exec_control |= CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_CR8_LOAD_EXITING;
#endif
}
if (!enable_ept)
exec_control |= CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_INVLPG_EXITING;
return exec_control;
}
static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
{
u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
if (vmx->vpid == 0)
exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
if (!enable_ept) {
exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
enable_unrestricted_guest = 0;
/* Enable INVPCID for non-ept guests may cause performance regression. */
exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
}
if (!enable_unrestricted_guest)
exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (!ple_gap)
exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
if (!kvm_vcpu_apicv_active(&vmx->vcpu))
exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
(handle_vmptrld).
We can NOT enable shadow_vmcs here because we don't have yet
a current VMCS12
*/
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
if (!enable_pml)
exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
return exec_control;
}
static void ept_set_mmio_spte_mask(void)
{
/*
* EPT Misconfigurations can be generated if the value of bits 2:0
* of an EPT paging-structure entry is 110b (write/execute).
*/
kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
}
#define VMX_XSS_EXIT_BITMAP 0
/*
* Sets up the vmcs for emulated real mode.
*/
static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
{
#ifdef CONFIG_X86_64
unsigned long a;
#endif
int i;
/* I/O */
vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
if (enable_shadow_vmcs) {
vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
}
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Control */
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
vmx->hv_deadline_tsc = -1;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
if (cpu_has_secondary_exec_ctrls()) {
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
vmx_secondary_exec_control(vmx));
}
if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
vmcs_write64(EOI_EXIT_BITMAP0, 0);
vmcs_write64(EOI_EXIT_BITMAP1, 0);
vmcs_write64(EOI_EXIT_BITMAP2, 0);
vmcs_write64(EOI_EXIT_BITMAP3, 0);
vmcs_write16(GUEST_INTR_STATUS, 0);
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
}
if (ple_gap) {
vmcs_write32(PLE_GAP, ple_gap);
vmx->ple_window = ple_window;
vmx->ple_window_dirty = true;
}
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
vmx_set_constant_host_state(vmx);
#ifdef CONFIG_X86_64
rdmsrl(MSR_FS_BASE, a);
vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, a);
vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
#else
vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
#endif
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
u32 index = vmx_msr_index[i];
u32 data_low, data_high;
int j = vmx->nmsrs;
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
if (wrmsr_safe(index, data_low, data_high) < 0)
continue;
vmx->guest_msrs[j].index = i;
vmx->guest_msrs[j].data = 0;
vmx->guest_msrs[j].mask = -1ull;
++vmx->nmsrs;
}
vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
/* 22.2.1, 20.8.1 */
vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
set_cr4_guest_host_mask(vmx);
if (vmx_xsaves_supported())
vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
if (enable_pml) {
ASSERT(vmx->pml_pg);
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
return 0;
}
static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct msr_data apic_base_msr;
u64 cr0;
vmx->rmode.vm86_active = 0;
vmx->soft_vnmi_blocked = 0;
vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
kvm_set_cr8(vcpu, 0);
if (!init_event) {
apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
MSR_IA32_APICBASE_ENABLE;
if (kvm_vcpu_is_reset_bsp(vcpu))
apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
apic_base_msr.host_initiated = true;
kvm_set_apic_base(vcpu, &apic_base_msr);
}
vmx_segment_cache_clear(vmx);
seg_setup(VCPU_SREG_CS);
vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
seg_setup(VCPU_SREG_DS);
seg_setup(VCPU_SREG_ES);
seg_setup(VCPU_SREG_FS);
seg_setup(VCPU_SREG_GS);
seg_setup(VCPU_SREG_SS);
vmcs_write16(GUEST_TR_SELECTOR, 0);
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_write32(GUEST_TR_LIMIT, 0xffff);
vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
if (!init_event) {
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
}
vmcs_writel(GUEST_RFLAGS, 0x02);
kvm_rip_write(vcpu, 0xfff0);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
setup_msrs(vmx);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
if (cpu_has_vmx_tpr_shadow() && !init_event) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
if (cpu_need_tpr_shadow(vcpu))
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
__pa(vcpu->arch.apic->regs));
vmcs_write32(TPR_THRESHOLD, 0);
}
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
if (kvm_vcpu_apicv_active(vcpu))
memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
if (vmx->vpid != 0)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
vmx->vcpu.arch.cr0 = cr0;
vmx_set_cr0(vcpu, cr0); /* enter rmode */
vmx_set_cr4(vcpu, 0);
vmx_set_efer(vcpu, 0);
update_exception_bitmap(vcpu);
vpid_sync_context(vmx->vpid);
}
/*
* In nested virtualization, check if L1 asked to exit on external interrupts.
* For most existing hypervisors, this will always return true.
*/
static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
PIN_BASED_EXT_INTR_MASK;
}
/*
* In nested virtualization, check if L1 has set
* VM_EXIT_ACK_INTR_ON_EXIT
*/
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->vm_exit_controls &
VM_EXIT_ACK_INTR_ON_EXIT;
}
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
PIN_BASED_NMI_EXITING;
}
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_INTR_PENDING);
}
static void enable_nmi_window(struct kvm_vcpu *vcpu)
{
if (!cpu_has_virtual_nmis() ||
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
enable_irq_window(vcpu);
return;
}
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_NMI_PENDING);
}
static void vmx_inject_irq(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
uint32_t intr;
int irq = vcpu->arch.interrupt.nr;
trace_kvm_inj_virq(irq);
++vcpu->stat.irq_injections;
if (vmx->rmode.vm86_active) {
int inc_eip = 0;
if (vcpu->arch.interrupt.soft)
inc_eip = vcpu->arch.event_exit_inst_len;
if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
intr = irq | INTR_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
intr |= INTR_TYPE_SOFT_INTR;
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmx->vcpu.arch.event_exit_inst_len);
} else
intr |= INTR_TYPE_EXT_INTR;
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
}
static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!is_guest_mode(vcpu)) {
if (!cpu_has_virtual_nmis()) {
/*
* Tracking the NMI-blocked state in software is built upon
* finding the next open IRQ window. This, in turn, depends on
* well-behaving guests: They have to keep IRQs disabled at
* least as long as the NMI handler runs. Otherwise we may
* cause NMI nesting, maybe breaking the guest. But as this is
* highly unlikely, we can live with the residual risk.
*/
vmx->soft_vnmi_blocked = 1;
vmx->vnmi_blocked_time = 0;
}
++vcpu->stat.nmi_injections;
vmx->nmi_known_unmasked = false;
}
if (vmx->rmode.vm86_active) {
if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
return;
}
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
}
static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
{
if (!cpu_has_virtual_nmis())
return to_vmx(vcpu)->soft_vnmi_blocked;
if (to_vmx(vcpu)->nmi_known_unmasked)
return false;
return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
}
static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!cpu_has_virtual_nmis()) {
if (vmx->soft_vnmi_blocked != masked) {
vmx->soft_vnmi_blocked = masked;
vmx->vnmi_blocked_time = 0;
}
} else {
vmx->nmi_known_unmasked = !masked;
if (masked)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
}
}
static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
{
if (to_vmx(vcpu)->nested.nested_run_pending)
return 0;
if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
return 0;
return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_NMI));
}
static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
{
return (!to_vmx(vcpu)->nested.nested_run_pending &&
vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
}
static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
int ret;
ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
PAGE_SIZE * 3);
if (ret)
return ret;
kvm->arch.tss_addr = addr;
return init_rmode_tss(kvm);
}
static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
{
switch (vec) {
case BP_VECTOR:
/*
* Update instruction length as we may reinject the exception
* from user space while in guest debugging mode.
*/
to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
/* fall through */
case DB_VECTOR:
if (vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
/* fall through */
case DE_VECTOR:
case OF_VECTOR:
case BR_VECTOR:
case UD_VECTOR:
case DF_VECTOR:
case SS_VECTOR:
case GP_VECTOR:
case MF_VECTOR:
return true;
break;
}
return false;
}
static int handle_rmode_exception(struct kvm_vcpu *vcpu,
int vec, u32 err_code)
{
/*
* Instruction with address size override prefix opcode 0x67
* Cause the #SS fault with 0 error code in VM86 mode.
*/
if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
return kvm_vcpu_halt(vcpu);
}
return 1;
}
return 0;
}
/*
* Forward all other exceptions that are valid in real mode.
* FIXME: Breaks guest debugging in real mode, needs to be fixed with
* the required debugging infrastructure rework.
*/
kvm_queue_exception(vcpu, vec);
return 1;
}
/*
* Trigger machine check on the host. We assume all the MSRs are already set up
* by the CPU and that we still run on the same CPU as the MCE occurred on.
* We pass a fake environment to the machine check handler because we want
* the guest to be always treated like user space, no matter what context
* it used internally.
*/
static void kvm_machine_check(void)
{
#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
struct pt_regs regs = {
.cs = 3, /* Fake ring 3 no matter what the guest ran on */
.flags = X86_EFLAGS_IF,
};
do_machine_check(&regs, 0);
#endif
}
static int handle_machine_check(struct kvm_vcpu *vcpu)
{
/* already handled by vcpu_run */
return 1;
}
static int handle_exception(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_run *kvm_run = vcpu->run;
u32 intr_info, ex_no, error_code;
unsigned long cr2, rip, dr6;
u32 vect_info;
enum emulation_result er;
vect_info = vmx->idt_vectoring_info;
intr_info = vmx->exit_intr_info;
if (is_machine_check(intr_info))
return handle_machine_check(vcpu);
if (is_nmi(intr_info))
return 1; /* already handled by vmx_vcpu_run() */
if (is_invalid_opcode(intr_info)) {
if (is_guest_mode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
if (er != EMULATE_DONE)
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
error_code = 0;
if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
/*
* The #PF with PFEC.RSVD = 1 indicates the guest is accessing
* MMIO, it is better to report an internal error.
* See the comments in vmx_handle_exit.
*/
if ((vect_info & VECTORING_INFO_VALID_MASK) &&
!(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
vcpu->run->internal.ndata = 3;
vcpu->run->internal.data[0] = vect_info;
vcpu->run->internal.data[1] = intr_info;
vcpu->run->internal.data[2] = error_code;
return 0;
}
if (is_page_fault(intr_info)) {
/* EPT won't cause page fault directly */
BUG_ON(enable_ept);
cr2 = vmcs_readl(EXIT_QUALIFICATION);
trace_kvm_page_fault(cr2, error_code);
if (kvm_event_needs_reinjection(vcpu))
kvm_mmu_unprotect_page_virt(vcpu, cr2);
return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
}
ex_no = intr_info & INTR_INFO_VECTOR_MASK;
if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
return handle_rmode_exception(vcpu, ex_no, error_code);
switch (ex_no) {
case AC_VECTOR:
kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
return 1;
case DB_VECTOR:
dr6 = vmcs_readl(EXIT_QUALIFICATION);
if (!(vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= dr6 | DR6_RTM;
if (!(dr6 & ~DR6_RESERVED)) /* icebp */
skip_emulated_instruction(vcpu);
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
/* fall through */
case BP_VECTOR:
/*
* Update instruction length as we may reinject #BP from
* user space while in guest debugging mode. Reading it for
* #DB as well causes no harm, it is not used in that case.
*/
vmx->vcpu.arch.event_exit_inst_len =
vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
kvm_run->exit_reason = KVM_EXIT_DEBUG;
rip = kvm_rip_read(vcpu);
kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
kvm_run->debug.arch.exception = ex_no;
break;
default:
kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
kvm_run->ex.exception = ex_no;
kvm_run->ex.error_code = error_code;
break;
}
return 0;
}
static int handle_external_interrupt(struct kvm_vcpu *vcpu)
{
++vcpu->stat.irq_exits;
return 1;
}
static int handle_triple_fault(struct kvm_vcpu *vcpu)
{
vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
return 0;
}
static int handle_io(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int size, in, string, ret;
unsigned port;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
string = (exit_qualification & 16) != 0;
in = (exit_qualification & 8) != 0;
++vcpu->stat.io_exits;
if (string || in)
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
ret = kvm_skip_emulated_instruction(vcpu);
/*
* TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
return kvm_fast_pio_out(vcpu, size, port) && ret;
}
static void
vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
/*
* Patch in the VMCALL instruction:
*/
hypercall[0] = 0x0f;
hypercall[1] = 0x01;
hypercall[2] = 0xc1;
}
/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/*
* We get here when L2 changed cr0 in a way that did not change
* any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
* but did change L0 shadowed bits. So we first calculate the
* effective cr0 value that L1 would like to write into the
* hardware. It consists of the L2-owned bits from the new
* value combined with the L1-owned bits from L1's guest_cr0.
*/
val = (val & ~vmcs12->cr0_guest_host_mask) |
(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
if (!nested_guest_cr0_valid(vcpu, val))
return 1;
if (kvm_set_cr0(vcpu, val))
return 1;
vmcs_writel(CR0_READ_SHADOW, orig_val);
return 0;
} else {
if (to_vmx(vcpu)->nested.vmxon &&
!nested_host_cr0_valid(vcpu, val))
return 1;
return kvm_set_cr0(vcpu, val);
}
}
static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
{
if (is_guest_mode(vcpu)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned long orig_val = val;
/* analogously to handle_set_cr0 */
val = (val & ~vmcs12->cr4_guest_host_mask) |
(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
if (kvm_set_cr4(vcpu, val))
return 1;
vmcs_writel(CR4_READ_SHADOW, orig_val);
return 0;
} else
return kvm_set_cr4(vcpu, val);
}
static int handle_cr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification, val;
int cr;
int reg;
int err;
int ret;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
cr = exit_qualification & 15;
reg = (exit_qualification >> 8) & 15;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
val = kvm_register_readl(vcpu, reg);
trace_kvm_cr_write(cr, val);
switch (cr) {
case 0:
err = handle_set_cr0(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 3:
err = kvm_set_cr3(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 4:
err = handle_set_cr4(vcpu, val);
return kvm_complete_insn_gp(vcpu, err);
case 8: {
u8 cr8_prev = kvm_get_cr8(vcpu);
u8 cr8 = (u8)val;
err = kvm_set_cr8(vcpu, cr8);
ret = kvm_complete_insn_gp(vcpu, err);
if (lapic_in_kernel(vcpu))
return ret;
if (cr8_prev <= cr8)
return ret;
/*
* TODO: we might be squashing a
* KVM_GUESTDBG_SINGLESTEP-triggered
* KVM_EXIT_DEBUG here.
*/
vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
return 0;
}
}
break;
case 2: /* clts */
WARN_ONCE(1, "Guest should always own CR0.TS");
vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
return kvm_skip_emulated_instruction(vcpu);
case 1: /*mov from cr*/
switch (cr) {
case 3:
val = kvm_read_cr3(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
case 8:
val = kvm_get_cr8(vcpu);
kvm_register_write(vcpu, reg, val);
trace_kvm_cr_read(cr, val);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case 3: /* lmsw */
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
kvm_lmsw(vcpu, val);
return kvm_skip_emulated_instruction(vcpu);
default:
break;
}
vcpu->run->exit_reason = 0;
vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
(int)(exit_qualification >> 4) & 3, cr);
return 0;
}
static int handle_dr(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
int dr, dr7, reg;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
/* First, if DR does not exist, trigger UD */
if (!kvm_require_dr(vcpu, dr))
return 1;
/* Do not handle if the CPL > 0, will trigger GP on re-entry */
if (!kvm_require_cpl(vcpu, 0))
return 1;
dr7 = vmcs_readl(GUEST_DR7);
if (dr7 & DR7_GD) {
/*
* As the vm-exit takes precedence over the debug trap, we
* need to emulate the latter, either for the host or the
* guest debugging itself.
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
vcpu->run->debug.arch.dr7 = dr7;
vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
vcpu->run->debug.arch.exception = DB_VECTOR;
vcpu->run->exit_reason = KVM_EXIT_DEBUG;
return 0;
} else {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
}
if (vcpu->guest_debug == 0) {
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_MOV_DR_EXITING);
/*
* No more DR vmexits; force a reload of the debug registers
* and reenter on this instruction. The next vmexit will
* retrieve the full state of the debug registers.
*/
vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
return 1;
}
reg = DEBUG_REG_ACCESS_REG(exit_qualification);
if (exit_qualification & TYPE_MOV_FROM_DR) {
unsigned long val;
if (kvm_get_dr(vcpu, dr, &val))
return 1;
kvm_register_write(vcpu, reg, val);
} else
if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
return 1;
return kvm_skip_emulated_instruction(vcpu);
}
static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
{
return vcpu->arch.dr6;
}
static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
{
}
static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
{
get_debugreg(vcpu->arch.db[0], 0);
get_debugreg(vcpu->arch.db[1], 1);
get_debugreg(vcpu->arch.db[2], 2);
get_debugreg(vcpu->arch.db[3], 3);
get_debugreg(vcpu->arch.dr6, 6);
vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
}
static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
{
vmcs_writel(GUEST_DR7, val);
}
static int handle_cpuid(struct kvm_vcpu *vcpu)
{
return kvm_emulate_cpuid(vcpu);
}
static int handle_rdmsr(struct kvm_vcpu *vcpu)
{
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
struct msr_data msr_info;
msr_info.index = ecx;
msr_info.host_initiated = false;
if (vmx_get_msr(vcpu, &msr_info)) {
trace_kvm_msr_read_ex(ecx);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_read(ecx, msr_info.data);
/* FIXME: handling of bits 32:63 of rax, rdx */
vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_wrmsr(struct kvm_vcpu *vcpu)
{
struct msr_data msr;
u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
msr.data = data;
msr.index = ecx;
msr.host_initiated = false;
if (kvm_set_msr(vcpu, &msr) != 0) {
trace_kvm_msr_write_ex(ecx, data);
kvm_inject_gp(vcpu, 0);
return 1;
}
trace_kvm_msr_write(ecx, data);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
{
kvm_apic_update_ppr(vcpu);
return 1;
}
static int handle_interrupt_window(struct kvm_vcpu *vcpu)
{
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_INTR_PENDING);
kvm_make_request(KVM_REQ_EVENT, vcpu);
++vcpu->stat.irq_window_exits;
return 1;
}
static int handle_halt(struct kvm_vcpu *vcpu)
{
return kvm_emulate_halt(vcpu);
}
static int handle_vmcall(struct kvm_vcpu *vcpu)
{
return kvm_emulate_hypercall(vcpu);
}
static int handle_invd(struct kvm_vcpu *vcpu)
{
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_invlpg(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
kvm_mmu_invlpg(vcpu, exit_qualification);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_rdpmc(struct kvm_vcpu *vcpu)
{
int err;
err = kvm_rdpmc(vcpu);
return kvm_complete_insn_gp(vcpu, err);
}
static int handle_wbinvd(struct kvm_vcpu *vcpu)
{
return kvm_emulate_wbinvd(vcpu);
}
static int handle_xsetbv(struct kvm_vcpu *vcpu)
{
u64 new_bv = kvm_read_edx_eax(vcpu);
u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
if (kvm_set_xcr(vcpu, index, new_bv) == 0)
return kvm_skip_emulated_instruction(vcpu);
return 1;
}
static int handle_xsaves(struct kvm_vcpu *vcpu)
{
kvm_skip_emulated_instruction(vcpu);
WARN(1, "this should never happen\n");
return 1;
}
static int handle_xrstors(struct kvm_vcpu *vcpu)
{
kvm_skip_emulated_instruction(vcpu);
WARN(1, "this should never happen\n");
return 1;
}
static int handle_apic_access(struct kvm_vcpu *vcpu)
{
if (likely(fasteoi)) {
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int access_type, offset;
access_type = exit_qualification & APIC_ACCESS_TYPE;
offset = exit_qualification & APIC_ACCESS_OFFSET;
/*
* Sane guest uses MOV to write EOI, with written value
* not cared. So make a short-circuit here by avoiding
* heavy instruction emulation.
*/
if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
(offset == APIC_EOI)) {
kvm_lapic_set_eoi(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
}
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
}
static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int vector = exit_qualification & 0xff;
/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
kvm_apic_set_eoi_accelerated(vcpu, vector);
return 1;
}
static int handle_apic_write(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 offset = exit_qualification & 0xfff;
/* APIC-write VM exit is trap-like and thus no need to adjust IP */
kvm_apic_write_nodecode(vcpu, offset);
return 1;
}
static int handle_task_switch(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qualification;
bool has_error_code = false;
u32 error_code = 0;
u16 tss_selector;
int reason, type, idt_v, idt_index;
idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
reason = (u32)exit_qualification >> 30;
if (reason == TASK_SWITCH_GATE && idt_v) {
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = false;
vmx_set_nmi_mask(vcpu, true);
break;
case INTR_TYPE_EXT_INTR:
case INTR_TYPE_SOFT_INTR:
kvm_clear_interrupt_queue(vcpu);
break;
case INTR_TYPE_HARD_EXCEPTION:
if (vmx->idt_vectoring_info &
VECTORING_INFO_DELIVER_CODE_MASK) {
has_error_code = true;
error_code =
vmcs_read32(IDT_VECTORING_ERROR_CODE);
}
/* fall through */
case INTR_TYPE_SOFT_EXCEPTION:
kvm_clear_exception_queue(vcpu);
break;
default:
break;
}
}
tss_selector = exit_qualification;
if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
type != INTR_TYPE_EXT_INTR &&
type != INTR_TYPE_NMI_INTR))
skip_emulated_instruction(vcpu);
if (kvm_task_switch(vcpu, tss_selector,
type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
has_error_code, error_code) == EMULATE_FAIL) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
/*
* TODO: What about debug traps on tss switch?
* Are we supposed to inject them and update dr6?
*/
return 1;
}
static int handle_ept_violation(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
gpa_t gpa;
u32 error_code;
int gla_validity;
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
gla_validity = (exit_qualification >> 7) & 0x3;
if (gla_validity == 0x2) {
printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
vmcs_readl(GUEST_LINEAR_ADDRESS));
printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
(long unsigned int)exit_qualification);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
return 0;
}
/*
* EPT violation happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
* There are errata that may cause this bit to not be set:
* AAK134, BY25.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
cpu_has_virtual_nmis() &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
trace_kvm_page_fault(gpa, exit_qualification);
/* Is it a read fault? */
error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
? PFERR_USER_MASK : 0;
/* Is it a write fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
? PFERR_WRITE_MASK : 0;
/* Is it a fetch fault? */
error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
? PFERR_FETCH_MASK : 0;
/* ept page table entry is present? */
error_code |= (exit_qualification &
(EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
EPT_VIOLATION_EXECUTABLE))
? PFERR_PRESENT_MASK : 0;
vcpu->arch.gpa_available = true;
vcpu->arch.exit_qualification = exit_qualification;
return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
}
static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
{
int ret;
gpa_t gpa;
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
trace_kvm_fast_mmio(gpa);
return kvm_skip_emulated_instruction(vcpu);
}
ret = handle_mmio_page_fault(vcpu, gpa, true);
vcpu->arch.gpa_available = true;
if (likely(ret == RET_MMIO_PF_EMULATE))
return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
EMULATE_DONE;
if (unlikely(ret == RET_MMIO_PF_INVALID))
return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
if (unlikely(ret == RET_MMIO_PF_RETRY))
return 1;
/* It is the real ept misconfig */
WARN_ON(1);
vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
return 0;
}
static int handle_nmi_window(struct kvm_vcpu *vcpu)
{
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_VIRTUAL_NMI_PENDING);
++vcpu->stat.nmi_window_exits;
kvm_make_request(KVM_REQ_EVENT, vcpu);
return 1;
}
static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
enum emulation_result err = EMULATE_DONE;
int ret = 1;
u32 cpu_exec_ctrl;
bool intr_window_requested;
unsigned count = 130;
cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
while (vmx->emulation_required && count-- != 0) {
if (intr_window_requested && vmx_interrupt_allowed(vcpu))
return handle_interrupt_window(&vmx->vcpu);
if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
return 1;
err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
if (err == EMULATE_USER_EXIT) {
++vcpu->stat.mmio_exits;
ret = 0;
goto out;
}
if (err != EMULATE_DONE) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return 0;
}
if (vcpu->arch.halt_request) {
vcpu->arch.halt_request = 0;
ret = kvm_vcpu_halt(vcpu);
goto out;
}
if (signal_pending(current))
goto out;
if (need_resched())
schedule();
}
out:
return ret;
}
static int __grow_ple_window(int val)
{
if (ple_window_grow < 1)
return ple_window;
val = min(val, ple_window_actual_max);
if (ple_window_grow < ple_window)
val *= ple_window_grow;
else
val += ple_window_grow;
return val;
}
static int __shrink_ple_window(int val, int modifier, int minimum)
{
if (modifier < 1)
return ple_window;
if (modifier < ple_window)
val /= modifier;
else
val -= modifier;
return max(val, minimum);
}
static void grow_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int old = vmx->ple_window;
vmx->ple_window = __grow_ple_window(old);
if (vmx->ple_window != old)
vmx->ple_window_dirty = true;
trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
}
static void shrink_ple_window(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int old = vmx->ple_window;
vmx->ple_window = __shrink_ple_window(old,
ple_window_shrink, ple_window);
if (vmx->ple_window != old)
vmx->ple_window_dirty = true;
trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
}
/*
* ple_window_actual_max is computed to be one grow_ple_window() below
* ple_window_max. (See __grow_ple_window for the reason.)
* This prevents overflows, because ple_window_max is int.
* ple_window_max effectively rounded down to a multiple of ple_window_grow in
* this process.
* ple_window_max is also prevented from setting vmx->ple_window < ple_window.
*/
static void update_ple_window_actual_max(void)
{
ple_window_actual_max =
__shrink_ple_window(max(ple_window_max, ple_window),
ple_window_grow, INT_MIN);
}
/*
* Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
*/
static void wakeup_handler(void)
{
struct kvm_vcpu *vcpu;
int cpu = smp_processor_id();
spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
blocked_vcpu_list) {
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (pi_test_on(pi_desc) == 1)
kvm_vcpu_kick(vcpu);
}
spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
}
void vmx_enable_tdp(void)
{
kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
0ull, VMX_EPT_EXECUTABLE_MASK,
cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
ept_set_mmio_spte_mask();
kvm_enable_tdp();
}
static __init int hardware_setup(void)
{
int r = -ENOMEM, i, msr;
rdmsrl_safe(MSR_EFER, &host_efer);
for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
kvm_define_shared_msr(i, vmx_msr_index[i]);
for (i = 0; i < VMX_BITMAP_NR; i++) {
vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx_bitmap[i])
goto out;
}
vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
/*
* Allow direct access to the PC debug port (it is often used for I/O
* delays, but the vmexits simply slow things down).
*/
memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
clear_bit(0x80, vmx_io_bitmap_a);
memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
if (setup_vmcs_config(&vmcs_config) < 0) {
r = -EIO;
goto out;
}
if (boot_cpu_has(X86_FEATURE_NX))
kvm_enable_efer_bits(EFER_NX);
if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
!(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
enable_vpid = 0;
if (!cpu_has_vmx_shadow_vmcs())
enable_shadow_vmcs = 0;
if (enable_shadow_vmcs)
init_vmcs_shadow_fields();
if (!cpu_has_vmx_ept() ||
!cpu_has_vmx_ept_4levels()) {
enable_ept = 0;
enable_unrestricted_guest = 0;
enable_ept_ad_bits = 0;
}
if (!cpu_has_vmx_ept_ad_bits())
enable_ept_ad_bits = 0;
if (!cpu_has_vmx_unrestricted_guest())
enable_unrestricted_guest = 0;
if (!cpu_has_vmx_flexpriority())
flexpriority_enabled = 0;
/*
* set_apic_access_page_addr() is used to reload apic access
* page upon invalidation. No need to do anything if not
* using the APIC_ACCESS_ADDR VMCS field.
*/
if (!flexpriority_enabled)
kvm_x86_ops->set_apic_access_page_addr = NULL;
if (!cpu_has_vmx_tpr_shadow())
kvm_x86_ops->update_cr8_intercept = NULL;
if (enable_ept && !cpu_has_vmx_ept_2m_page())
kvm_disable_largepages();
if (!cpu_has_vmx_ple())
ple_gap = 0;
if (!cpu_has_vmx_apicv()) {
enable_apicv = 0;
kvm_x86_ops->sync_pir_to_irr = NULL;
}
if (cpu_has_vmx_tsc_scaling()) {
kvm_has_tsc_control = true;
kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
kvm_tsc_scaling_ratio_frac_bits = 48;
}
vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
vmx_msr_bitmap_legacy, PAGE_SIZE);
memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
vmx_msr_bitmap_longmode, PAGE_SIZE);
memcpy(vmx_msr_bitmap_legacy_x2apic,
vmx_msr_bitmap_legacy, PAGE_SIZE);
memcpy(vmx_msr_bitmap_longmode_x2apic,
vmx_msr_bitmap_longmode, PAGE_SIZE);
set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
for (msr = 0x800; msr <= 0x8ff; msr++) {
if (msr == 0x839 /* TMCCT */)
continue;
vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
}
/*
* TPR reads and writes can be virtualized even if virtual interrupt
* delivery is not in use.
*/
vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
/* EOI */
vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
/* SELF-IPI */
vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
if (enable_ept)
vmx_enable_tdp();
else
kvm_disable_tdp();
update_ple_window_actual_max();
/*
* Only enable PML when hardware supports PML feature, and both EPT
* and EPT A/D bit features are enabled -- PML depends on them to work.
*/
if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
enable_pml = 0;
if (!enable_pml) {
kvm_x86_ops->slot_enable_log_dirty = NULL;
kvm_x86_ops->slot_disable_log_dirty = NULL;
kvm_x86_ops->flush_log_dirty = NULL;
kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
}
if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
u64 vmx_msr;
rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
cpu_preemption_timer_multi =
vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
} else {
kvm_x86_ops->set_hv_timer = NULL;
kvm_x86_ops->cancel_hv_timer = NULL;
}
kvm_set_posted_intr_wakeup_handler(wakeup_handler);
kvm_mce_cap_supported |= MCG_LMCE_P;
return alloc_kvm_area();
out:
for (i = 0; i < VMX_BITMAP_NR; i++)
free_page((unsigned long)vmx_bitmap[i]);
return r;
}
static __exit void hardware_unsetup(void)
{
int i;
for (i = 0; i < VMX_BITMAP_NR; i++)
free_page((unsigned long)vmx_bitmap[i]);
free_kvm_area();
}
/*
* Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
* exiting, so only get here on cpu with PAUSE-Loop-Exiting.
*/
static int handle_pause(struct kvm_vcpu *vcpu)
{
if (ple_gap)
grow_ple_window(vcpu);
kvm_vcpu_on_spin(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_nop(struct kvm_vcpu *vcpu)
{
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_mwait(struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
return handle_nop(vcpu);
}
static int handle_monitor_trap(struct kvm_vcpu *vcpu)
{
return 1;
}
static int handle_monitor(struct kvm_vcpu *vcpu)
{
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
return handle_nop(vcpu);
}
/*
* To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
* We could reuse a single VMCS for all the L2 guests, but we also want the
* option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
* allows keeping them loaded on the processor, and in the future will allow
* optimizations where prepare_vmcs02 doesn't need to set all the fields on
* every entry if they never change.
* So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
* (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
*
* The following functions allocate and free a vmcs02 in this pool.
*/
/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
{
struct vmcs02_list *item;
list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
if (item->vmptr == vmx->nested.current_vmptr) {
list_move(&item->list, &vmx->nested.vmcs02_pool);
return &item->vmcs02;
}
if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
/* Recycle the least recently used VMCS. */
item = list_last_entry(&vmx->nested.vmcs02_pool,
struct vmcs02_list, list);
item->vmptr = vmx->nested.current_vmptr;
list_move(&item->list, &vmx->nested.vmcs02_pool);
return &item->vmcs02;
}
/* Create a new VMCS */
item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
if (!item)
return NULL;
item->vmcs02.vmcs = alloc_vmcs();
item->vmcs02.shadow_vmcs = NULL;
if (!item->vmcs02.vmcs) {
kfree(item);
return NULL;
}
loaded_vmcs_init(&item->vmcs02);
item->vmptr = vmx->nested.current_vmptr;
list_add(&(item->list), &(vmx->nested.vmcs02_pool));
vmx->nested.vmcs02_num++;
return &item->vmcs02;
}
/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
{
struct vmcs02_list *item;
list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
if (item->vmptr == vmptr) {
free_loaded_vmcs(&item->vmcs02);
list_del(&item->list);
kfree(item);
vmx->nested.vmcs02_num--;
return;
}
}
/*
* Free all VMCSs saved for this vcpu, except the one pointed by
* vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
* must be &vmx->vmcs01.
*/
static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
{
struct vmcs02_list *item, *n;
WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
/*
* Something will leak if the above WARN triggers. Better than
* a use-after-free.
*/
if (vmx->loaded_vmcs == &item->vmcs02)
continue;
free_loaded_vmcs(&item->vmcs02);
list_del(&item->list);
kfree(item);
vmx->nested.vmcs02_num--;
}
}
/*
* The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
* set the success or error code of an emulated VMX instruction, as specified
* by Vol 2B, VMX Instruction Reference, "Conventions".
*/
static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
}
static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_CF);
}
static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
u32 vm_instruction_error)
{
if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
/*
* failValid writes the error number to the current VMCS, which
* can't be done there isn't a current VMCS.
*/
nested_vmx_failInvalid(vcpu);
return;
}
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_ZF);
get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
/*
* We don't need to force a shadow sync because
* VM_INSTRUCTION_ERROR is not shadowed
*/
}
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
/* TODO: not to reset guest simply here. */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}
static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
struct vcpu_vmx *vmx =
container_of(timer, struct vcpu_vmx, nested.preemption_timer);
vmx->nested.preemption_timer_expired = true;
kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
kvm_vcpu_kick(&vmx->vcpu);
return HRTIMER_NORESTART;
}
/*
* Decode the memory-address operand of a vmx instruction, as recorded on an
* exit caused by such an instruction (run by a guest hypervisor).
* On success, returns 0. When the operand is invalid, returns 1 and throws
* #UD or #GP.
*/
static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
unsigned long exit_qualification,
u32 vmx_instruction_info, bool wr, gva_t *ret)
{
gva_t off;
bool exn;
struct kvm_segment s;
/*
* According to Vol. 3B, "Information for VM Exits Due to Instruction
* Execution", on an exit, vmx_instruction_info holds most of the
* addressing components of the operand. Only the displacement part
* is put in exit_qualification (see 3B, "Basic VM-Exit Information").
* For how an actual address is calculated from all these components,
* refer to Vol. 1, "Operand Addressing".
*/
int scaling = vmx_instruction_info & 3;
int addr_size = (vmx_instruction_info >> 7) & 7;
bool is_reg = vmx_instruction_info & (1u << 10);
int seg_reg = (vmx_instruction_info >> 15) & 7;
int index_reg = (vmx_instruction_info >> 18) & 0xf;
bool index_is_valid = !(vmx_instruction_info & (1u << 22));
int base_reg = (vmx_instruction_info >> 23) & 0xf;
bool base_is_valid = !(vmx_instruction_info & (1u << 27));
if (is_reg) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* Addr = segment_base + offset */
/* offset = base + [index * scale] + displacement */
off = exit_qualification; /* holds the displacement */
if (base_is_valid)
off += kvm_register_read(vcpu, base_reg);
if (index_is_valid)
off += kvm_register_read(vcpu, index_reg)<<scaling;
vmx_get_segment(vcpu, &s, seg_reg);
*ret = s.base + off;
if (addr_size == 1) /* 32 bit */
*ret &= 0xffffffff;
/* Checks for #GP/#SS exceptions. */
exn = false;
if (is_long_mode(vcpu)) {
/* Long mode: #GP(0)/#SS(0) if the memory address is in a
* non-canonical form. This is the only check on the memory
* destination for long mode!
*/
exn = is_noncanonical_address(*ret);
} else if (is_protmode(vcpu)) {
/* Protected mode: apply checks for segment validity in the
* following order:
* - segment type check (#GP(0) may be thrown)
* - usability check (#GP(0)/#SS(0))
* - limit check (#GP(0)/#SS(0))
*/
if (wr)
/* #GP(0) if the destination operand is located in a
* read-only data segment or any code segment.
*/
exn = ((s.type & 0xa) == 0 || (s.type & 8));
else
/* #GP(0) if the source operand is located in an
* execute-only code segment
*/
exn = ((s.type & 0xa) == 8);
if (exn) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
*/
exn = (s.unusable != 0);
/* Protected mode: #GP(0)/#SS(0) if the memory
* operand is outside the segment limit.
*/
exn = exn || (off + sizeof(u64) > s.limit);
}
if (exn) {
kvm_queue_exception_e(vcpu,
seg_reg == VCPU_SREG_SS ?
SS_VECTOR : GP_VECTOR,
0);
return 1;
}
return 0;
}
/*
* This function performs the various checks including
* - if it's 4KB aligned
* - No bits beyond the physical address width are set
* - Returns 0 on success or else 1
* (Intel SDM Section 30.3)
*/
static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
gpa_t *vmpointer)
{
gva_t gva;
gpa_t vmptr;
struct x86_exception e;
struct page *page;
struct vcpu_vmx *vmx = to_vmx(vcpu);
int maxphyaddr = cpuid_maxphyaddr(vcpu);
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
sizeof(vmptr), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (exit_reason) {
case EXIT_REASON_VMON:
/*
* SDM 3: 24.11.5
* The first 4 bytes of VMXON region contain the supported
* VMCS revision identifier
*
* Note - IA32_VMX_BASIC[48] will never be 1
* for the nested case;
* which replaces physical address width with 32
*
*/
if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
page = nested_get_page(vcpu, vmptr);
if (page == NULL) {
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
if (*(u32 *)kmap(page) != VMCS12_REVISION) {
kunmap(page);
nested_release_page_clean(page);
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
kunmap(page);
nested_release_page_clean(page);
vmx->nested.vmxon_ptr = vmptr;
break;
case EXIT_REASON_VMCLEAR:
if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_INVALID_ADDRESS);
return kvm_skip_emulated_instruction(vcpu);
}
if (vmptr == vmx->nested.vmxon_ptr) {
nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_VMXON_POINTER);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case EXIT_REASON_VMPTRLD:
if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INVALID_ADDRESS);
return kvm_skip_emulated_instruction(vcpu);
}
if (vmptr == vmx->nested.vmxon_ptr) {
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_VMXON_POINTER);
return kvm_skip_emulated_instruction(vcpu);
}
break;
default:
return 1; /* shouldn't happen */
}
if (vmpointer)
*vmpointer = vmptr;
return 0;
}
static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs *shadow_vmcs;
if (cpu_has_vmx_msr_bitmap()) {
vmx->nested.msr_bitmap =
(unsigned long *)__get_free_page(GFP_KERNEL);
if (!vmx->nested.msr_bitmap)
goto out_msr_bitmap;
}
vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
if (!vmx->nested.cached_vmcs12)
goto out_cached_vmcs12;
if (enable_shadow_vmcs) {
shadow_vmcs = alloc_vmcs();
if (!shadow_vmcs)
goto out_shadow_vmcs;
/* mark vmcs as shadow */
shadow_vmcs->revision_id |= (1u << 31);
/* init shadow vmcs */
vmcs_clear(shadow_vmcs);
vmx->vmcs01.shadow_vmcs = shadow_vmcs;
}
INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
vmx->nested.vmcs02_num = 0;
hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
vmx->nested.vmxon = true;
return 0;
out_shadow_vmcs:
kfree(vmx->nested.cached_vmcs12);
out_cached_vmcs12:
free_page((unsigned long)vmx->nested.msr_bitmap);
out_msr_bitmap:
return -ENOMEM;
}
/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
* do not currently need to store anything in that guest-allocated memory
* region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
* argument is different from the VMXON pointer (which the spec says they do).
*/
static int handle_vmon(struct kvm_vcpu *vcpu)
{
int ret;
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
/* The Intel VMX Instruction Reference lists a bunch of bits that
* are prerequisite to running VMXON, most notably cr4.VMXE must be
* set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
* Otherwise, we should fail with #UD. We test these now:
*/
if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
!kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
(vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
if (is_long_mode(vcpu) && !cs.l) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (vmx->nested.vmxon) {
nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
return kvm_skip_emulated_instruction(vcpu);
}
if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
!= VMXON_NEEDED_FEATURES) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
return 1;
ret = enter_vmx_operation(vcpu);
if (ret)
return ret;
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/*
* Intel's VMX Instruction Reference specifies a common set of prerequisites
* for running VMX instructions (except VMXON, whose prerequisites are
* slightly different). It also specifies what exception to inject otherwise.
*/
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
struct kvm_segment cs;
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.vmxon) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
(is_long_mode(vcpu) && !cs.l)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 0;
}
return 1;
}
static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
{
if (vmx->nested.current_vmptr == -1ull)
return;
/* current_vmptr and current_vmcs12 are always set/reset together */
if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
return;
if (enable_shadow_vmcs) {
/* copy to memory all shadowed fields in case
they were modified */
copy_shadow_to_vmcs12(vmx);
vmx->nested.sync_shadow_vmcs = false;
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
}
vmx->nested.posted_intr_nv = -1;
/* Flush VMCS12 to guest memory */
memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
VMCS12_SIZE);
kunmap(vmx->nested.current_vmcs12_page);
nested_release_page(vmx->nested.current_vmcs12_page);
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
}
/*
* Free whatever needs to be freed from vmx->nested when L1 goes down, or
* just stops using VMX.
*/
static void free_nested(struct vcpu_vmx *vmx)
{
if (!vmx->nested.vmxon)
return;
vmx->nested.vmxon = false;
free_vpid(vmx->nested.vpid02);
nested_release_vmcs12(vmx);
if (vmx->nested.msr_bitmap) {
free_page((unsigned long)vmx->nested.msr_bitmap);
vmx->nested.msr_bitmap = NULL;
}
if (enable_shadow_vmcs) {
vmcs_clear(vmx->vmcs01.shadow_vmcs);
free_vmcs(vmx->vmcs01.shadow_vmcs);
vmx->vmcs01.shadow_vmcs = NULL;
}
kfree(vmx->nested.cached_vmcs12);
/* Unpin physical memory we referred to in current vmcs02 */
if (vmx->nested.apic_access_page) {
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
if (vmx->nested.virtual_apic_page) {
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page = NULL;
}
if (vmx->nested.pi_desc_page) {
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
vmx->nested.pi_desc_page = NULL;
vmx->nested.pi_desc = NULL;
}
nested_free_all_saved_vmcss(vmx);
}
/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
if (!nested_vmx_check_permission(vcpu))
return 1;
free_nested(to_vmx(vcpu));
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 zero = 0;
gpa_t vmptr;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
return 1;
if (vmptr == vmx->nested.current_vmptr)
nested_release_vmcs12(vmx);
kvm_vcpu_write_guest(vcpu,
vmptr + offsetof(struct vmcs12, launch_state),
&zero, sizeof(zero));
nested_free_vmcs02(vmx, vmptr);
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, true);
}
/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, false);
}
enum vmcs_field_type {
VMCS_FIELD_TYPE_U16 = 0,
VMCS_FIELD_TYPE_U64 = 1,
VMCS_FIELD_TYPE_U32 = 2,
VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
};
static inline int vmcs_field_type(unsigned long field)
{
if (0x1 & field) /* the *_HIGH fields are all 32 bit */
return VMCS_FIELD_TYPE_U32;
return (field >> 13) & 0x3 ;
}
static inline int vmcs_field_readonly(unsigned long field)
{
return (((field >> 10) & 0x3) == 1);
}
/*
* Read a vmcs12 field. Since these can have varying lengths and we return
* one type, we chose the biggest type (u64) and zero-extend the return value
* to that size. Note that the caller, handle_vmread, might need to use only
* some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
* 64-bit fields are to be returned).
*/
static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
unsigned long field, u64 *ret)
{
short offset = vmcs_field_to_offset(field);
char *p;
if (offset < 0)
return offset;
p = ((char *)(get_vmcs12(vcpu))) + offset;
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
*ret = *((natural_width *)p);
return 0;
case VMCS_FIELD_TYPE_U16:
*ret = *((u16 *)p);
return 0;
case VMCS_FIELD_TYPE_U32:
*ret = *((u32 *)p);
return 0;
case VMCS_FIELD_TYPE_U64:
*ret = *((u64 *)p);
return 0;
default:
WARN_ON(1);
return -ENOENT;
}
}
static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
unsigned long field, u64 field_value){
short offset = vmcs_field_to_offset(field);
char *p = ((char *) get_vmcs12(vcpu)) + offset;
if (offset < 0)
return offset;
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
*(u16 *)p = field_value;
return 0;
case VMCS_FIELD_TYPE_U32:
*(u32 *)p = field_value;
return 0;
case VMCS_FIELD_TYPE_U64:
*(u64 *)p = field_value;
return 0;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
*(natural_width *)p = field_value;
return 0;
default:
WARN_ON(1);
return -ENOENT;
}
}
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
int i;
unsigned long field;
u64 field_value;
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
const unsigned long *fields = shadow_read_write_fields;
const int num_fields = max_shadow_read_write_fields;
preempt_disable();
vmcs_load(shadow_vmcs);
for (i = 0; i < num_fields; i++) {
field = fields[i];
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
field_value = vmcs_read16(field);
break;
case VMCS_FIELD_TYPE_U32:
field_value = vmcs_read32(field);
break;
case VMCS_FIELD_TYPE_U64:
field_value = vmcs_read64(field);
break;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
field_value = vmcs_readl(field);
break;
default:
WARN_ON(1);
continue;
}
vmcs12_write_any(&vmx->vcpu, field, field_value);
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
preempt_enable();
}
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
const unsigned long *fields[] = {
shadow_read_write_fields,
shadow_read_only_fields
};
const int max_fields[] = {
max_shadow_read_write_fields,
max_shadow_read_only_fields
};
int i, q;
unsigned long field;
u64 field_value = 0;
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
vmcs_load(shadow_vmcs);
for (q = 0; q < ARRAY_SIZE(fields); q++) {
for (i = 0; i < max_fields[q]; i++) {
field = fields[q][i];
vmcs12_read_any(&vmx->vcpu, field, &field_value);
switch (vmcs_field_type(field)) {
case VMCS_FIELD_TYPE_U16:
vmcs_write16(field, (u16)field_value);
break;
case VMCS_FIELD_TYPE_U32:
vmcs_write32(field, (u32)field_value);
break;
case VMCS_FIELD_TYPE_U64:
vmcs_write64(field, (u64)field_value);
break;
case VMCS_FIELD_TYPE_NATURAL_WIDTH:
vmcs_writel(field, (long)field_value);
break;
default:
WARN_ON(1);
break;
}
}
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
}
/*
* VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
* used before) all generate the same failure when it is missing.
*/
static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.current_vmptr == -1ull) {
nested_vmx_failInvalid(vcpu);
return 0;
}
return 1;
}
static int handle_vmread(struct kvm_vcpu *vcpu)
{
unsigned long field;
u64 field_value;
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gva_t gva = 0;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!nested_vmx_check_vmcs12(vcpu))
return kvm_skip_emulated_instruction(vcpu);
/* Decode instruction info and find the field to read */
field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
/* Read the field, zero-extended to a u64 field_value */
if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
return kvm_skip_emulated_instruction(vcpu);
}
/*
* Now copy part of this value to register or memory, as requested.
* Note that the number of bits actually copied is 32 or 64 depending
* on the guest's mode (32 or 64 bit), not on the given field's length.
*/
if (vmx_instruction_info & (1u << 10)) {
kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
field_value);
} else {
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, true, &gva))
return 1;
/* _system ok, as nested_vmx_check_permission verified cpl=0 */
kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
&field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
unsigned long field;
gva_t gva;
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
/* The value to write might be 32 or 64 bits, depending on L1's long
* mode, and eventually we need to write that into a field of several
* possible lengths. The code below first zero-extends the value to 64
* bit (field_value), and then copies only the appropriate number of
* bits into the vmcs12 field.
*/
u64 field_value = 0;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!nested_vmx_check_vmcs12(vcpu))
return kvm_skip_emulated_instruction(vcpu);
if (vmx_instruction_info & (1u << 10))
field_value = kvm_register_readl(vcpu,
(((vmx_instruction_info) >> 3) & 0xf));
else {
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
&field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
}
field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
if (vmcs_field_readonly(field)) {
nested_vmx_failValid(vcpu,
VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
return kvm_skip_emulated_instruction(vcpu);
}
if (vmcs12_write_any(vcpu, field, field_value) < 0) {
nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
return kvm_skip_emulated_instruction(vcpu);
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
vmx->nested.current_vmptr = vmptr;
if (enable_shadow_vmcs) {
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER,
__pa(vmx->vmcs01.shadow_vmcs));
vmx->nested.sync_shadow_vmcs = true;
}
}
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
gpa_t vmptr;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
return 1;
if (vmx->nested.current_vmptr != vmptr) {
struct vmcs12 *new_vmcs12;
struct page *page;
page = nested_get_page(vcpu, vmptr);
if (page == NULL) {
nested_vmx_failInvalid(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
new_vmcs12 = kmap(page);
if (new_vmcs12->revision_id != VMCS12_REVISION) {
kunmap(page);
nested_release_page_clean(page);
nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
return kvm_skip_emulated_instruction(vcpu);
}
nested_release_vmcs12(vmx);
vmx->nested.current_vmcs12 = new_vmcs12;
vmx->nested.current_vmcs12_page = page;
/*
* Load VMCS12 from guest memory since it is not already
* cached.
*/
memcpy(vmx->nested.cached_vmcs12,
vmx->nested.current_vmcs12, VMCS12_SIZE);
set_current_vmptr(vmx, vmptr);
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gva_t vmcs_gva;
struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (get_vmx_mem_address(vcpu, exit_qualification,
vmx_instruction_info, true, &vmcs_gva))
return 1;
/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
(void *)&to_vmx(vcpu)->nested.current_vmptr,
sizeof(u64), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info, types;
unsigned long type;
gva_t gva;
struct x86_exception e;
struct {
u64 eptp, gpa;
} operand;
if (!(vmx->nested.nested_vmx_secondary_ctls_high &
SECONDARY_EXEC_ENABLE_EPT) ||
!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
if (type >= 32 || !(types & (1 << type))) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
return kvm_skip_emulated_instruction(vcpu);
}
/* According to the Intel VMX instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
sizeof(operand), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (type) {
case VMX_EPT_EXTENT_GLOBAL:
/*
* TODO: track mappings and invalidate
* single context requests appropriately
*/
case VMX_EPT_EXTENT_CONTEXT:
kvm_mmu_sync_roots(vcpu);
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
nested_vmx_succeed(vcpu);
break;
default:
BUG_ON(1);
break;
}
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_invvpid(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info;
unsigned long type, types;
gva_t gva;
struct x86_exception e;
int vpid;
if (!(vmx->nested.nested_vmx_secondary_ctls_high &
SECONDARY_EXEC_ENABLE_VPID) ||
!(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.nested_vmx_vpid_caps &
VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
if (type >= 32 || !(types & (1 << type))) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
return kvm_skip_emulated_instruction(vcpu);
}
/* according to the intel vmx instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, &gva))
return 1;
if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
sizeof(u32), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (type) {
case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
case VMX_VPID_EXTENT_SINGLE_CONTEXT:
case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
if (!vpid) {
nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
return kvm_skip_emulated_instruction(vcpu);
}
break;
case VMX_VPID_EXTENT_ALL_CONTEXT:
break;
default:
WARN_ON_ONCE(1);
return kvm_skip_emulated_instruction(vcpu);
}
__vmx_flush_tlb(vcpu, vmx->nested.vpid02);
nested_vmx_succeed(vcpu);
return kvm_skip_emulated_instruction(vcpu);
}
static int handle_pml_full(struct kvm_vcpu *vcpu)
{
unsigned long exit_qualification;
trace_kvm_pml_full(vcpu->vcpu_id);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
/*
* PML buffer FULL happened while executing iret from NMI,
* "blocked by NMI" bit has to be set before next VM entry.
*/
if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
cpu_has_virtual_nmis() &&
(exit_qualification & INTR_INFO_UNBLOCK_NMI))
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
/*
* PML buffer already flushed at beginning of VMEXIT. Nothing to do
* here.., and there's no userspace involvement needed for PML.
*/
return 1;
}
static int handle_preemption_timer(struct kvm_vcpu *vcpu)
{
kvm_lapic_expired_hv_timer(vcpu);
return 1;
}
/*
* The exit handlers return 1 if the exit was handled fully and guest execution
* may resume. Otherwise they set the kvm_run parameter to indicate what needs
* to be done to userspace and return 0.
*/
static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EXCEPTION_NMI] = handle_exception,
[EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
[EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
[EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
[EXIT_REASON_IO_INSTRUCTION] = handle_io,
[EXIT_REASON_CR_ACCESS] = handle_cr,
[EXIT_REASON_DR_ACCESS] = handle_dr,
[EXIT_REASON_CPUID] = handle_cpuid,
[EXIT_REASON_MSR_READ] = handle_rdmsr,
[EXIT_REASON_MSR_WRITE] = handle_wrmsr,
[EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
[EXIT_REASON_HLT] = handle_halt,
[EXIT_REASON_INVD] = handle_invd,
[EXIT_REASON_INVLPG] = handle_invlpg,
[EXIT_REASON_RDPMC] = handle_rdpmc,
[EXIT_REASON_VMCALL] = handle_vmcall,
[EXIT_REASON_VMCLEAR] = handle_vmclear,
[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
[EXIT_REASON_VMPTRLD] = handle_vmptrld,
[EXIT_REASON_VMPTRST] = handle_vmptrst,
[EXIT_REASON_VMREAD] = handle_vmread,
[EXIT_REASON_VMRESUME] = handle_vmresume,
[EXIT_REASON_VMWRITE] = handle_vmwrite,
[EXIT_REASON_VMOFF] = handle_vmoff,
[EXIT_REASON_VMON] = handle_vmon,
[EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
[EXIT_REASON_APIC_ACCESS] = handle_apic_access,
[EXIT_REASON_APIC_WRITE] = handle_apic_write,
[EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
[EXIT_REASON_WBINVD] = handle_wbinvd,
[EXIT_REASON_XSETBV] = handle_xsetbv,
[EXIT_REASON_TASK_SWITCH] = handle_task_switch,
[EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
[EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
[EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
[EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
[EXIT_REASON_INVEPT] = handle_invept,
[EXIT_REASON_INVVPID] = handle_invvpid,
[EXIT_REASON_XSAVES] = handle_xsaves,
[EXIT_REASON_XRSTORS] = handle_xrstors,
[EXIT_REASON_PML_FULL] = handle_pml_full,
[EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
};
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification;
gpa_t bitmap, last_bitmap;
unsigned int port;
int size;
u8 b;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
last_bitmap = (gpa_t)-1;
b = -1;
while (size > 0) {
if (port < 0x8000)
bitmap = vmcs12->io_bitmap_a;
else if (port < 0x10000)
bitmap = vmcs12->io_bitmap_b;
else
return true;
bitmap += (port & 0x7fff) / 8;
if (last_bitmap != bitmap)
if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
return true;
if (b & (1 << (port & 7)))
return true;
port++;
size--;
last_bitmap = bitmap;
}
return false;
}
/*
* Return 1 if we should exit from L2 to L1 to handle an MSR access access,
* rather than handle it ourselves in L0. I.e., check whether L1 expressed
* disinterest in the current event (read or write a specific MSR) by using an
* MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
*/
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, u32 exit_reason)
{
u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
gpa_t bitmap;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return true;
/*
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
* for the four combinations of read/write and low/high MSR numbers.
* First we need to figure out which of the four to use:
*/
bitmap = vmcs12->msr_bitmap;
if (exit_reason == EXIT_REASON_MSR_WRITE)
bitmap += 2048;
if (msr_index >= 0xc0000000) {
msr_index -= 0xc0000000;
bitmap += 1024;
}
/* Then read the msr_index'th bit from this bitmap: */
if (msr_index < 1024*8) {
unsigned char b;
if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
return true;
return 1 & (b >> (msr_index & 7));
} else
return true; /* let L1 handle the wrong parameter */
}
/*
* Return 1 if we should exit from L2 to L1 to handle a CR access exit,
* rather than handle it ourselves in L0. I.e., check if L1 wanted to
* intercept (via guest_host_mask etc.) the current event.
*/
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int cr = exit_qualification & 15;
int reg = (exit_qualification >> 8) & 15;
unsigned long val = kvm_register_readl(vcpu, reg);
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
switch (cr) {
case 0:
if (vmcs12->cr0_guest_host_mask &
(val ^ vmcs12->cr0_read_shadow))
return true;
break;
case 3:
if ((vmcs12->cr3_target_count >= 1 &&
vmcs12->cr3_target_value0 == val) ||
(vmcs12->cr3_target_count >= 2 &&
vmcs12->cr3_target_value1 == val) ||
(vmcs12->cr3_target_count >= 3 &&
vmcs12->cr3_target_value2 == val) ||
(vmcs12->cr3_target_count >= 4 &&
vmcs12->cr3_target_value3 == val))
return false;
if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
return true;
break;
case 4:
if (vmcs12->cr4_guest_host_mask &
(vmcs12->cr4_read_shadow ^ val))
return true;
break;
case 8:
if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
return true;
break;
}
break;
case 2: /* clts */
if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
(vmcs12->cr0_read_shadow & X86_CR0_TS))
return true;
break;
case 1: /* mov from cr */
switch (cr) {
case 3:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR3_STORE_EXITING)
return true;
break;
case 8:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR8_STORE_EXITING)
return true;
break;
}
break;
case 3: /* lmsw */
/*
* lmsw can change bits 1..3 of cr0, and only set bit 0 of
* cr0. Other attempted changes are ignored, with no exit.
*/
if (vmcs12->cr0_guest_host_mask & 0xe &
(val ^ vmcs12->cr0_read_shadow))
return true;
if ((vmcs12->cr0_guest_host_mask & 0x1) &&
!(vmcs12->cr0_read_shadow & 0x1) &&
(val & 0x1))
return true;
break;
}
return false;
}
/*
* Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
* should handle it ourselves in L0 (and then continue L2). Only call this
* when in is_guest_mode (L2).
*/
static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
{
u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 exit_reason = vmx->exit_reason;
trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
vmcs_readl(EXIT_QUALIFICATION),
vmx->idt_vectoring_info,
intr_info,
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
KVM_ISA_VMX);
if (vmx->nested.nested_run_pending)
return false;
if (unlikely(vmx->fail)) {
pr_info_ratelimited("%s failed vm entry %x\n", __func__,
vmcs_read32(VM_INSTRUCTION_ERROR));
return true;
}
switch (exit_reason) {
case EXIT_REASON_EXCEPTION_NMI:
if (is_nmi(intr_info))
return false;
else if (is_page_fault(intr_info))
return enable_ept;
else if (is_no_device(intr_info) &&
!(vmcs12->guest_cr0 & X86_CR0_TS))
return false;
else if (is_debug(intr_info) &&
vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
else if (is_breakpoint(intr_info) &&
vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
return vmcs12->exception_bitmap &
(1u << (intr_info & INTR_INFO_VECTOR_MASK));
case EXIT_REASON_EXTERNAL_INTERRUPT:
return false;
case EXIT_REASON_TRIPLE_FAULT:
return true;
case EXIT_REASON_PENDING_INTERRUPT:
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
case EXIT_REASON_NMI_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
case EXIT_REASON_TASK_SWITCH:
return true;
case EXIT_REASON_CPUID:
return true;
case EXIT_REASON_HLT:
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
case EXIT_REASON_INVD:
return true;
case EXIT_REASON_INVLPG:
return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_RDPMC:
return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
/*
* VMX instructions trap unconditionally. This allows L1 to
* emulate them for its L2 guest, i.e., allows 3-level nesting!
*/
return true;
case EXIT_REASON_CR_ACCESS:
return nested_vmx_exit_handled_cr(vcpu, vmcs12);
case EXIT_REASON_DR_ACCESS:
return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
case EXIT_REASON_IO_INSTRUCTION:
return nested_vmx_exit_handled_io(vcpu, vmcs12);
case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
case EXIT_REASON_INVALID_STATE:
return true;
case EXIT_REASON_MWAIT_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
case EXIT_REASON_MONITOR_TRAP_FLAG:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
case EXIT_REASON_MONITOR_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
case EXIT_REASON_PAUSE_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
nested_cpu_has2(vmcs12,
SECONDARY_EXEC_PAUSE_LOOP_EXITING);
case EXIT_REASON_MCE_DURING_VMENTRY:
return false;
case EXIT_REASON_TPR_BELOW_THRESHOLD:
return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
case EXIT_REASON_APIC_ACCESS:
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
case EXIT_REASON_APIC_WRITE:
case EXIT_REASON_EOI_INDUCED:
/* apic_write and eoi_induced should exit unconditionally. */
return true;
case EXIT_REASON_EPT_VIOLATION:
/*
* L0 always deals with the EPT violation. If nested EPT is
* used, and the nested mmu code discovers that the address is
* missing in the guest EPT table (EPT12), the EPT violation
* will be injected with nested_ept_inject_page_fault()
*/
return false;
case EXIT_REASON_EPT_MISCONFIG:
/*
* L2 never uses directly L1's EPT, but rather L0's own EPT
* table (shadow on EPT) or a merged EPT table that L0 built
* (EPT on EPT). So any problems with the structure of the
* table is L0's fault.
*/
return false;
case EXIT_REASON_WBINVD:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
case EXIT_REASON_XSETBV:
return true;
case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
/*
* This should never happen, since it is not possible to
* set XSS to a non-zero value---neither in L1 nor in L2.
* If if it were, XSS would have to be checked against
* the XSS exit bitmap in vmcs12.
*/
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
case EXIT_REASON_PREEMPTION_TIMER:
return false;
case EXIT_REASON_PML_FULL:
/* We don't expose PML support to L1. */
return false;
default:
return true;
}
}
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
*info1 = vmcs_readl(EXIT_QUALIFICATION);
*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
}
static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
{
if (vmx->pml_pg) {
__free_page(vmx->pml_pg);
vmx->pml_pg = NULL;
}
}
static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 *pml_buf;
u16 pml_idx;
pml_idx = vmcs_read16(GUEST_PML_INDEX);
/* Do nothing if PML buffer is empty */
if (pml_idx == (PML_ENTITY_NUM - 1))
return;
/* PML index always points to next available PML buffer entity */
if (pml_idx >= PML_ENTITY_NUM)
pml_idx = 0;
else
pml_idx++;
pml_buf = page_address(vmx->pml_pg);
for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
u64 gpa;
gpa = pml_buf[pml_idx];
WARN_ON(gpa & (PAGE_SIZE - 1));
kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
}
/* reset PML index */
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
/*
* Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
* Called before reporting dirty_bitmap to userspace.
*/
static void kvm_flush_pml_buffers(struct kvm *kvm)
{
int i;
struct kvm_vcpu *vcpu;
/*
* We only need to kick vcpu out of guest mode here, as PML buffer
* is flushed at beginning of all VMEXITs, and it's obvious that only
* vcpus running in guest are possible to have unflushed GPAs in PML
* buffer.
*/
kvm_for_each_vcpu(i, vcpu, kvm)
kvm_vcpu_kick(vcpu);
}
static void vmx_dump_sel(char *name, uint32_t sel)
{
pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
name, vmcs_read16(sel),
vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
}
static void vmx_dump_dtsel(char *name, uint32_t limit)
{
pr_err("%s limit=0x%08x, base=0x%016lx\n",
name, vmcs_read32(limit),
vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
}
static void dump_vmcs(void)
{
u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
u32 secondary_exec_control = 0;
unsigned long cr4 = vmcs_readl(GUEST_CR4);
u64 efer = vmcs_read64(GUEST_IA32_EFER);
int i, n;
if (cpu_has_secondary_exec_ctrls())
secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
pr_err("*** Guest State ***\n");
pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
vmcs_readl(CR0_GUEST_HOST_MASK));
pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
(cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
{
pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
}
pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(GUEST_SYSENTER_ESP),
vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
(vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
efer, vmcs_read64(GUEST_IA32_PAT));
pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
vmcs_read64(GUEST_IA32_DEBUGCTL),
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
pr_err("Interruptibility = %08x ActivityState = %08x\n",
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
vmcs_read32(GUEST_ACTIVITY_STATE));
if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
pr_err("InterruptStatus = %04x\n",
vmcs_read16(GUEST_INTR_STATUS));
pr_err("*** Host State ***\n");
pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
vmcs_read16(HOST_TR_SELECTOR));
pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
vmcs_readl(HOST_TR_BASE));
pr_err("GDTBase=%016lx IDTBase=%016lx\n",
vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
vmcs_readl(HOST_CR4));
pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
vmcs_readl(HOST_IA32_SYSENTER_ESP),
vmcs_read32(HOST_IA32_SYSENTER_CS),
vmcs_readl(HOST_IA32_SYSENTER_EIP));
if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
vmcs_read64(HOST_IA32_EFER),
vmcs_read64(HOST_IA32_PAT));
if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
pr_err("PerfGlobCtl = 0x%016llx\n",
vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
pr_err("*** Control State ***\n");
pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
vmcs_read32(EXCEPTION_BITMAP),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
pr_err(" reason=%08x qualification=%016lx\n",
vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
pr_err("IDTVectoring: info=%08x errcode=%08x\n",
vmcs_read32(IDT_VECTORING_INFO_FIELD),
vmcs_read32(IDT_VECTORING_ERROR_CODE));
pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
pr_err("TSC Multiplier = 0x%016llx\n",
vmcs_read64(TSC_MULTIPLIER));
if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
n = vmcs_read32(CR3_TARGET_COUNT);
for (i = 0; i + 1 < n; i += 4)
pr_err("CR3 target%u=%016lx target%u=%016lx\n",
i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
if (i < n)
pr_err("CR3 target%u=%016lx\n",
i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
pr_err("PLE Gap=%08x Window=%08x\n",
vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
pr_err("Virtual processor ID = 0x%04x\n",
vmcs_read16(VIRTUAL_PROCESSOR_ID));
}
/*
* The guest has exited. See if we can fix it or if we need userspace
* assistance.
*/
static int vmx_handle_exit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason = vmx->exit_reason;
u32 vectoring_info = vmx->idt_vectoring_info;
trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
vcpu->arch.gpa_available = false;
/*
* Flush logged GPAs PML buffer, this will make dirty_bitmap more
* updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
* querying dirty_bitmap, we only need to kick all vcpus out of guest
* mode as if vcpus is in root mode, the PML buffer must has been
* flushed already.
*/
if (enable_pml)
vmx_flush_pml_buffer(vcpu);
/* If guest state is invalid, start emulating */
if (vmx->emulation_required)
return handle_invalid_guest_state(vcpu);
if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
nested_vmx_vmexit(vcpu, exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
return 1;
}
if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
dump_vmcs();
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= exit_reason;
return 0;
}
if (unlikely(vmx->fail)) {
vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
vcpu->run->fail_entry.hardware_entry_failure_reason
= vmcs_read32(VM_INSTRUCTION_ERROR);
return 0;
}
/*
* Note:
* Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
* delivery event since it indicates guest is accessing MMIO.
* The vm-exit can be triggered again after return to guest that
* will cause infinite loop.
*/
if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
exit_reason != EXIT_REASON_EPT_VIOLATION &&
exit_reason != EXIT_REASON_PML_FULL &&
exit_reason != EXIT_REASON_TASK_SWITCH)) {
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
vcpu->run->internal.ndata = 2;
vcpu->run->internal.data[0] = vectoring_info;
vcpu->run->internal.data[1] = exit_reason;
return 0;
}
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
!(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
get_vmcs12(vcpu))))) {
if (vmx_interrupt_allowed(vcpu)) {
vmx->soft_vnmi_blocked = 0;
} else if (vmx->vnmi_blocked_time > 1000000000LL &&
vcpu->arch.nmi_pending) {
/*
* This CPU don't support us in finding the end of an
* NMI-blocked window if the guest runs with IRQs
* disabled. So we pull the trigger after 1 s of
* futile waiting, but inform the user about this.
*/
printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
"state on VCPU %d after 1 s timeout\n",
__func__, vcpu->vcpu_id);
vmx->soft_vnmi_blocked = 0;
}
}
if (exit_reason < kvm_vmx_max_exit_handlers
&& kvm_vmx_exit_handlers[exit_reason])
return kvm_vmx_exit_handlers[exit_reason](vcpu);
else {
vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
exit_reason);
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
}
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
if (is_guest_mode(vcpu) &&
nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return;
if (irr == -1 || tpr < irr) {
vmcs_write32(TPR_THRESHOLD, 0);
return;
}
vmcs_write32(TPR_THRESHOLD, irr);
}
static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
{
u32 sec_exec_control;
/* Postpone execution until vmcs01 is the current VMCS. */
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
return;
}
if (!cpu_has_vmx_virtualize_x2apic_mode())
return;
if (!cpu_need_tpr_shadow(vcpu))
return;
sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
if (set) {
sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
} else {
sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
vmx_flush_tlb_ept_only(vcpu);
}
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
vmx_set_msr_bitmap(vcpu);
}
static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Currently we do not handle the nested case where L2 has an
* APIC access page of its own; that page is still pinned.
* Hence, we skip the case where the VCPU is in guest mode _and_
* L1 prepared an APIC access page for L2.
*
* For the case where L1 and L2 share the same APIC access page
* (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
* in the vmcs12), this function will only update either the vmcs01
* or the vmcs02. If the former, the vmcs02 will be updated by
* prepare_vmcs02. If the latter, the vmcs01 will be updated in
* the next L2->L1 exit.
*/
if (!is_guest_mode(vcpu) ||
!nested_cpu_has2(get_vmcs12(&vmx->vcpu),
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
vmcs_write64(APIC_ACCESS_ADDR, hpa);
vmx_flush_tlb_ept_only(vcpu);
}
}
static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
{
u16 status;
u8 old;
if (max_isr == -1)
max_isr = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = status >> 8;
if (max_isr != old) {
status &= 0xff;
status |= max_isr << 8;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_set_rvi(int vector)
{
u16 status;
u8 old;
if (vector == -1)
vector = 0;
status = vmcs_read16(GUEST_INTR_STATUS);
old = (u8)status & 0xff;
if ((u8)vector != old) {
status &= ~0xff;
status |= (u8)vector;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
{
if (!is_guest_mode(vcpu)) {
vmx_set_rvi(max_irr);
return;
}
if (max_irr == -1)
return;
/*
* In guest mode. If a vmexit is needed, vmx_check_nested_events
* handles it.
*/
if (nested_exit_on_intr(vcpu))
return;
/*
* Else, fall back to pre-APICv interrupt injection since L2
* is run without virtual interrupt delivery.
*/
if (!kvm_event_needs_reinjection(vcpu) &&
vmx_interrupt_allowed(vcpu)) {
kvm_queue_interrupt(vcpu, max_irr, false);
vmx_inject_irq(vcpu);
}
}
static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
WARN_ON(!vcpu->arch.apicv_active);
if (pi_test_on(&vmx->pi_desc)) {
pi_clear_on(&vmx->pi_desc);
/*
* IOMMU can write to PIR.ON, so the barrier matters even on UP.
* But on x86 this is just a compiler barrier anyway.
*/
smp_mb__after_atomic();
max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
} else {
max_irr = kvm_lapic_find_highest_irr(vcpu);
}
vmx_hwapic_irr_update(vcpu, max_irr);
return max_irr;
}
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!kvm_vcpu_apicv_active(vcpu))
return;
vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
}
static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
pi_clear_on(&vmx->pi_desc);
memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
}
static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
|| vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
return;
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
exit_intr_info = vmx->exit_intr_info;
/* Handle machine checks before interrupts are enabled */
if (is_machine_check(exit_intr_info))
kvm_machine_check();
/* We need to handle NMIs before interrupts are enabled */
if (is_nmi(exit_intr_info)) {
kvm_before_handle_nmi(&vmx->vcpu);
asm("int $2");
kvm_after_handle_nmi(&vmx->vcpu);
}
}
static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
{
u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
register void *__sp asm(_ASM_SP);
if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
unsigned int vector;
unsigned long entry;
gate_desc *desc;
struct vcpu_vmx *vmx = to_vmx(vcpu);
#ifdef CONFIG_X86_64
unsigned long tmp;
#endif
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
desc = (gate_desc *)vmx->host_idt_base + vector;
entry = gate_offset(*desc);
asm volatile(
#ifdef CONFIG_X86_64
"mov %%" _ASM_SP ", %[sp]\n\t"
"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
"push $%c[ss]\n\t"
"push %[sp]\n\t"
#endif
"pushf\n\t"
__ASM_SIZE(push) " $%c[cs]\n\t"
"call *%[entry]\n\t"
:
#ifdef CONFIG_X86_64
[sp]"=&r"(tmp),
#endif
"+r"(__sp)
:
[entry]"r"(entry),
[ss]"i"(__KERNEL_DS),
[cs]"i"(__KERNEL_CS)
);
}
}
static bool vmx_has_high_real_mode_segbase(void)
{
return enable_unrestricted_guest || emulate_invalid_guest_state;
}
static bool vmx_mpx_supported(void)
{
return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
}
static bool vmx_xsaves_supported(void)
{
return vmcs_config.cpu_based_2nd_exec_ctrl &
SECONDARY_EXEC_XSAVES;
}
static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
{
u32 exit_intr_info;
bool unblock_nmi;
u8 vector;
bool idtv_info_valid;
idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
if (cpu_has_virtual_nmis()) {
if (vmx->nmi_known_unmasked)
return;
/*
* Can't use vmx->exit_intr_info since we're not sure what
* the exit reason is.
*/
exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Re-set bit "block by NMI" before VM entry if vmexit caused by
* a guest IRET fault.
* SDM 3: 23.2.2 (September 2008)
* Bit 12 is undefined in any of the following cases:
* If the VM exit sets the valid bit in the IDT-vectoring
* information field.
* If the VM exit is due to a double fault.
*/
if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
vector != DF_VECTOR && !idtv_info_valid)
vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
GUEST_INTR_STATE_NMI);
else
vmx->nmi_known_unmasked =
!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
& GUEST_INTR_STATE_NMI);
} else if (unlikely(vmx->soft_vnmi_blocked))
vmx->vnmi_blocked_time +=
ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
}
static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
u32 idt_vectoring_info,
int instr_len_field,
int error_code_field)
{
u8 vector;
int type;
bool idtv_info_valid;
idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
if (!idtv_info_valid)
return;
kvm_make_request(KVM_REQ_EVENT, vcpu);
vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
switch (type) {
case INTR_TYPE_NMI_INTR:
vcpu->arch.nmi_injected = true;
/*
* SDM 3: 27.7.1.2 (September 2008)
* Clear bit "block by NMI" before VM entry if a NMI
* delivery faulted.
*/
vmx_set_nmi_mask(vcpu, false);
break;
case INTR_TYPE_SOFT_EXCEPTION:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_HARD_EXCEPTION:
if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
u32 err = vmcs_read32(error_code_field);
kvm_requeue_exception_e(vcpu, vector, err);
} else
kvm_requeue_exception(vcpu, vector);
break;
case INTR_TYPE_SOFT_INTR:
vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
/* fall through */
case INTR_TYPE_EXT_INTR:
kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
break;
default:
break;
}
}
static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
{
__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
VM_EXIT_INSTRUCTION_LEN,
IDT_VECTORING_ERROR_CODE);
}
static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
{
__vmx_complete_interrupts(vcpu,
vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
VM_ENTRY_INSTRUCTION_LEN,
VM_ENTRY_EXCEPTION_ERROR_CODE);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
{
int i, nr_msrs;
struct perf_guest_switch_msr *msrs;
msrs = perf_guest_get_msrs(&nr_msrs);
if (!msrs)
return;
for (i = 0; i < nr_msrs; i++)
if (msrs[i].host == msrs[i].guest)
clear_atomic_switch_msr(vmx, msrs[i].msr);
else
add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
msrs[i].host);
}
static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 tscl;
u32 delta_tsc;
if (vmx->hv_deadline_tsc == -1)
return;
tscl = rdtsc();
if (vmx->hv_deadline_tsc > tscl)
/* sure to be 32 bit only because checked on set_hv_timer */
delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
cpu_preemption_timer_multi);
else
delta_tsc = 0;
vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
}
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long debugctlmsr, cr4;
/* Record the guest's net vcpu time for enforced NMI injections. */
if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
vmx->entry_time = ktime_get();
/* Don't enter VMX if guest state is invalid, let the exit handler
start emulation until we arrive back to a valid state */
if (vmx->emulation_required)
return;
if (vmx->ple_window_dirty) {
vmx->ple_window_dirty = false;
vmcs_write32(PLE_WINDOW, vmx->ple_window);
}
if (vmx->nested.sync_shadow_vmcs) {
copy_vmcs12_to_shadow(vmx);
vmx->nested.sync_shadow_vmcs = false;
}
if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
cr4 = cr4_read_shadow();
if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
vmcs_writel(HOST_CR4, cr4);
vmx->host_state.vmcs_host_cr4 = cr4;
}
/* When single-stepping over STI and MOV SS, we must clear the
* corresponding interruptibility bits in the guest state. Otherwise
* vmentry fails as it then expects bit 14 (BS) in pending debug
* exceptions being set, but that's not correct for the guest debugging
* case. */
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
vmx_set_interrupt_shadow(vcpu, 0);
if (vmx->guest_pkru_valid)
__write_pkru(vmx->guest_pkru);
atomic_switch_perf_msrs(vmx);
debugctlmsr = get_debugctlmsr();
vmx_arm_hv_timer(vcpu);
vmx->__launched = vmx->loaded_vmcs->launched;
asm(
/* Store host registers */
"push %%" _ASM_DX "; push %%" _ASM_BP ";"
"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
"push %%" _ASM_CX " \n\t"
"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
"je 1f \n\t"
"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
"1: \n\t"
/* Reload cr2 if changed */
"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
"mov %%cr2, %%" _ASM_DX " \n\t"
"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
"je 2f \n\t"
"mov %%" _ASM_AX", %%cr2 \n\t"
"2: \n\t"
/* Check if vmlaunch of vmresume is needed */
"cmpl $0, %c[launched](%0) \n\t"
/* Load guest registers. Don't clobber flags. */
"mov %c[rax](%0), %%" _ASM_AX " \n\t"
"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
#ifdef CONFIG_X86_64
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
"mov %c[r10](%0), %%r10 \n\t"
"mov %c[r11](%0), %%r11 \n\t"
"mov %c[r12](%0), %%r12 \n\t"
"mov %c[r13](%0), %%r13 \n\t"
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
#endif
"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
/* Enter guest mode */
"jne 1f \n\t"
__ex(ASM_VMX_VMLAUNCH) "\n\t"
"jmp 2f \n\t"
"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
"2: "
/* Save guest registers, load host registers, keep flags */
"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
"pop %0 \n\t"
"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
#ifdef CONFIG_X86_64
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
"mov %%r10, %c[r10](%0) \n\t"
"mov %%r11, %c[r11](%0) \n\t"
"mov %%r12, %c[r12](%0) \n\t"
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
#endif
"mov %%cr2, %%" _ASM_AX " \n\t"
"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
"pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
"setbe %c[fail](%0) \n\t"
".pushsection .rodata \n\t"
".global vmx_return \n\t"
"vmx_return: " _ASM_PTR " 2b \n\t"
".popsection"
: : "c"(vmx), "d"((unsigned long)HOST_RSP),
[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
[fail]"i"(offsetof(struct vcpu_vmx, fail)),
[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
#ifdef CONFIG_X86_64
[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
#endif
[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
[wordsize]"i"(sizeof(ulong))
: "cc", "memory"
#ifdef CONFIG_X86_64
, "rax", "rbx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
#else
, "eax", "ebx", "edi", "esi"
#endif
);
/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
if (debugctlmsr)
update_debugctlmsr(debugctlmsr);
#ifndef CONFIG_X86_64
/*
* The sysexit path does not restore ds/es, so we must set them to
* a reasonable value ourselves.
*
* We can't defer this to vmx_load_host_state() since that function
* may be executed in interrupt context, which saves and restore segments
* around it, nullifying its effect.
*/
loadsegment(ds, __USER_DS);
loadsegment(es, __USER_DS);
#endif
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
| (1 << VCPU_EXREG_RFLAGS)
| (1 << VCPU_EXREG_PDPTR)
| (1 << VCPU_EXREG_SEGMENTS)
| (1 << VCPU_EXREG_CR3));
vcpu->arch.regs_dirty = 0;
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
vmx->loaded_vmcs->launched = 1;
vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
/*
* eager fpu is enabled if PKEY is supported and CR4 is switched
* back on host, so it is safe to read guest PKRU from current
* XSAVE.
*/
if (boot_cpu_has(X86_FEATURE_OSPKE)) {
vmx->guest_pkru = __read_pkru();
if (vmx->guest_pkru != vmx->host_pkru) {
vmx->guest_pkru_valid = true;
__write_pkru(vmx->host_pkru);
} else
vmx->guest_pkru_valid = false;
}
/*
* the KVM_REQ_EVENT optimization bit is only on for one entry, and if
* we did not inject a still-pending event to L1 now because of
* nested_run_pending, we need to re-enable this bit.
*/
if (vmx->nested.nested_run_pending)
kvm_make_request(KVM_REQ_EVENT, vcpu);
vmx->nested.nested_run_pending = 0;
vmx_complete_atomic_exit(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);
}
static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int cpu;
if (vmx->loaded_vmcs == &vmx->vmcs01)
return;
cpu = get_cpu();
vmx->loaded_vmcs = &vmx->vmcs01;
vmx_vcpu_put(vcpu);
vmx_vcpu_load(vcpu, cpu);
vcpu->cpu = cpu;
put_cpu();
}
/*
* Ensure that the current vmcs of the logical processor is the
* vmcs01 of the vcpu before calling free_nested().
*/
static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = vcpu_load(vcpu);
BUG_ON(r);
vmx_load_vmcs01(vcpu);
free_nested(vmx);
vcpu_put(vcpu);
}
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (enable_pml)
vmx_destroy_pml_buffer(vmx);
free_vpid(vmx->vpid);
leave_guest_mode(vcpu);
vmx_free_vcpu_nested(vcpu);
free_loaded_vmcs(vmx->loaded_vmcs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
kmem_cache_free(kvm_vcpu_cache, vmx);
}
static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
{
int err;
struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
int cpu;
if (!vmx)
return ERR_PTR(-ENOMEM);
vmx->vpid = allocate_vpid();
err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
if (err)
goto free_vcpu;
err = -ENOMEM;
/*
* If PML is turned on, failure on enabling PML just results in failure
* of creating the vcpu, therefore we can simplify PML logic (by
* avoiding dealing with cases, such as enabling PML partially on vcpus
* for the guest, etc.
*/
if (enable_pml) {
vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!vmx->pml_pg)
goto uninit_vcpu;
}
vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
> PAGE_SIZE);
if (!vmx->guest_msrs)
goto free_pml;
vmx->loaded_vmcs = &vmx->vmcs01;
vmx->loaded_vmcs->vmcs = alloc_vmcs();
vmx->loaded_vmcs->shadow_vmcs = NULL;
if (!vmx->loaded_vmcs->vmcs)
goto free_msrs;
if (!vmm_exclusive)
kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
loaded_vmcs_init(vmx->loaded_vmcs);
if (!vmm_exclusive)
kvm_cpu_vmxoff();
cpu = get_cpu();
vmx_vcpu_load(&vmx->vcpu, cpu);
vmx->vcpu.cpu = cpu;
err = vmx_vcpu_setup(vmx);
vmx_vcpu_put(&vmx->vcpu);
put_cpu();
if (err)
goto free_vmcs;
if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
err = alloc_apic_access_page(kvm);
if (err)
goto free_vmcs;
}
if (enable_ept) {
if (!kvm->arch.ept_identity_map_addr)
kvm->arch.ept_identity_map_addr =
VMX_EPT_IDENTITY_PAGETABLE_ADDR;
err = init_rmode_identity_map(kvm);
if (err)
goto free_vmcs;
}
if (nested) {
nested_vmx_setup_ctls_msrs(vmx);
vmx->nested.vpid02 = allocate_vpid();
}
vmx->nested.posted_intr_nv = -1;
vmx->nested.current_vmptr = -1ull;
vmx->nested.current_vmcs12 = NULL;
vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
return &vmx->vcpu;
free_vmcs:
free_vpid(vmx->nested.vpid02);
free_loaded_vmcs(vmx->loaded_vmcs);
free_msrs:
kfree(vmx->guest_msrs);
free_pml:
vmx_destroy_pml_buffer(vmx);
uninit_vcpu:
kvm_vcpu_uninit(&vmx->vcpu);
free_vcpu:
free_vpid(vmx->vpid);
kmem_cache_free(kvm_vcpu_cache, vmx);
return ERR_PTR(err);
}
static void __init vmx_check_processor_compat(void *rtn)
{
struct vmcs_config vmcs_conf;
*(int *)rtn = 0;
if (setup_vmcs_config(&vmcs_conf) < 0)
*(int *)rtn = -EIO;
if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
smp_processor_id());
*(int *)rtn = -EIO;
}
}
static int get_ept_level(void)
{
return VMX_EPT_DEFAULT_GAW + 1;
}
static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
{
u8 cache;
u64 ipat = 0;
/* For VT-d and EPT combination
* 1. MMIO: always map as UC
* 2. EPT with VT-d:
* a. VT-d without snooping control feature: can't guarantee the
* result, try to trust guest.
* b. VT-d with snooping control feature: snooping control feature of
* VT-d engine can guarantee the cache correctness. Just set it
* to WB to keep consistent with host. So the same as item 3.
* 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
* consistent with host MTRR
*/
if (is_mmio) {
cache = MTRR_TYPE_UNCACHABLE;
goto exit;
}
if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
ipat = VMX_EPT_IPAT_BIT;
cache = MTRR_TYPE_WRBACK;
goto exit;
}
if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
ipat = VMX_EPT_IPAT_BIT;
if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
cache = MTRR_TYPE_WRBACK;
else
cache = MTRR_TYPE_UNCACHABLE;
goto exit;
}
cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
exit:
return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
}
static int vmx_get_lpage_level(void)
{
if (enable_ept && !cpu_has_vmx_ept_1g_page())
return PT_DIRECTORY_LEVEL;
else
/* For shadow and EPT supported 1GB page */
return PT_PDPE_LEVEL;
}
static void vmcs_set_secondary_exec_control(u32 new_ctl)
{
/*
* These bits in the secondary execution controls field
* are dynamic, the others are mostly based on the hypervisor
* architecture and the guest's CPUID. Do not touch the
* dynamic bits.
*/
u32 mask =
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
(new_ctl & ~mask) | (cur_ctl & mask));
}
/*
* Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
* (indicating "allowed-1") if they are supported in the guest's CPUID.
*/
static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_cpuid_entry2 *entry;
vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
if (entry && (entry->_reg & (_cpuid_mask))) \
vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask); \
} while (0)
entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
/* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
cr4_fixed1_update(bit(11), ecx, bit(2));
#undef cr4_fixed1_update
}
static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
if (vmx_rdtscp_supported()) {
bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
if (!rdtscp_enabled)
secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
if (nested) {
if (rdtscp_enabled)
vmx->nested.nested_vmx_secondary_ctls_high |=
SECONDARY_EXEC_RDTSCP;
else
vmx->nested.nested_vmx_secondary_ctls_high &=
~SECONDARY_EXEC_RDTSCP;
}
}
/* Exposing INVPCID only when PCID is exposed */
best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
if (vmx_invpcid_supported() &&
(!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
!guest_cpuid_has_pcid(vcpu))) {
secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
if (best)
best->ebx &= ~bit(X86_FEATURE_INVPCID);
}
if (cpu_has_secondary_exec_ctrls())
vmcs_set_secondary_exec_control(secondary_exec_ctl);
if (nested_vmx_allowed(vcpu))
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (nested_vmx_allowed(vcpu))
nested_vmx_cr_fixed1_bits_update(vcpu);
}
static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
{
if (func == 1 && nested)
entry->ecx |= bit(X86_FEATURE_VMX);
}
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 exit_reason;
if (fault->error_code & PFERR_RSVD_MASK)
exit_reason = EXIT_REASON_EPT_MISCONFIG;
else
exit_reason = EXIT_REASON_EPT_VIOLATION;
nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
vmcs12->guest_physical_address = fault->address;
}
/* Callbacks for nested_ept_init_mmu_context: */
static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
{
/* return the page table to be shadowed - in our case, EPT12 */
return get_vmcs12(vcpu)->ept_pointer;
}
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
kvm_init_shadow_ept_mmu(vcpu,
to_vmx(vcpu)->nested.nested_vmx_ept_caps &
VMX_EPT_EXECUTE_ONLY_BIT);
vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
}
static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
u16 error_code)
{
bool inequality, bit;
bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
inequality =
(error_code & vmcs12->page_fault_error_code_mask) !=
vmcs12->page_fault_error_code_match;
return inequality ^ bit;
}
static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
WARN_ON(!is_guest_mode(vcpu));
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
else
kvm_inject_page_fault(vcpu, fault);
}
static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12);
static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 hpa;
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/*
* Translate L1 physical address to host physical
* address for vmcs02. Keep the page pinned, so this
* physical address remains valid. We keep a reference
* to it so we can release it later.
*/
if (vmx->nested.apic_access_page) /* shouldn't happen */
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page =
nested_get_page(vcpu, vmcs12->apic_access_addr);
/*
* If translation failed, no matter: This feature asks
* to exit when accessing the given address, and if it
* can never be accessed, this feature won't do
* anything anyway.
*/
if (vmx->nested.apic_access_page) {
hpa = page_to_phys(vmx->nested.apic_access_page);
vmcs_write64(APIC_ACCESS_ADDR, hpa);
} else {
vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
}
} else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
kvm_vcpu_reload_apic_access_page(vcpu);
}
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
if (vmx->nested.virtual_apic_page) /* shouldn't happen */
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page =
nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
/*
* If translation failed, VM entry will fail because
* prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
* Failing the vm entry is _not_ what the processor
* does but it's basically the only possibility we
* have. We could still enter the guest if CR8 load
* exits are enabled, CR8 store exits are enabled, and
* virtualize APIC access is disabled; in this case
* the processor would never use the TPR shadow and we
* could simply clear the bit from the execution
* control. But such a configuration is useless, so
* let's keep the code simple.
*/
if (vmx->nested.virtual_apic_page) {
hpa = page_to_phys(vmx->nested.virtual_apic_page);
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
}
}
if (nested_cpu_has_posted_intr(vmcs12)) {
if (vmx->nested.pi_desc_page) { /* shouldn't happen */
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
}
vmx->nested.pi_desc_page =
nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
vmx->nested.pi_desc =
(struct pi_desc *)kmap(vmx->nested.pi_desc_page);
if (!vmx->nested.pi_desc) {
nested_release_page_clean(vmx->nested.pi_desc_page);
return;
}
vmx->nested.pi_desc =
(struct pi_desc *)((void *)vmx->nested.pi_desc +
(unsigned long)(vmcs12->posted_intr_desc_addr &
(PAGE_SIZE - 1)));
vmcs_write64(POSTED_INTR_DESC_ADDR,
page_to_phys(vmx->nested.pi_desc_page) +
(unsigned long)(vmcs12->posted_intr_desc_addr &
(PAGE_SIZE - 1)));
}
if (cpu_has_vmx_msr_bitmap() &&
nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
;
else
vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
CPU_BASED_USE_MSR_BITMAPS);
}
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
{
u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vcpu->arch.virtual_tsc_khz == 0)
return;
/* Make sure short timeouts reliably trigger an immediate vmexit.
* hrtimer_start does not guarantee this. */
if (preemption_timeout <= 1) {
vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
return;
}
preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
preemption_timeout *= 1000000;
do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
hrtimer_start(&vmx->nested.preemption_timer,
ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
}
static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int maxphyaddr;
u64 addr;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return 0;
if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
WARN_ON(1);
return -EINVAL;
}
maxphyaddr = cpuid_maxphyaddr(vcpu);
if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
((addr + PAGE_SIZE) >> maxphyaddr))
return -EINVAL;
return 0;
}
/*
* Merge L0's and L1's MSR bitmap, return false to indicate that
* we do not use the hardware.
*/
static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int msr;
struct page *page;
unsigned long *msr_bitmap_l1;
unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
/* This shortcut is ok because we support only x2APIC MSRs so far. */
if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
return false;
page = nested_get_page(vcpu, vmcs12->msr_bitmap);
if (!page)
return false;
msr_bitmap_l1 = (unsigned long *)kmap(page);
memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
if (nested_cpu_has_apic_reg_virt(vmcs12))
for (msr = 0x800; msr <= 0x8ff; msr++)
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
msr, MSR_TYPE_R);
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
APIC_BASE_MSR + (APIC_TASKPRI >> 4),
MSR_TYPE_R | MSR_TYPE_W);
if (nested_cpu_has_vid(vmcs12)) {
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
APIC_BASE_MSR + (APIC_EOI >> 4),
MSR_TYPE_W);
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
MSR_TYPE_W);
}
}
kunmap(page);
nested_release_page_clean(page);
return true;
}
static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
!nested_cpu_has_apic_reg_virt(vmcs12) &&
!nested_cpu_has_vid(vmcs12) &&
!nested_cpu_has_posted_intr(vmcs12))
return 0;
/*
* If virtualize x2apic mode is enabled,
* virtualize apic access must be disabled.
*/
if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
return -EINVAL;
/*
* If virtual interrupt delivery is enabled,
* we must exit on external interrupts.
*/
if (nested_cpu_has_vid(vmcs12) &&
!nested_exit_on_intr(vcpu))
return -EINVAL;
/*
* bits 15:8 should be zero in posted_intr_nv,
* the descriptor address has been already checked
* in nested_get_vmcs12_pages.
*/
if (nested_cpu_has_posted_intr(vmcs12) &&
(!nested_cpu_has_vid(vmcs12) ||
!nested_exit_intr_ack_set(vcpu) ||
vmcs12->posted_intr_nv & 0xff00))
return -EINVAL;
/* tpr shadow is needed by all apicv features. */
if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return -EINVAL;
return 0;
}
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
unsigned long count_field,
unsigned long addr_field)
{
int maxphyaddr;
u64 count, addr;
if (vmcs12_read_any(vcpu, count_field, &count) ||
vmcs12_read_any(vcpu, addr_field, &addr)) {
WARN_ON(1);
return -EINVAL;
}
if (count == 0)
return 0;
maxphyaddr = cpuid_maxphyaddr(vcpu);
if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
(addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
pr_debug_ratelimited(
"nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
addr_field, maxphyaddr, count, addr);
return -EINVAL;
}
return 0;
}
static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (vmcs12->vm_exit_msr_load_count == 0 &&
vmcs12->vm_exit_msr_store_count == 0 &&
vmcs12->vm_entry_msr_load_count == 0)
return 0; /* Fast path */
if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
VM_EXIT_MSR_LOAD_ADDR) ||
nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
VM_EXIT_MSR_STORE_ADDR) ||
nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
VM_ENTRY_MSR_LOAD_ADDR))
return -EINVAL;
return 0;
}
static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
/* x2APIC MSR accesses are not allowed */
if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
return -EINVAL;
if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
e->index == MSR_IA32_UCODE_REV)
return -EINVAL;
if (e->reserved != 0)
return -EINVAL;
return 0;
}
static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (e->index == MSR_FS_BASE ||
e->index == MSR_GS_BASE ||
e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
/*
* Load guest's/host's msr at nested entry/exit.
* return 0 for success, entry index for failure.
*/
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u32 i;
struct vmx_msr_entry e;
struct msr_data msr;
msr.host_initiated = false;
for (i = 0; i < count; i++) {
if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
&e, sizeof(e))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(e));
goto fail;
}
if (nested_vmx_load_msr_check(vcpu, &e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e.index, e.reserved);
goto fail;
}
msr.index = e.index;
msr.data = e.value;
if (kvm_set_msr(vcpu, &msr)) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, e.value);
goto fail;
}
}
return 0;
fail:
return i + 1;
}
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u32 i;
struct vmx_msr_entry e;
for (i = 0; i < count; i++) {
struct msr_data msr_info;
if (kvm_vcpu_read_guest(vcpu,
gpa + i * sizeof(e),
&e, 2 * sizeof(u32))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(e));
return -EINVAL;
}
if (nested_vmx_store_msr_check(vcpu, &e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e.index, e.reserved);
return -EINVAL;
}
msr_info.host_initiated = false;
msr_info.index = e.index;
if (kvm_get_msr(vcpu, &msr_info)) {
pr_debug_ratelimited(
"%s cannot read MSR (%u, 0x%x)\n",
__func__, i, e.index);
return -EINVAL;
}
if (kvm_vcpu_write_guest(vcpu,
gpa + i * sizeof(e) +
offsetof(struct vmx_msr_entry, value),
&msr_info.data, sizeof(msr_info.data))) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, msr_info.data);
return -EINVAL;
}
}
return 0;
}
static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
unsigned long invalid_mask;
invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
return (val & invalid_mask) == 0;
}
/*
* Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
* emulating VM entry into a guest with EPT enabled.
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
* is assigned to entry_failure_code on failure.
*/
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
u32 *entry_failure_code)
{
if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
if (!nested_cr3_valid(vcpu, cr3)) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return 1;
}
/*
* If PAE paging and EPT are both on, CR3 is not used by the CPU and
* must not be dereferenced.
*/
if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
!nested_ept) {
if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
*entry_failure_code = ENTRY_FAIL_PDPTE;
return 1;
}
}
vcpu->arch.cr3 = cr3;
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
}
kvm_mmu_reset_context(vcpu);
return 0;
}
/*
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
* with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
* guest in a way that will both be appropriate to L1's requests, and our
* needs. In addition to modifying the active vmcs (which is vmcs02), this
* function also has additional necessary side-effects, like setting various
* vcpu->arch fields.
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
* is assigned to entry_failure_code on failure.
*/
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
bool from_vmentry, u32 *entry_failure_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exec_control;
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
if (from_vmentry &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
} else {
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
}
if (from_vmentry) {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
vmcs12->vm_entry_intr_info_field);
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
vmcs12->vm_entry_exception_error_code);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmcs12->vm_entry_instruction_len);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
vmcs12->guest_interruptibility_info);
} else {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs12->guest_pending_dbg_exceptions);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
if (nested_cpu_has_xsaves(vmcs12))
vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
exec_control = vmcs12->pin_based_vm_exec_control;
/* Preemption timer setting is only taken from vmcs01. */
exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
exec_control |= vmcs_config.pin_based_exec_ctrl;
if (vmx->hv_deadline_tsc == -1)
exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
/* Posted interrupts setting is only taken from vmcs12. */
if (nested_cpu_has_posted_intr(vmcs12)) {
/*
* Note that we use L0's vector here and in
* vmx_deliver_nested_posted_interrupt.
*/
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
vmx->nested.pi_pending = false;
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
} else {
exec_control &= ~PIN_BASED_POSTED_INTR;
}
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
vmx->nested.preemption_timer_expired = false;
if (nested_cpu_has_preemption_timer(vmcs12))
vmx_start_preemption_timer(vcpu);
/*
* Whether page-faults are trapped is determined by a combination of
* 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
* If enable_ept, L0 doesn't care about page faults and we should
* set all of these to L1's desires. However, if !enable_ept, L0 does
* care about (at least some) page faults, and because it is not easy
* (if at all possible?) to merge L0 and L1's desires, we simply ask
* to exit on each and every L2 page fault. This is done by setting
* MASK=MATCH=0 and (see below) EB.PF=1.
* Note that below we don't need special code to set EB.PF beyond the
* "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
* vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
* !enable_ept, EB.PF is 1, so the "or" will always be 1.
*
* A problem with this approach (when !enable_ept) is that L1 may be
* injected with more page faults than it asked for. This could have
* caused problems, but in practice existing hypervisors don't care.
* To fix this, we will need to emulate the PFEC checking (on the L1
* page tables), using walk_addr(), when injecting PFs to L1.
*/
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
enable_ept ? vmcs12->page_fault_error_code_mask : 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
enable_ept ? vmcs12->page_fault_error_code_match : 0);
if (cpu_has_secondary_exec_ctrls()) {
exec_control = vmx_secondary_exec_control(vmx);
/* Take the following fields only from vmcs12 */
exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_APIC_REGISTER_VIRT);
if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
exec_control |= vmcs12->secondary_vm_exec_control;
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
vmcs_write64(EOI_EXIT_BITMAP0,
vmcs12->eoi_exit_bitmap0);
vmcs_write64(EOI_EXIT_BITMAP1,
vmcs12->eoi_exit_bitmap1);
vmcs_write64(EOI_EXIT_BITMAP2,
vmcs12->eoi_exit_bitmap2);
vmcs_write64(EOI_EXIT_BITMAP3,
vmcs12->eoi_exit_bitmap3);
vmcs_write16(GUEST_INTR_STATUS,
vmcs12->guest_intr_status);
}
/*
* Write an illegal value to APIC_ACCESS_ADDR. Later,
* nested_get_vmcs12_pages will either fix it up or
* remove the VM execution control.
*/
if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
vmcs_write64(APIC_ACCESS_ADDR, -1ull);
vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
}
/*
* Set host-state according to L0's settings (vmcs12 is irrelevant here)
* Some constant fields are set here by vmx_set_constant_host_state().
* Other fields are different per CPU, and will be set later when
* vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
*/
vmx_set_constant_host_state(vmx);
/*
* Set the MSR load/store lists to match L0's settings.
*/
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
/*
* HOST_RSP is normally set correctly in vmx_vcpu_run() just before
* entry, but only if the current (host) sp changed from the value
* we wrote last (vmx->host_rsp). This cache is no longer relevant
* if we switch vmcs, and rather than hold a separate cache per vmcs,
* here we just force the write to happen on entry.
*/
vmx->host_rsp = 0;
exec_control = vmx_exec_control(vmx); /* L0's desires */
exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
exec_control &= ~CPU_BASED_TPR_SHADOW;
exec_control |= vmcs12->cpu_based_vm_exec_control;
/*
* Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
* nested_get_vmcs12_pages can't fix it up, the illegal value
* will result in a VM entry failure.
*/
if (exec_control & CPU_BASED_TPR_SHADOW) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
}
/*
* Merging of IO bitmap not currently supported.
* Rather, exit every time.
*/
exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
exec_control |= CPU_BASED_UNCOND_IO_EXITING;
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
* bitwise-or of what L1 wants to trap for L2, and what we want to
* trap. Note that CR0.TS also needs updating - we do this later.
*/
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
* we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
* bits are further modified by vmx_set_efer() below.
*/
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
* emulated by vmx_set_efer(), below.
*/
vm_entry_controls_init(vmx,
(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
~VM_ENTRY_IA32E_MODE) |
(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
if (from_vmentry &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
vcpu->arch.pat = vmcs12->guest_ia32_pat;
} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
}
set_cr4_guest_host_mask(vmx);
if (from_vmentry &&
vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
vmcs_write64(TSC_OFFSET,
vcpu->arch.tsc_offset + vmcs12->tsc_offset);
else
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (enable_vpid) {
/*
* There is no direct mapping between vpid02 and vpid12, the
* vpid02 is per-vCPU for L0 and reused while the value of
* vpid12 is changed w/ one invvpid during nested vmentry.
* The vpid12 is allocated by L1 for L2, so it will not
* influence global bitmap(for vpid01 and vpid02 allocation)
* even if spawn a lot of nested vCPUs.
*/
if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
vmx->nested.last_vpid = vmcs12->virtual_processor_id;
__vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
}
} else {
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
vmx_flush_tlb(vcpu);
}
}
if (enable_pml) {
/*
* Conceptually we want to copy the PML address and index from
* vmcs01 here, and then back to vmcs01 on nested vmexit. But,
* since we always flush the log on each vmexit, this happens
* to be equivalent to simply resetting the fields in vmcs02.
*/
ASSERT(vmx->pml_pg);
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
if (nested_cpu_has_ept(vmcs12)) {
kvm_mmu_unload(vcpu);
nested_ept_init_mmu_context(vcpu);
} else if (nested_cpu_has2(vmcs12,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
vmx_flush_tlb_ept_only(vcpu);
}
/*
* This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
* bits which we consider mandatory enabled.
* The CR0_READ_SHADOW is what L2 should have expected to read given
* the specifications by L1; It's not enough to take
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
* have more bits than L1 expected.
*/
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
if (from_vmentry &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
vcpu->arch.efer = vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
vmx_set_efer(vcpu, vcpu->arch.efer);
/* Shadow page tables on either EPT or shadow page tables. */
if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
entry_failure_code))
return 1;
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
/*
* L1 may access the L2's PDPTR, so save them to construct vmcs12
*/
if (enable_ept) {
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
return 0;
}
static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
vmx->nested.nested_vmx_procbased_ctls_low,
vmx->nested.nested_vmx_procbased_ctls_high) ||
!vmx_control_verify(vmcs12->secondary_vm_exec_control,
vmx->nested.nested_vmx_secondary_ctls_low,
vmx->nested.nested_vmx_secondary_ctls_high) ||
!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
vmx->nested.nested_vmx_pinbased_ctls_low,
vmx->nested.nested_vmx_pinbased_ctls_high) ||
!vmx_control_verify(vmcs12->vm_exit_controls,
vmx->nested.nested_vmx_exit_ctls_low,
vmx->nested.nested_vmx_exit_ctls_high) ||
!vmx_control_verify(vmcs12->vm_entry_controls,
vmx->nested.nested_vmx_entry_ctls_low,
vmx->nested.nested_vmx_entry_ctls_high))
return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
!nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
!nested_cr3_valid(vcpu, vmcs12->host_cr3))
return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
return 0;
}
static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 *exit_qual)
{
bool ia32e;
*exit_qual = ENTRY_FAIL_DEFAULT;
if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
return 1;
if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
vmcs12->vmcs_link_pointer != -1ull) {
*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
return 1;
}
/*
* If the load IA32_EFER VM-entry control is 1, the following checks
* are performed on the field for the IA32_EFER MSR:
* - Bits reserved in the IA32_EFER MSR must be 0.
* - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
* the IA-32e mode guest VM-exit control. It must also be identical
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
* CR0.PG) is 1.
*/
if (to_vmx(vcpu)->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
((vmcs12->guest_cr0 & X86_CR0_PG) &&
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
return 1;
}
/*
* If the load IA32_EFER VM-exit control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the host address-space size VM-exit control.
*/
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
ia32e = (vmcs12->vm_exit_controls &
VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
return 1;
}
return 0;
}
static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct loaded_vmcs *vmcs02;
int cpu;
u32 msr_entry_idx;
u32 exit_qual;
vmcs02 = nested_get_current_vmcs02(vmx);
if (!vmcs02)
return -ENOMEM;
enter_guest_mode(vcpu);
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
cpu = get_cpu();
vmx->loaded_vmcs = vmcs02;
vmx_vcpu_put(vcpu);
vmx_vcpu_load(vcpu, cpu);
vcpu->cpu = cpu;
put_cpu();
vmx_segment_cache_clear(vmx);
if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
leave_guest_mode(vcpu);
vmx_load_vmcs01(vcpu);
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, exit_qual);
return 1;
}
nested_get_vmcs12_pages(vcpu, vmcs12);
msr_entry_idx = nested_vmx_load_msr(vcpu,
vmcs12->vm_entry_msr_load_addr,
vmcs12->vm_entry_msr_load_count);
if (msr_entry_idx) {
leave_guest_mode(vcpu);
vmx_load_vmcs01(vcpu);
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
return 1;
}
vmcs12->launch_state = 1;
/*
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
* returned as far as L1 is concerned. It will only return (and set
* the success flag) when L2 exits (see nested_vmx_vmexit()).
*/
return 0;
}
/*
* nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
* for running an L2 nested guest.
*/
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
struct vmcs12 *vmcs12;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_qual;
int ret;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (!nested_vmx_check_vmcs12(vcpu))
goto out;
vmcs12 = get_vmcs12(vcpu);
if (enable_shadow_vmcs)
copy_shadow_to_vmcs12(vmx);
/*
* The nested entry process starts with enforcing various prerequisites
* on vmcs12 as required by the Intel SDM, and act appropriately when
* they fail: As the SDM explains, some conditions should cause the
* instruction to fail, while others will cause the instruction to seem
* to succeed, but return an EXIT_REASON_INVALID_STATE.
* To speed up the normal (success) code path, we should avoid checking
* for misconfigurations which will anyway be caught by the processor
* when using the merged vmcs02.
*/
if (vmcs12->launch_state == launch) {
nested_vmx_failValid(vcpu,
launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
: VMXERR_VMRESUME_NONLAUNCHED_VMCS);
goto out;
}
ret = check_vmentry_prereqs(vcpu, vmcs12);
if (ret) {
nested_vmx_failValid(vcpu, ret);
goto out;
}
/*
* After this point, the trap flag no longer triggers a singlestep trap
* on the vm entry instructions; don't call kvm_skip_emulated_instruction.
* This is not 100% correct; for performance reasons, we delegate most
* of the checks on host state to the processor. If those fail,
* the singlestep trap is missed.
*/
skip_emulated_instruction(vcpu);
ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
if (ret) {
nested_vmx_entry_failure(vcpu, vmcs12,
EXIT_REASON_INVALID_STATE, exit_qual);
return 1;
}
/*
* We're finally done with prerequisite checking, and can start with
* the nested entry.
*/
ret = enter_vmx_non_root_mode(vcpu, true);
if (ret)
return ret;
if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
return kvm_vcpu_halt(vcpu);
vmx->nested.nested_run_pending = 1;
return 1;
out:
return kvm_skip_emulated_instruction(vcpu);
}
/*
* On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
* because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
* This function returns the new value we should put in vmcs12.guest_cr0.
* It's not enough to just return the vmcs02 GUEST_CR0. Rather,
* 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
* available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
* didn't trap the bit, because if L1 did, so would L0).
* 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
* been modified by L2, and L1 knows it. So just leave the old value of
* the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
* isn't relevant, because if L0 traps this bit it can set it to anything.
* 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
* changed these bits, and therefore they need to be updated, but L0
* didn't necessarily allow them to be changed in GUEST_CR0 - and rather
* put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
*/
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
/*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
vcpu->arch.cr0_guest_owned_bits));
}
static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
/*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
vcpu->arch.cr4_guest_owned_bits));
}
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 idt_vectoring;
unsigned int nr;
if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
nr = vcpu->arch.exception.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (kvm_exception_is_soft(nr)) {
vmcs12->vm_exit_instruction_len =
vcpu->arch.event_exit_inst_len;
idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
} else
idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
if (vcpu->arch.exception.has_error_code) {
idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
vmcs12->idt_vectoring_error_code =
vcpu->arch.exception.error_code;
}
vmcs12->idt_vectoring_info_field = idt_vectoring;
} else if (vcpu->arch.nmi_injected) {
vmcs12->idt_vectoring_info_field =
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
} else if (vcpu->arch.interrupt.pending) {
nr = vcpu->arch.interrupt.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
idt_vectoring |= INTR_TYPE_SOFT_INTR;
vmcs12->vm_entry_instruction_len =
vcpu->arch.event_exit_inst_len;
} else
idt_vectoring |= INTR_TYPE_EXT_INTR;
vmcs12->idt_vectoring_info_field = idt_vectoring;
}
}
static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vcpu->arch.exception.pending ||
vcpu->arch.nmi_injected ||
vcpu->arch.interrupt.pending)
return -EBUSY;
if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
vmx->nested.preemption_timer_expired) {
if (vmx->nested.nested_run_pending)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
return 0;
}
if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
if (vmx->nested.nested_run_pending)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
NMI_VECTOR | INTR_TYPE_NMI_INTR |
INTR_INFO_VALID_MASK, 0);
/*
* The NMI-triggered VM exit counts as injection:
* clear this one and block further NMIs.
*/
vcpu->arch.nmi_pending = 0;
vmx_set_nmi_mask(vcpu, true);
return 0;
}
if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
nested_exit_on_intr(vcpu)) {
if (vmx->nested.nested_run_pending)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
return 0;
}
vmx_complete_nested_posted_interrupt(vcpu);
return 0;
}
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
ktime_t remaining =
hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
u64 value;
if (ktime_to_ns(remaining) <= 0)
return 0;
value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
do_div(value, 1000000);
return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}
/*
* Update the guest state fields of vmcs12 to reflect changes that
* occurred while L2 was running. (The "IA-32e mode guest" bit of the
* VM-entry controls is also updated, since this is really a guest
* state bit.)
*/
static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
vmcs12->guest_interruptibility_info =
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
else
vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
if (nested_cpu_has_preemption_timer(vmcs12)) {
if (vmcs12->vm_exit_controls &
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
vmcs12->vmx_preemption_timer_value =
vmx_get_preemption_timer_value(vcpu);
hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
}
/*
* In some cases (usually, nested EPT), L2 is allowed to change its
* own CR3 without exiting. If it has changed it, we must keep it.
* Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
* by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
*
* Additionally, restore L2's PDPTR to vmcs12.
*/
if (enable_ept) {
vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
}
if (nested_cpu_has_ept(vmcs12))
vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
if (nested_cpu_has_vid(vmcs12))
vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
vmcs12->vm_entry_controls =
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
}
/* TODO: These cannot have changed unless we have MSR bitmaps and
* the relevant bit asks not to trap the change */
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
vmcs12->guest_ia32_efer = vcpu->arch.efer;
vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
if (kvm_mpx_supported())
vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
if (nested_cpu_has_xsaves(vmcs12))
vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
}
/*
* prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
* and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
* and this function updates it to reflect the changes to the guest state while
* L2 was running (and perhaps made some exits which were handled directly by L0
* without going back to L1), and to reflect the exit reason.
* Note that we do not have to copy here all VMCS fields, just those that
* could have changed by the L2 guest or the exit - i.e., the guest-state and
* exit-information fields only. Other fields are modified by L1 with VMWRITE,
* which already writes to vmcs12 directly.
*/
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 exit_reason, u32 exit_intr_info,
unsigned long exit_qualification)
{
/* update guest state fields: */
sync_vmcs12(vcpu, vmcs12);
/* update exit information fields: */
vmcs12->vm_exit_reason = exit_reason;
vmcs12->exit_qualification = exit_qualification;
vmcs12->vm_exit_intr_info = exit_intr_info;
if ((vmcs12->vm_exit_intr_info &
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
vmcs12->vm_exit_intr_error_code =
vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
vmcs12->idt_vectoring_info_field = 0;
vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
/* vm_entry_intr_info_field is cleared on exit. Emulate this
* instead of reading the real value. */
vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
/*
* Transfer the event that L0 or L1 may wanted to inject into
* L2 to IDT_VECTORING_INFO_FIELD.
*/
vmcs12_save_pending_event(vcpu, vmcs12);
}
/*
* Drop what we picked up for L2 via vmx_complete_interrupts. It is
* preserved above and would only end up incorrectly in L1.
*/
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
}
/*
* A part of what we need to when the nested L2 guest exits and we want to
* run its L1 parent, is to reset L1's guest state to the host state specified
* in vmcs12.
* This function is to be called not only on normal nested exit, but also on
* a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
* Failures During or After Loading Guest State").
* This function should be called when the active VMCS is L1's (vmcs01).
*/
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct kvm_segment seg;
u32 entry_failure_code;
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
vmx_set_efer(vcpu, vcpu->arch.efer);
kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
/*
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
* actually changed, because vmx_set_cr0 refers to efer set above.
*
* CR0_GUEST_HOST_MASK is already set in the original vmcs01
* (KVM doesn't change it);
*/
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs12->host_cr0);
/* Same as above - no reason to call set_cr4_guest_host_mask(). */
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
kvm_set_cr4(vcpu, vmcs12->host_cr4);
nested_ept_uninit_mmu_context(vcpu);
/*
* Only PDPTE load can fail as the value of cr3 was checked on entry and
* couldn't have changed.
*/
if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
if (enable_vpid) {
/*
* Trivially support vpid by letting L2s share their parent
* L1's vpid. TODO: move to a more elaborate solution, giving
* each L2 its own vpid and exposing the vpid feature to L1.
*/
vmx_flush_tlb(vcpu);
}
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, 0);
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
vcpu->arch.pat = vmcs12->host_ia32_pat;
}
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
vmcs12->host_ia32_perf_global_ctrl);
/* Set L1 segment info according to Intel SDM
27.5.2 Loading Host Segment and Descriptor-Table Registers */
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.selector = vmcs12->host_cs_selector,
.type = 11,
.present = 1,
.s = 1,
.g = 1
};
if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
seg.l = 1;
else
seg.db = 1;
vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.type = 3,
.present = 1,
.s = 1,
.db = 1,
.g = 1
};
seg.selector = vmcs12->host_ds_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
seg.selector = vmcs12->host_es_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
seg.selector = vmcs12->host_ss_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
seg.selector = vmcs12->host_fs_selector;
seg.base = vmcs12->host_fs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
seg.selector = vmcs12->host_gs_selector;
seg.base = vmcs12->host_gs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
seg = (struct kvm_segment) {
.base = vmcs12->host_tr_base,
.limit = 0x67,
.selector = vmcs12->host_tr_selector,
.type = 11,
.present = 1
};
vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
kvm_set_dr(vcpu, 7, 0x400);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
if (cpu_has_vmx_msr_bitmap())
vmx_set_msr_bitmap(vcpu);
if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
vmcs12->vm_exit_msr_load_count))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}
/*
* Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
* and modify vmcs12 to make it see what it would expect to see there if
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
*/
static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
u32 exit_intr_info,
unsigned long exit_qualification)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 vm_inst_error = 0;
/* trying to cancel vmlaunch/vmresume is a bug */
WARN_ON_ONCE(vmx->nested.nested_run_pending);
leave_guest_mode(vcpu);
prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
exit_qualification);
if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
vmcs12->vm_exit_msr_store_count))
nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
if (unlikely(vmx->fail))
vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
vmx_load_vmcs01(vcpu);
if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
&& nested_exit_intr_ack_set(vcpu)) {
int irq = kvm_cpu_get_interrupt(vcpu);
WARN_ON(irq < 0);
vmcs12->vm_exit_intr_info = irq |
INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
}
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
vmcs12->exit_qualification,
vmcs12->idt_vectoring_info_field,
vmcs12->vm_exit_intr_info,
vmcs12->vm_exit_intr_error_code,
KVM_ISA_VMX);
vm_entry_controls_reset_shadow(vmx);
vm_exit_controls_reset_shadow(vmx);
vmx_segment_cache_clear(vmx);
/* if no vmcs02 cache requested, remove the one we used */
if (VMCS02_POOL_SIZE == 0)
nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
load_vmcs12_host_state(vcpu, vmcs12);
/* Update any VMCS fields that might have changed while L2 ran */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (vmx->hv_deadline_tsc == -1)
vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
else
vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
vmx_set_virtual_x2apic_mode(vcpu,
vcpu->arch.apic_base & X2APIC_ENABLE);
} else if (!nested_cpu_has_ept(vmcs12) &&
nested_cpu_has2(vmcs12,
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
vmx_flush_tlb_ept_only(vcpu);
}
/* This is needed for same reason as it was needed in prepare_vmcs02 */
vmx->host_rsp = 0;
/* Unpin physical memory we referred to in vmcs02 */
if (vmx->nested.apic_access_page) {
nested_release_page(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
if (vmx->nested.virtual_apic_page) {
nested_release_page(vmx->nested.virtual_apic_page);
vmx->nested.virtual_apic_page = NULL;
}
if (vmx->nested.pi_desc_page) {
kunmap(vmx->nested.pi_desc_page);
nested_release_page(vmx->nested.pi_desc_page);
vmx->nested.pi_desc_page = NULL;
vmx->nested.pi_desc = NULL;
}
/*
* We are now running in L2, mmu_notifier will force to reload the
* page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
*/
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
/*
* Exiting from L2 to L1, we're now back to L1 which thinks it just
* finished a VMLAUNCH or VMRESUME instruction, so we need to set the
* success or failure flag accordingly.
*/
if (unlikely(vmx->fail)) {
vmx->fail = 0;
nested_vmx_failValid(vcpu, vm_inst_error);
} else
nested_vmx_succeed(vcpu);
if (enable_shadow_vmcs)
vmx->nested.sync_shadow_vmcs = true;
/* in case we halted in L2 */
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
}
/*
* Forcibly leave nested mode in order to be able to reset the VCPU later on.
*/
static void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.nested_run_pending = 0;
nested_vmx_vmexit(vcpu, -1, 0, 0);
}
free_nested(to_vmx(vcpu));
}
/*
* L1's failure to enter L2 is a subset of a normal exit, as explained in
* 23.7 "VM-entry failures during or after loading guest state" (this also
* lists the acceptable exit-reason and exit-qualification parameters).
* It should only be called before L2 actually succeeded to run, and when
* vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
*/
static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 reason, unsigned long qualification)
{
load_vmcs12_host_state(vcpu, vmcs12);
vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
vmcs12->exit_qualification = qualification;
nested_vmx_succeed(vcpu);
if (enable_shadow_vmcs)
to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
}
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
{
return X86EMUL_CONTINUE;
}
#ifdef CONFIG_X86_64
/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
static inline int u64_shl_div_u64(u64 a, unsigned int shift,
u64 divisor, u64 *result)
{
u64 low = a << shift, high = a >> (64 - shift);
/* To avoid the overflow on divq */
if (high >= divisor)
return 1;
/* Low hold the result, high hold rem which is discarded */
asm("divq %2\n\t" : "=a" (low), "=d" (high) :
"rm" (divisor), "0" (low), "1" (high));
*result = low;
return 0;
}
static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 tscl = rdtsc();
u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
/* Convert to host delta tsc if tsc scaling is enabled */
if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
u64_shl_div_u64(delta_tsc,
kvm_tsc_scaling_ratio_frac_bits,
vcpu->arch.tsc_scaling_ratio,
&delta_tsc))
return -ERANGE;
/*
* If the delta tsc can't fit in the 32 bit after the multi shift,
* we can't use the preemption timer.
* It's possible that it fits on later vmentries, but checking
* on every vmentry is costly so we just use an hrtimer.
*/
if (delta_tsc >> (cpu_preemption_timer_multi + 32))
return -ERANGE;
vmx->hv_deadline_tsc = tscl + delta_tsc;
vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
return 0;
}
static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmx->hv_deadline_tsc = -1;
vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
PIN_BASED_VMX_PREEMPTION_TIMER);
}
#endif
static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
{
if (ple_gap)
shrink_ple_window(vcpu);
}
static void vmx_slot_enable_log_dirty(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
}
static void vmx_slot_disable_log_dirty(struct kvm *kvm,
struct kvm_memory_slot *slot)
{
kvm_mmu_slot_set_dirty(kvm, slot);
}
static void vmx_flush_log_dirty(struct kvm *kvm)
{
kvm_flush_pml_buffers(kvm);
}
static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
struct kvm_memory_slot *memslot,
gfn_t offset, unsigned long mask)
{
kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
}
/*
* This routine does the following things for vCPU which is going
* to be blocked if VT-d PI is enabled.
* - Store the vCPU to the wakeup list, so when interrupts happen
* we can find the right vCPU to wake up.
* - Change the Posted-interrupt descriptor as below:
* 'NDST' <-- vcpu->pre_pcpu
* 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
* - If 'ON' is set during this process, which means at least one
* interrupt is posted for this vCPU, we cannot block it, in
* this case, return 1, otherwise, return 0.
*
*/
static int pi_pre_block(struct kvm_vcpu *vcpu)
{
unsigned long flags;
unsigned int dest;
struct pi_desc old, new;
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return 0;
vcpu->pre_pcpu = vcpu->cpu;
spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
list_add_tail(&vcpu->blocked_vcpu_list,
&per_cpu(blocked_vcpu_on_cpu,
vcpu->pre_pcpu));
spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
do {
old.control = new.control = pi_desc->control;
/*
* We should not block the vCPU if
* an interrupt is posted for it.
*/
if (pi_test_on(pi_desc) == 1) {
spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
list_del(&vcpu->blocked_vcpu_list);
spin_unlock_irqrestore(
&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
vcpu->pre_pcpu = -1;
return 1;
}
WARN((pi_desc->sn == 1),
"Warning: SN field of posted-interrupts "
"is set before blocking\n");
/*
* Since vCPU can be preempted during this process,
* vcpu->cpu could be different with pre_pcpu, we
* need to set pre_pcpu as the destination of wakeup
* notification event, then we can find the right vCPU
* to wakeup in wakeup handler if interrupts happen
* when the vCPU is in blocked state.
*/
dest = cpu_physical_id(vcpu->pre_pcpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
/* set 'NV' to 'wakeup vector' */
new.nv = POSTED_INTR_WAKEUP_VECTOR;
} while (cmpxchg(&pi_desc->control, old.control,
new.control) != old.control);
return 0;
}
static int vmx_pre_block(struct kvm_vcpu *vcpu)
{
if (pi_pre_block(vcpu))
return 1;
if (kvm_lapic_hv_timer_in_use(vcpu))
kvm_lapic_switch_to_sw_timer(vcpu);
return 0;
}
static void pi_post_block(struct kvm_vcpu *vcpu)
{
struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
struct pi_desc old, new;
unsigned int dest;
unsigned long flags;
if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(vcpu))
return;
do {
old.control = new.control = pi_desc->control;
dest = cpu_physical_id(vcpu->cpu);
if (x2apic_enabled())
new.ndst = dest;
else
new.ndst = (dest << 8) & 0xFF00;
/* Allow posting non-urgent interrupts */
new.sn = 0;
/* set 'NV' to 'notification vector' */
new.nv = POSTED_INTR_VECTOR;
} while (cmpxchg(&pi_desc->control, old.control,
new.control) != old.control);
if(vcpu->pre_pcpu != -1) {
spin_lock_irqsave(
&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
list_del(&vcpu->blocked_vcpu_list);
spin_unlock_irqrestore(
&per_cpu(blocked_vcpu_on_cpu_lock,
vcpu->pre_pcpu), flags);
vcpu->pre_pcpu = -1;
}
}
static void vmx_post_block(struct kvm_vcpu *vcpu)
{
if (kvm_x86_ops->set_hv_timer)
kvm_lapic_switch_to_hv_timer(vcpu);
pi_post_block(vcpu);
}
/*
* vmx_update_pi_irte - set IRTE for Posted-Interrupts
*
* @kvm: kvm
* @host_irq: host irq of the interrupt
* @guest_irq: gsi of the interrupt
* @set: set or unset PI
* returns 0 on success, < 0 on failure
*/
static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set)
{
struct kvm_kernel_irq_routing_entry *e;
struct kvm_irq_routing_table *irq_rt;
struct kvm_lapic_irq irq;
struct kvm_vcpu *vcpu;
struct vcpu_data vcpu_info;
int idx, ret = -EINVAL;
if (!kvm_arch_has_assigned_device(kvm) ||
!irq_remapping_cap(IRQ_POSTING_CAP) ||
!kvm_vcpu_apicv_active(kvm->vcpus[0]))
return 0;
idx = srcu_read_lock(&kvm->irq_srcu);
irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
if (e->type != KVM_IRQ_ROUTING_MSI)
continue;
/*
* VT-d PI cannot support posting multicast/broadcast
* interrupts to a vCPU, we still use interrupt remapping
* for these kind of interrupts.
*
* For lowest-priority interrupts, we only support
* those with single CPU as the destination, e.g. user
* configures the interrupts via /proc/irq or uses
* irqbalance to make the interrupts single-CPU.
*
* We will support full lowest-priority interrupt later.
*/
kvm_set_msi_irq(kvm, e, &irq);
if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
/*
* Make sure the IRTE is in remapped mode if
* we don't handle it in posted mode.
*/
ret = irq_set_vcpu_affinity(host_irq, NULL);
if (ret < 0) {
printk(KERN_INFO
"failed to back to remapped mode, irq: %u\n",
host_irq);
goto out;
}
continue;
}
vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
vcpu_info.vector = irq.vector;
trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
vcpu_info.vector, vcpu_info.pi_desc_addr, set);
if (set)
ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
else {
/* suppress notification event before unposting */
pi_set_sn(vcpu_to_pi_desc(vcpu));
ret = irq_set_vcpu_affinity(host_irq, NULL);
pi_clear_sn(vcpu_to_pi_desc(vcpu));
}
if (ret < 0) {
printk(KERN_INFO "%s: failed to update PI IRTE\n",
__func__);
goto out;
}
}
ret = 0;
out:
srcu_read_unlock(&kvm->irq_srcu, idx);
return ret;
}
static void vmx_setup_mce(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.mcg_cap & MCG_LMCE_P)
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
FEATURE_CONTROL_LMCE;
else
to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
~FEATURE_CONTROL_LMCE;
}
static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
.cpu_has_kvm_support = cpu_has_kvm_support,
.disabled_by_bios = vmx_disabled_by_bios,
.hardware_setup = hardware_setup,
.hardware_unsetup = hardware_unsetup,
.check_processor_compatibility = vmx_check_processor_compat,
.hardware_enable = hardware_enable,
.hardware_disable = hardware_disable,
.cpu_has_accelerated_tpr = report_flexpriority,
.cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
.vcpu_create = vmx_create_vcpu,
.vcpu_free = vmx_free_vcpu,
.vcpu_reset = vmx_vcpu_reset,
.prepare_guest_switch = vmx_save_host_state,
.vcpu_load = vmx_vcpu_load,
.vcpu_put = vmx_vcpu_put,
.update_bp_intercept = update_exception_bitmap,
.get_msr = vmx_get_msr,
.set_msr = vmx_set_msr,
.get_segment_base = vmx_get_segment_base,
.get_segment = vmx_get_segment,
.set_segment = vmx_set_segment,
.get_cpl = vmx_get_cpl,
.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
.decache_cr3 = vmx_decache_cr3,
.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
.set_cr0 = vmx_set_cr0,
.set_cr3 = vmx_set_cr3,
.set_cr4 = vmx_set_cr4,
.set_efer = vmx_set_efer,
.get_idt = vmx_get_idt,
.set_idt = vmx_set_idt,
.get_gdt = vmx_get_gdt,
.set_gdt = vmx_set_gdt,
.get_dr6 = vmx_get_dr6,
.set_dr6 = vmx_set_dr6,
.set_dr7 = vmx_set_dr7,
.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
.cache_reg = vmx_cache_reg,
.get_rflags = vmx_get_rflags,
.set_rflags = vmx_set_rflags,
.get_pkru = vmx_get_pkru,
.tlb_flush = vmx_flush_tlb,
.run = vmx_vcpu_run,
.handle_exit = vmx_handle_exit,
.skip_emulated_instruction = skip_emulated_instruction,
.set_interrupt_shadow = vmx_set_interrupt_shadow,
.get_interrupt_shadow = vmx_get_interrupt_shadow,
.patch_hypercall = vmx_patch_hypercall,
.set_irq = vmx_inject_irq,
.set_nmi = vmx_inject_nmi,
.queue_exception = vmx_queue_exception,
.cancel_injection = vmx_cancel_injection,
.interrupt_allowed = vmx_interrupt_allowed,
.nmi_allowed = vmx_nmi_allowed,
.get_nmi_mask = vmx_get_nmi_mask,
.set_nmi_mask = vmx_set_nmi_mask,
.enable_nmi_window = enable_nmi_window,
.enable_irq_window = enable_irq_window,
.update_cr8_intercept = update_cr8_intercept,
.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
.get_enable_apicv = vmx_get_enable_apicv,
.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
.load_eoi_exitmap = vmx_load_eoi_exitmap,
.apicv_post_state_restore = vmx_apicv_post_state_restore,
.hwapic_irr_update = vmx_hwapic_irr_update,
.hwapic_isr_update = vmx_hwapic_isr_update,
.sync_pir_to_irr = vmx_sync_pir_to_irr,
.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
.set_tss_addr = vmx_set_tss_addr,
.get_tdp_level = get_ept_level,
.get_mt_mask = vmx_get_mt_mask,
.get_exit_info = vmx_get_exit_info,
.get_lpage_level = vmx_get_lpage_level,
.cpuid_update = vmx_cpuid_update,
.rdtscp_supported = vmx_rdtscp_supported,
.invpcid_supported = vmx_invpcid_supported,
.set_supported_cpuid = vmx_set_supported_cpuid,
.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
.write_tsc_offset = vmx_write_tsc_offset,
.set_tdp_cr3 = vmx_set_cr3,
.check_intercept = vmx_check_intercept,
.handle_external_intr = vmx_handle_external_intr,
.mpx_supported = vmx_mpx_supported,
.xsaves_supported = vmx_xsaves_supported,
.check_nested_events = vmx_check_nested_events,
.sched_in = vmx_sched_in,
.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
.flush_log_dirty = vmx_flush_log_dirty,
.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
.pre_block = vmx_pre_block,
.post_block = vmx_post_block,
.pmu_ops = &intel_pmu_ops,
.update_pi_irte = vmx_update_pi_irte,
#ifdef CONFIG_X86_64
.set_hv_timer = vmx_set_hv_timer,
.cancel_hv_timer = vmx_cancel_hv_timer,
#endif
.setup_mce = vmx_setup_mce,
};
static int __init vmx_init(void)
{
int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
__alignof__(struct vcpu_vmx), THIS_MODULE);
if (r)
return r;
#ifdef CONFIG_KEXEC_CORE
rcu_assign_pointer(crash_vmclear_loaded_vmcss,
crash_vmclear_local_loaded_vmcss);
#endif
return 0;
}
static void __exit vmx_exit(void)
{
#ifdef CONFIG_KEXEC_CORE
RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
synchronize_rcu();
#endif
kvm_exit();
}
module_init(vmx_init)
module_exit(vmx_exit)