1204 строки
34 KiB
C
1204 строки
34 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Network filesystem high-level read support.
|
|
*
|
|
* Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/task_io_accounting_ops.h>
|
|
#include <linux/netfs.h>
|
|
#include "internal.h"
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/netfs.h>
|
|
|
|
MODULE_DESCRIPTION("Network fs support");
|
|
MODULE_AUTHOR("Red Hat, Inc.");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
unsigned netfs_debug;
|
|
module_param_named(debug, netfs_debug, uint, S_IWUSR | S_IRUGO);
|
|
MODULE_PARM_DESC(netfs_debug, "Netfs support debugging mask");
|
|
|
|
static void netfs_rreq_work(struct work_struct *);
|
|
static void __netfs_put_subrequest(struct netfs_read_subrequest *, bool);
|
|
|
|
static void netfs_put_subrequest(struct netfs_read_subrequest *subreq,
|
|
bool was_async)
|
|
{
|
|
if (refcount_dec_and_test(&subreq->usage))
|
|
__netfs_put_subrequest(subreq, was_async);
|
|
}
|
|
|
|
static struct netfs_read_request *netfs_alloc_read_request(
|
|
const struct netfs_read_request_ops *ops, void *netfs_priv,
|
|
struct file *file)
|
|
{
|
|
static atomic_t debug_ids;
|
|
struct netfs_read_request *rreq;
|
|
|
|
rreq = kzalloc(sizeof(struct netfs_read_request), GFP_KERNEL);
|
|
if (rreq) {
|
|
rreq->netfs_ops = ops;
|
|
rreq->netfs_priv = netfs_priv;
|
|
rreq->inode = file_inode(file);
|
|
rreq->i_size = i_size_read(rreq->inode);
|
|
rreq->debug_id = atomic_inc_return(&debug_ids);
|
|
INIT_LIST_HEAD(&rreq->subrequests);
|
|
INIT_WORK(&rreq->work, netfs_rreq_work);
|
|
refcount_set(&rreq->usage, 1);
|
|
__set_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
ops->init_rreq(rreq, file);
|
|
netfs_stat(&netfs_n_rh_rreq);
|
|
}
|
|
|
|
return rreq;
|
|
}
|
|
|
|
static void netfs_get_read_request(struct netfs_read_request *rreq)
|
|
{
|
|
refcount_inc(&rreq->usage);
|
|
}
|
|
|
|
static void netfs_rreq_clear_subreqs(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
while (!list_empty(&rreq->subrequests)) {
|
|
subreq = list_first_entry(&rreq->subrequests,
|
|
struct netfs_read_subrequest, rreq_link);
|
|
list_del(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, was_async);
|
|
}
|
|
}
|
|
|
|
static void netfs_free_read_request(struct work_struct *work)
|
|
{
|
|
struct netfs_read_request *rreq =
|
|
container_of(work, struct netfs_read_request, work);
|
|
netfs_rreq_clear_subreqs(rreq, false);
|
|
if (rreq->netfs_priv)
|
|
rreq->netfs_ops->cleanup(rreq->mapping, rreq->netfs_priv);
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_free);
|
|
if (rreq->cache_resources.ops)
|
|
rreq->cache_resources.ops->end_operation(&rreq->cache_resources);
|
|
kfree(rreq);
|
|
netfs_stat_d(&netfs_n_rh_rreq);
|
|
}
|
|
|
|
static void netfs_put_read_request(struct netfs_read_request *rreq, bool was_async)
|
|
{
|
|
if (refcount_dec_and_test(&rreq->usage)) {
|
|
if (was_async) {
|
|
rreq->work.func = netfs_free_read_request;
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_free_read_request(&rreq->work);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and partially initialise an I/O request structure.
|
|
*/
|
|
static struct netfs_read_subrequest *netfs_alloc_subrequest(
|
|
struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
subreq = kzalloc(sizeof(struct netfs_read_subrequest), GFP_KERNEL);
|
|
if (subreq) {
|
|
INIT_LIST_HEAD(&subreq->rreq_link);
|
|
refcount_set(&subreq->usage, 2);
|
|
subreq->rreq = rreq;
|
|
netfs_get_read_request(rreq);
|
|
netfs_stat(&netfs_n_rh_sreq);
|
|
}
|
|
|
|
return subreq;
|
|
}
|
|
|
|
static void netfs_get_read_subrequest(struct netfs_read_subrequest *subreq)
|
|
{
|
|
refcount_inc(&subreq->usage);
|
|
}
|
|
|
|
static void __netfs_put_subrequest(struct netfs_read_subrequest *subreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_free);
|
|
kfree(subreq);
|
|
netfs_stat_d(&netfs_n_rh_sreq);
|
|
netfs_put_read_request(rreq, was_async);
|
|
}
|
|
|
|
/*
|
|
* Clear the unread part of an I/O request.
|
|
*/
|
|
static void netfs_clear_unread(struct netfs_read_subrequest *subreq)
|
|
{
|
|
struct iov_iter iter;
|
|
|
|
iov_iter_xarray(&iter, READ, &subreq->rreq->mapping->i_pages,
|
|
subreq->start + subreq->transferred,
|
|
subreq->len - subreq->transferred);
|
|
iov_iter_zero(iov_iter_count(&iter), &iter);
|
|
}
|
|
|
|
static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq = priv;
|
|
|
|
netfs_subreq_terminated(subreq, transferred_or_error, was_async);
|
|
}
|
|
|
|
/*
|
|
* Issue a read against the cache.
|
|
* - Eats the caller's ref on subreq.
|
|
*/
|
|
static void netfs_read_from_cache(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq,
|
|
bool seek_data)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct iov_iter iter;
|
|
|
|
netfs_stat(&netfs_n_rh_read);
|
|
iov_iter_xarray(&iter, READ, &rreq->mapping->i_pages,
|
|
subreq->start + subreq->transferred,
|
|
subreq->len - subreq->transferred);
|
|
|
|
cres->ops->read(cres, subreq->start, &iter, seek_data,
|
|
netfs_cache_read_terminated, subreq);
|
|
}
|
|
|
|
/*
|
|
* Fill a subrequest region with zeroes.
|
|
*/
|
|
static void netfs_fill_with_zeroes(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_zero);
|
|
__set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
|
|
netfs_subreq_terminated(subreq, 0, false);
|
|
}
|
|
|
|
/*
|
|
* Ask the netfs to issue a read request to the server for us.
|
|
*
|
|
* The netfs is expected to read from subreq->pos + subreq->transferred to
|
|
* subreq->pos + subreq->len - 1. It may not backtrack and write data into the
|
|
* buffer prior to the transferred point as it might clobber dirty data
|
|
* obtained from the cache.
|
|
*
|
|
* Alternatively, the netfs is allowed to indicate one of two things:
|
|
*
|
|
* - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
|
|
* make progress.
|
|
*
|
|
* - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
|
|
* cleared.
|
|
*/
|
|
static void netfs_read_from_server(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
netfs_stat(&netfs_n_rh_download);
|
|
rreq->netfs_ops->issue_op(subreq);
|
|
}
|
|
|
|
/*
|
|
* Release those waiting.
|
|
*/
|
|
static void netfs_rreq_completed(struct netfs_read_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_done);
|
|
netfs_rreq_clear_subreqs(rreq, was_async);
|
|
netfs_put_read_request(rreq, was_async);
|
|
}
|
|
|
|
/*
|
|
* Deal with the completion of writing the data to the cache. We have to clear
|
|
* the PG_fscache bits on the pages involved and release the caller's ref.
|
|
*
|
|
* May be called in softirq mode and we inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_unmark_after_write(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
struct page *page;
|
|
pgoff_t unlocked = 0;
|
|
bool have_unlocked = false;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
|
|
|
|
xas_for_each(&xas, page, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
|
|
/* We might have multiple writes from the same huge
|
|
* page, but we mustn't unlock a page more than once.
|
|
*/
|
|
if (have_unlocked && page->index <= unlocked)
|
|
continue;
|
|
unlocked = page->index;
|
|
end_page_fscache(page);
|
|
have_unlocked = true;
|
|
}
|
|
}
|
|
|
|
rcu_read_unlock();
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_subrequest *subreq = priv;
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
netfs_stat(&netfs_n_rh_write_failed);
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_copy_to_cache);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_write_done);
|
|
}
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
|
|
|
|
/* If we decrement nr_wr_ops to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_wr_ops))
|
|
netfs_rreq_unmark_after_write(rreq, was_async);
|
|
|
|
netfs_put_subrequest(subreq, was_async);
|
|
}
|
|
|
|
/*
|
|
* Perform any outstanding writes to the cache. We inherit a ref from the
|
|
* caller.
|
|
*/
|
|
static void netfs_rreq_do_write_to_cache(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
struct netfs_read_subrequest *subreq, *next, *p;
|
|
struct iov_iter iter;
|
|
int ret;
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_write);
|
|
|
|
/* We don't want terminating writes trying to wake us up whilst we're
|
|
* still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_wr_ops);
|
|
|
|
list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
|
|
if (!test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags)) {
|
|
list_del_init(&subreq->rreq_link);
|
|
netfs_put_subrequest(subreq, false);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
/* Amalgamate adjacent writes */
|
|
while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
next = list_next_entry(subreq, rreq_link);
|
|
if (next->start != subreq->start + subreq->len)
|
|
break;
|
|
subreq->len += next->len;
|
|
list_del_init(&next->rreq_link);
|
|
netfs_put_subrequest(next, false);
|
|
}
|
|
|
|
ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
|
|
rreq->i_size);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
|
|
continue;
|
|
}
|
|
|
|
iov_iter_xarray(&iter, WRITE, &rreq->mapping->i_pages,
|
|
subreq->start, subreq->len);
|
|
|
|
atomic_inc(&rreq->nr_wr_ops);
|
|
netfs_stat(&netfs_n_rh_write);
|
|
netfs_get_read_subrequest(subreq);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_write);
|
|
cres->ops->write(cres, subreq->start, &iter,
|
|
netfs_rreq_copy_terminated, subreq);
|
|
}
|
|
|
|
/* If we decrement nr_wr_ops to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_wr_ops))
|
|
netfs_rreq_unmark_after_write(rreq, false);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache_work(struct work_struct *work)
|
|
{
|
|
struct netfs_read_request *rreq =
|
|
container_of(work, struct netfs_read_request, work);
|
|
|
|
netfs_rreq_do_write_to_cache(rreq);
|
|
}
|
|
|
|
static void netfs_rreq_write_to_cache(struct netfs_read_request *rreq)
|
|
{
|
|
rreq->work.func = netfs_rreq_write_to_cache_work;
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* Unlock the pages in a read operation. We need to set PG_fscache on any
|
|
* pages we're going to write back before we unlock them.
|
|
*/
|
|
static void netfs_rreq_unlock(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
struct page *page;
|
|
unsigned int iopos, account = 0;
|
|
pgoff_t start_page = rreq->start / PAGE_SIZE;
|
|
pgoff_t last_page = ((rreq->start + rreq->len) / PAGE_SIZE) - 1;
|
|
bool subreq_failed = false;
|
|
int i;
|
|
|
|
XA_STATE(xas, &rreq->mapping->i_pages, start_page);
|
|
|
|
if (test_bit(NETFS_RREQ_FAILED, &rreq->flags)) {
|
|
__clear_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
__clear_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags);
|
|
}
|
|
}
|
|
|
|
/* Walk through the pagecache and the I/O request lists simultaneously.
|
|
* We may have a mixture of cached and uncached sections and we only
|
|
* really want to write out the uncached sections. This is slightly
|
|
* complicated by the possibility that we might have huge pages with a
|
|
* mixture inside.
|
|
*/
|
|
subreq = list_first_entry(&rreq->subrequests,
|
|
struct netfs_read_subrequest, rreq_link);
|
|
iopos = 0;
|
|
subreq_failed = (subreq->error < 0);
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_unlock);
|
|
|
|
rcu_read_lock();
|
|
xas_for_each(&xas, page, last_page) {
|
|
unsigned int pgpos = (page->index - start_page) * PAGE_SIZE;
|
|
unsigned int pgend = pgpos + thp_size(page);
|
|
bool pg_failed = false;
|
|
|
|
for (;;) {
|
|
if (!subreq) {
|
|
pg_failed = true;
|
|
break;
|
|
}
|
|
if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
|
|
set_page_fscache(page);
|
|
pg_failed |= subreq_failed;
|
|
if (pgend < iopos + subreq->len)
|
|
break;
|
|
|
|
account += subreq->transferred;
|
|
iopos += subreq->len;
|
|
if (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
|
|
subreq = list_next_entry(subreq, rreq_link);
|
|
subreq_failed = (subreq->error < 0);
|
|
} else {
|
|
subreq = NULL;
|
|
subreq_failed = false;
|
|
}
|
|
if (pgend == iopos)
|
|
break;
|
|
}
|
|
|
|
if (!pg_failed) {
|
|
for (i = 0; i < thp_nr_pages(page); i++)
|
|
flush_dcache_page(page);
|
|
SetPageUptodate(page);
|
|
}
|
|
|
|
if (!test_bit(NETFS_RREQ_DONT_UNLOCK_PAGES, &rreq->flags)) {
|
|
if (page->index == rreq->no_unlock_page &&
|
|
test_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags))
|
|
_debug("no unlock");
|
|
else
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
task_io_account_read(account);
|
|
if (rreq->netfs_ops->done)
|
|
rreq->netfs_ops->done(rreq);
|
|
}
|
|
|
|
/*
|
|
* Handle a short read.
|
|
*/
|
|
static void netfs_rreq_short_read(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
__clear_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
|
|
__set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
|
|
|
|
netfs_stat(&netfs_n_rh_short_read);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
|
|
|
|
netfs_get_read_subrequest(subreq);
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
if (subreq->source == NETFS_READ_FROM_CACHE)
|
|
netfs_read_from_cache(rreq, subreq, true);
|
|
else
|
|
netfs_read_from_server(rreq, subreq);
|
|
}
|
|
|
|
/*
|
|
* Resubmit any short or failed operations. Returns true if we got the rreq
|
|
* ref back.
|
|
*/
|
|
static bool netfs_rreq_perform_resubmissions(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
WARN_ON(in_interrupt());
|
|
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
|
|
|
|
/* We don't want terminating submissions trying to wake us up whilst
|
|
* we're still going through the list.
|
|
*/
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
|
|
__clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->error) {
|
|
if (subreq->source != NETFS_READ_FROM_CACHE)
|
|
break;
|
|
subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
|
|
subreq->error = 0;
|
|
netfs_stat(&netfs_n_rh_download_instead);
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
|
|
netfs_get_read_subrequest(subreq);
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
netfs_read_from_server(rreq, subreq);
|
|
} else if (test_bit(NETFS_SREQ_SHORT_READ, &subreq->flags)) {
|
|
netfs_rreq_short_read(rreq, subreq);
|
|
}
|
|
}
|
|
|
|
/* If we decrement nr_rd_ops to 0, the usage ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_rd_ops))
|
|
return true;
|
|
|
|
wake_up_var(&rreq->nr_rd_ops);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check to see if the data read is still valid.
|
|
*/
|
|
static void netfs_rreq_is_still_valid(struct netfs_read_request *rreq)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
|
|
if (!rreq->netfs_ops->is_still_valid ||
|
|
rreq->netfs_ops->is_still_valid(rreq))
|
|
return;
|
|
|
|
list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
subreq->error = -ESTALE;
|
|
__set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assess the state of a read request and decide what to do next.
|
|
*
|
|
* Note that we could be in an ordinary kernel thread, on a workqueue or in
|
|
* softirq context at this point. We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_assess(struct netfs_read_request *rreq, bool was_async)
|
|
{
|
|
trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
|
|
|
|
again:
|
|
netfs_rreq_is_still_valid(rreq);
|
|
|
|
if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
|
|
test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
|
|
if (netfs_rreq_perform_resubmissions(rreq))
|
|
goto again;
|
|
return;
|
|
}
|
|
|
|
netfs_rreq_unlock(rreq);
|
|
|
|
clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
|
|
wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
|
|
|
|
if (test_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags))
|
|
return netfs_rreq_write_to_cache(rreq);
|
|
|
|
netfs_rreq_completed(rreq, was_async);
|
|
}
|
|
|
|
static void netfs_rreq_work(struct work_struct *work)
|
|
{
|
|
struct netfs_read_request *rreq =
|
|
container_of(work, struct netfs_read_request, work);
|
|
netfs_rreq_assess(rreq, false);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of all outstanding I/O operations on a read request.
|
|
* We inherit a ref from the caller.
|
|
*/
|
|
static void netfs_rreq_terminated(struct netfs_read_request *rreq,
|
|
bool was_async)
|
|
{
|
|
if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
|
|
was_async) {
|
|
if (!queue_work(system_unbound_wq, &rreq->work))
|
|
BUG();
|
|
} else {
|
|
netfs_rreq_assess(rreq, was_async);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_subreq_terminated - Note the termination of an I/O operation.
|
|
* @subreq: The I/O request that has terminated.
|
|
* @transferred_or_error: The amount of data transferred or an error code.
|
|
* @was_async: The termination was asynchronous
|
|
*
|
|
* This tells the read helper that a contributory I/O operation has terminated,
|
|
* one way or another, and that it should integrate the results.
|
|
*
|
|
* The caller indicates in @transferred_or_error the outcome of the operation,
|
|
* supplying a positive value to indicate the number of bytes transferred, 0 to
|
|
* indicate a failure to transfer anything that should be retried or a negative
|
|
* error code. The helper will look after reissuing I/O operations as
|
|
* appropriate and writing downloaded data to the cache.
|
|
*
|
|
* If @was_async is true, the caller might be running in softirq or interrupt
|
|
* context and we can't sleep.
|
|
*/
|
|
void netfs_subreq_terminated(struct netfs_read_subrequest *subreq,
|
|
ssize_t transferred_or_error,
|
|
bool was_async)
|
|
{
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
int u;
|
|
|
|
_enter("[%u]{%llx,%lx},%zd",
|
|
subreq->debug_index, subreq->start, subreq->flags,
|
|
transferred_or_error);
|
|
|
|
switch (subreq->source) {
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_stat(&netfs_n_rh_read_done);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_stat(&netfs_n_rh_download_done);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (IS_ERR_VALUE(transferred_or_error)) {
|
|
subreq->error = transferred_or_error;
|
|
trace_netfs_failure(rreq, subreq, transferred_or_error,
|
|
netfs_fail_read);
|
|
goto failed;
|
|
}
|
|
|
|
if (WARN(transferred_or_error > subreq->len - subreq->transferred,
|
|
"Subreq overread: R%x[%x] %zd > %zu - %zu",
|
|
rreq->debug_id, subreq->debug_index,
|
|
transferred_or_error, subreq->len, subreq->transferred))
|
|
transferred_or_error = subreq->len - subreq->transferred;
|
|
|
|
subreq->error = 0;
|
|
subreq->transferred += transferred_or_error;
|
|
if (subreq->transferred < subreq->len)
|
|
goto incomplete;
|
|
|
|
complete:
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
if (test_bit(NETFS_SREQ_WRITE_TO_CACHE, &subreq->flags))
|
|
set_bit(NETFS_RREQ_WRITE_TO_CACHE, &rreq->flags);
|
|
|
|
out:
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
|
|
|
|
/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
|
|
u = atomic_dec_return(&rreq->nr_rd_ops);
|
|
if (u == 0)
|
|
netfs_rreq_terminated(rreq, was_async);
|
|
else if (u == 1)
|
|
wake_up_var(&rreq->nr_rd_ops);
|
|
|
|
netfs_put_subrequest(subreq, was_async);
|
|
return;
|
|
|
|
incomplete:
|
|
if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
|
|
netfs_clear_unread(subreq);
|
|
subreq->transferred = subreq->len;
|
|
goto complete;
|
|
}
|
|
|
|
if (transferred_or_error == 0) {
|
|
if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
|
|
subreq->error = -ENODATA;
|
|
goto failed;
|
|
}
|
|
} else {
|
|
__clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
|
|
}
|
|
|
|
__set_bit(NETFS_SREQ_SHORT_READ, &subreq->flags);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
goto out;
|
|
|
|
failed:
|
|
if (subreq->source == NETFS_READ_FROM_CACHE) {
|
|
netfs_stat(&netfs_n_rh_read_failed);
|
|
set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
|
|
} else {
|
|
netfs_stat(&netfs_n_rh_download_failed);
|
|
set_bit(NETFS_RREQ_FAILED, &rreq->flags);
|
|
rreq->error = subreq->error;
|
|
}
|
|
goto out;
|
|
}
|
|
EXPORT_SYMBOL(netfs_subreq_terminated);
|
|
|
|
static enum netfs_read_source netfs_cache_prepare_read(struct netfs_read_subrequest *subreq,
|
|
loff_t i_size)
|
|
{
|
|
struct netfs_read_request *rreq = subreq->rreq;
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops)
|
|
return cres->ops->prepare_read(subreq, i_size);
|
|
if (subreq->start >= rreq->i_size)
|
|
return NETFS_FILL_WITH_ZEROES;
|
|
return NETFS_DOWNLOAD_FROM_SERVER;
|
|
}
|
|
|
|
/*
|
|
* Work out what sort of subrequest the next one will be.
|
|
*/
|
|
static enum netfs_read_source
|
|
netfs_rreq_prepare_read(struct netfs_read_request *rreq,
|
|
struct netfs_read_subrequest *subreq)
|
|
{
|
|
enum netfs_read_source source;
|
|
|
|
_enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
|
|
|
|
source = netfs_cache_prepare_read(subreq, rreq->i_size);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto out;
|
|
|
|
if (source == NETFS_DOWNLOAD_FROM_SERVER) {
|
|
/* Call out to the netfs to let it shrink the request to fit
|
|
* its own I/O sizes and boundaries. If it shinks it here, it
|
|
* will be called again to make simultaneous calls; if it wants
|
|
* to make serial calls, it can indicate a short read and then
|
|
* we will call it again.
|
|
*/
|
|
if (subreq->len > rreq->i_size - subreq->start)
|
|
subreq->len = rreq->i_size - subreq->start;
|
|
|
|
if (rreq->netfs_ops->clamp_length &&
|
|
!rreq->netfs_ops->clamp_length(subreq)) {
|
|
source = NETFS_INVALID_READ;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (WARN_ON(subreq->len == 0))
|
|
source = NETFS_INVALID_READ;
|
|
|
|
out:
|
|
subreq->source = source;
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
|
|
return source;
|
|
}
|
|
|
|
/*
|
|
* Slice off a piece of a read request and submit an I/O request for it.
|
|
*/
|
|
static bool netfs_rreq_submit_slice(struct netfs_read_request *rreq,
|
|
unsigned int *_debug_index)
|
|
{
|
|
struct netfs_read_subrequest *subreq;
|
|
enum netfs_read_source source;
|
|
|
|
subreq = netfs_alloc_subrequest(rreq);
|
|
if (!subreq)
|
|
return false;
|
|
|
|
subreq->debug_index = (*_debug_index)++;
|
|
subreq->start = rreq->start + rreq->submitted;
|
|
subreq->len = rreq->len - rreq->submitted;
|
|
|
|
_debug("slice %llx,%zx,%zx", subreq->start, subreq->len, rreq->submitted);
|
|
list_add_tail(&subreq->rreq_link, &rreq->subrequests);
|
|
|
|
/* Call out to the cache to find out what it can do with the remaining
|
|
* subset. It tells us in subreq->flags what it decided should be done
|
|
* and adjusts subreq->len down if the subset crosses a cache boundary.
|
|
*
|
|
* Then when we hand the subset, it can choose to take a subset of that
|
|
* (the starts must coincide), in which case, we go around the loop
|
|
* again and ask it to download the next piece.
|
|
*/
|
|
source = netfs_rreq_prepare_read(rreq, subreq);
|
|
if (source == NETFS_INVALID_READ)
|
|
goto subreq_failed;
|
|
|
|
atomic_inc(&rreq->nr_rd_ops);
|
|
|
|
rreq->submitted += subreq->len;
|
|
|
|
trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
|
|
switch (source) {
|
|
case NETFS_FILL_WITH_ZEROES:
|
|
netfs_fill_with_zeroes(rreq, subreq);
|
|
break;
|
|
case NETFS_DOWNLOAD_FROM_SERVER:
|
|
netfs_read_from_server(rreq, subreq);
|
|
break;
|
|
case NETFS_READ_FROM_CACHE:
|
|
netfs_read_from_cache(rreq, subreq, false);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
subreq_failed:
|
|
rreq->error = subreq->error;
|
|
netfs_put_subrequest(subreq, false);
|
|
return false;
|
|
}
|
|
|
|
static void netfs_cache_expand_readahead(struct netfs_read_request *rreq,
|
|
loff_t *_start, size_t *_len, loff_t i_size)
|
|
{
|
|
struct netfs_cache_resources *cres = &rreq->cache_resources;
|
|
|
|
if (cres->ops && cres->ops->expand_readahead)
|
|
cres->ops->expand_readahead(cres, _start, _len, i_size);
|
|
}
|
|
|
|
static void netfs_rreq_expand(struct netfs_read_request *rreq,
|
|
struct readahead_control *ractl)
|
|
{
|
|
/* Give the cache a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
netfs_cache_expand_readahead(rreq, &rreq->start, &rreq->len, rreq->i_size);
|
|
|
|
/* Give the netfs a chance to change the request parameters. The
|
|
* resultant request must contain the original region.
|
|
*/
|
|
if (rreq->netfs_ops->expand_readahead)
|
|
rreq->netfs_ops->expand_readahead(rreq);
|
|
|
|
/* Expand the request if the cache wants it to start earlier. Note
|
|
* that the expansion may get further extended if the VM wishes to
|
|
* insert THPs and the preferred start and/or end wind up in the middle
|
|
* of THPs.
|
|
*
|
|
* If this is the case, however, the THP size should be an integer
|
|
* multiple of the cache granule size, so we get a whole number of
|
|
* granules to deal with.
|
|
*/
|
|
if (rreq->start != readahead_pos(ractl) ||
|
|
rreq->len != readahead_length(ractl)) {
|
|
readahead_expand(ractl, rreq->start, rreq->len);
|
|
rreq->start = readahead_pos(ractl);
|
|
rreq->len = readahead_length(ractl);
|
|
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_expanded);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netfs_readahead - Helper to manage a read request
|
|
* @ractl: The description of the readahead request
|
|
* @ops: The network filesystem's operations for the helper to use
|
|
* @netfs_priv: Private netfs data to be retained in the request
|
|
*
|
|
* Fulfil a readahead request by drawing data from the cache if possible, or
|
|
* the netfs if not. Space beyond the EOF is zero-filled. Multiple I/O
|
|
* requests from different sources will get munged together. If necessary, the
|
|
* readahead window can be expanded in either direction to a more convenient
|
|
* alighment for RPC efficiency or to make storage in the cache feasible.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory. It may also be passed a private token, which will
|
|
* be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
void netfs_readahead(struct readahead_control *ractl,
|
|
const struct netfs_read_request_ops *ops,
|
|
void *netfs_priv)
|
|
{
|
|
struct netfs_read_request *rreq;
|
|
struct page *page;
|
|
unsigned int debug_index = 0;
|
|
int ret;
|
|
|
|
_enter("%lx,%x", readahead_index(ractl), readahead_count(ractl));
|
|
|
|
if (readahead_count(ractl) == 0)
|
|
goto cleanup;
|
|
|
|
rreq = netfs_alloc_read_request(ops, netfs_priv, ractl->file);
|
|
if (!rreq)
|
|
goto cleanup;
|
|
rreq->mapping = ractl->mapping;
|
|
rreq->start = readahead_pos(ractl);
|
|
rreq->len = readahead_length(ractl);
|
|
|
|
if (ops->begin_cache_operation) {
|
|
ret = ops->begin_cache_operation(rreq);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto cleanup_free;
|
|
}
|
|
|
|
netfs_stat(&netfs_n_rh_readahead);
|
|
trace_netfs_read(rreq, readahead_pos(ractl), readahead_length(ractl),
|
|
netfs_read_trace_readahead);
|
|
|
|
netfs_rreq_expand(rreq, ractl);
|
|
|
|
atomic_set(&rreq->nr_rd_ops, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
/* Drop the refs on the pages here rather than in the cache or
|
|
* filesystem. The locks will be dropped in netfs_rreq_unlock().
|
|
*/
|
|
while ((page = readahead_page(ractl)))
|
|
put_page(page);
|
|
|
|
/* If we decrement nr_rd_ops to 0, the ref belongs to us. */
|
|
if (atomic_dec_and_test(&rreq->nr_rd_ops))
|
|
netfs_rreq_assess(rreq, false);
|
|
return;
|
|
|
|
cleanup_free:
|
|
netfs_put_read_request(rreq, false);
|
|
return;
|
|
cleanup:
|
|
if (netfs_priv)
|
|
ops->cleanup(ractl->mapping, netfs_priv);
|
|
return;
|
|
}
|
|
EXPORT_SYMBOL(netfs_readahead);
|
|
|
|
/**
|
|
* netfs_readpage - Helper to manage a readpage request
|
|
* @file: The file to read from
|
|
* @page: The page to read
|
|
* @ops: The network filesystem's operations for the helper to use
|
|
* @netfs_priv: Private netfs data to be retained in the request
|
|
*
|
|
* Fulfil a readpage request by drawing data from the cache if possible, or the
|
|
* netfs if not. Space beyond the EOF is zero-filled. Multiple I/O requests
|
|
* from different sources will get munged together.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory. It may also be passed a private token, which will
|
|
* be retained in rreq->netfs_priv and will be cleaned up by ops->cleanup().
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_readpage(struct file *file,
|
|
struct page *page,
|
|
const struct netfs_read_request_ops *ops,
|
|
void *netfs_priv)
|
|
{
|
|
struct netfs_read_request *rreq;
|
|
unsigned int debug_index = 0;
|
|
int ret;
|
|
|
|
_enter("%lx", page_index(page));
|
|
|
|
rreq = netfs_alloc_read_request(ops, netfs_priv, file);
|
|
if (!rreq) {
|
|
if (netfs_priv)
|
|
ops->cleanup(page_file_mapping(page), netfs_priv);
|
|
unlock_page(page);
|
|
return -ENOMEM;
|
|
}
|
|
rreq->mapping = page_file_mapping(page);
|
|
rreq->start = page_file_offset(page);
|
|
rreq->len = thp_size(page);
|
|
|
|
if (ops->begin_cache_operation) {
|
|
ret = ops->begin_cache_operation(rreq);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS) {
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
netfs_stat(&netfs_n_rh_readpage);
|
|
trace_netfs_read(rreq, rreq->start, rreq->len, netfs_read_trace_readpage);
|
|
|
|
netfs_get_read_request(rreq);
|
|
|
|
atomic_set(&rreq->nr_rd_ops, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
|
|
* the service code isn't punted off to a random thread pool to
|
|
* process.
|
|
*/
|
|
do {
|
|
wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
|
|
netfs_rreq_assess(rreq, false);
|
|
} while (test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags));
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_readpage);
|
|
ret = -EIO;
|
|
}
|
|
out:
|
|
netfs_put_read_request(rreq, false);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_readpage);
|
|
|
|
/**
|
|
* netfs_skip_page_read - prep a page for writing without reading first
|
|
* @page: page being prepared
|
|
* @pos: starting position for the write
|
|
* @len: length of write
|
|
*
|
|
* In some cases, write_begin doesn't need to read at all:
|
|
* - full page write
|
|
* - write that lies in a page that is completely beyond EOF
|
|
* - write that covers the the page from start to EOF or beyond it
|
|
*
|
|
* If any of these criteria are met, then zero out the unwritten parts
|
|
* of the page and return true. Otherwise, return false.
|
|
*/
|
|
static bool netfs_skip_page_read(struct page *page, loff_t pos, size_t len)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
loff_t i_size = i_size_read(inode);
|
|
size_t offset = offset_in_thp(page, pos);
|
|
|
|
/* Full page write */
|
|
if (offset == 0 && len >= thp_size(page))
|
|
return true;
|
|
|
|
/* pos beyond last page in the file */
|
|
if (pos - offset >= i_size)
|
|
goto zero_out;
|
|
|
|
/* Write that covers from the start of the page to EOF or beyond */
|
|
if (offset == 0 && (pos + len) >= i_size)
|
|
goto zero_out;
|
|
|
|
return false;
|
|
zero_out:
|
|
zero_user_segments(page, 0, offset, offset + len, thp_size(page));
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* netfs_write_begin - Helper to prepare for writing
|
|
* @file: The file to read from
|
|
* @mapping: The mapping to read from
|
|
* @pos: File position at which the write will begin
|
|
* @len: The length of the write (may extend beyond the end of the page chosen)
|
|
* @flags: AOP_* flags
|
|
* @_page: Where to put the resultant page
|
|
* @_fsdata: Place for the netfs to store a cookie
|
|
* @ops: The network filesystem's operations for the helper to use
|
|
* @netfs_priv: Private netfs data to be retained in the request
|
|
*
|
|
* Pre-read data for a write-begin request by drawing data from the cache if
|
|
* possible, or the netfs if not. Space beyond the EOF is zero-filled.
|
|
* Multiple I/O requests from different sources will get munged together. If
|
|
* necessary, the readahead window can be expanded in either direction to a
|
|
* more convenient alighment for RPC efficiency or to make storage in the cache
|
|
* feasible.
|
|
*
|
|
* The calling netfs must provide a table of operations, only one of which,
|
|
* issue_op, is mandatory.
|
|
*
|
|
* The check_write_begin() operation can be provided to check for and flush
|
|
* conflicting writes once the page is grabbed and locked. It is passed a
|
|
* pointer to the fsdata cookie that gets returned to the VM to be passed to
|
|
* write_end. It is permitted to sleep. It should return 0 if the request
|
|
* should go ahead; unlock the page and return -EAGAIN to cause the page to be
|
|
* regot; or return an error.
|
|
*
|
|
* This is usable whether or not caching is enabled.
|
|
*/
|
|
int netfs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned int len, unsigned int flags,
|
|
struct page **_page, void **_fsdata,
|
|
const struct netfs_read_request_ops *ops,
|
|
void *netfs_priv)
|
|
{
|
|
struct netfs_read_request *rreq;
|
|
struct page *page, *xpage;
|
|
struct inode *inode = file_inode(file);
|
|
unsigned int debug_index = 0;
|
|
pgoff_t index = pos >> PAGE_SHIFT;
|
|
int ret;
|
|
|
|
DEFINE_READAHEAD(ractl, file, NULL, mapping, index);
|
|
|
|
retry:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
if (ops->check_write_begin) {
|
|
/* Allow the netfs (eg. ceph) to flush conflicts. */
|
|
ret = ops->check_write_begin(file, pos, len, page, _fsdata);
|
|
if (ret < 0) {
|
|
trace_netfs_failure(NULL, NULL, ret, netfs_fail_check_write_begin);
|
|
if (ret == -EAGAIN)
|
|
goto retry;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (PageUptodate(page))
|
|
goto have_page;
|
|
|
|
/* If the page is beyond the EOF, we want to clear it - unless it's
|
|
* within the cache granule containing the EOF, in which case we need
|
|
* to preload the granule.
|
|
*/
|
|
if (!ops->is_cache_enabled(inode) &&
|
|
netfs_skip_page_read(page, pos, len)) {
|
|
netfs_stat(&netfs_n_rh_write_zskip);
|
|
goto have_page_no_wait;
|
|
}
|
|
|
|
ret = -ENOMEM;
|
|
rreq = netfs_alloc_read_request(ops, netfs_priv, file);
|
|
if (!rreq)
|
|
goto error;
|
|
rreq->mapping = page->mapping;
|
|
rreq->start = page_offset(page);
|
|
rreq->len = thp_size(page);
|
|
rreq->no_unlock_page = page->index;
|
|
__set_bit(NETFS_RREQ_NO_UNLOCK_PAGE, &rreq->flags);
|
|
netfs_priv = NULL;
|
|
|
|
if (ops->begin_cache_operation) {
|
|
ret = ops->begin_cache_operation(rreq);
|
|
if (ret == -ENOMEM || ret == -EINTR || ret == -ERESTARTSYS)
|
|
goto error_put;
|
|
}
|
|
|
|
netfs_stat(&netfs_n_rh_write_begin);
|
|
trace_netfs_read(rreq, pos, len, netfs_read_trace_write_begin);
|
|
|
|
/* Expand the request to meet caching requirements and download
|
|
* preferences.
|
|
*/
|
|
ractl._nr_pages = thp_nr_pages(page);
|
|
netfs_rreq_expand(rreq, &ractl);
|
|
netfs_get_read_request(rreq);
|
|
|
|
/* We hold the page locks, so we can drop the references */
|
|
while ((xpage = readahead_page(&ractl)))
|
|
if (xpage != page)
|
|
put_page(xpage);
|
|
|
|
atomic_set(&rreq->nr_rd_ops, 1);
|
|
do {
|
|
if (!netfs_rreq_submit_slice(rreq, &debug_index))
|
|
break;
|
|
|
|
} while (rreq->submitted < rreq->len);
|
|
|
|
/* Keep nr_rd_ops incremented so that the ref always belongs to us, and
|
|
* the service code isn't punted off to a random thread pool to
|
|
* process.
|
|
*/
|
|
for (;;) {
|
|
wait_var_event(&rreq->nr_rd_ops, atomic_read(&rreq->nr_rd_ops) == 1);
|
|
netfs_rreq_assess(rreq, false);
|
|
if (!test_bit(NETFS_RREQ_IN_PROGRESS, &rreq->flags))
|
|
break;
|
|
cond_resched();
|
|
}
|
|
|
|
ret = rreq->error;
|
|
if (ret == 0 && rreq->submitted < rreq->len) {
|
|
trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_write_begin);
|
|
ret = -EIO;
|
|
}
|
|
netfs_put_read_request(rreq, false);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
have_page:
|
|
ret = wait_on_page_fscache_killable(page);
|
|
if (ret < 0)
|
|
goto error;
|
|
have_page_no_wait:
|
|
if (netfs_priv)
|
|
ops->cleanup(mapping, netfs_priv);
|
|
*_page = page;
|
|
_leave(" = 0");
|
|
return 0;
|
|
|
|
error_put:
|
|
netfs_put_read_request(rreq, false);
|
|
error:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
if (netfs_priv)
|
|
ops->cleanup(mapping, netfs_priv);
|
|
_leave(" = %d", ret);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(netfs_write_begin);
|