WSL2-Linux-Kernel/drivers/rtc/rtc-abx80x.c

934 строки
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* A driver for the I2C members of the Abracon AB x8xx RTC family,
* and compatible: AB 1805 and AB 0805
*
* Copyright 2014-2015 Macq S.A.
*
* Author: Philippe De Muyter <phdm@macqel.be>
* Author: Alexandre Belloni <alexandre.belloni@bootlin.com>
*
*/
#include <linux/bcd.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/rtc.h>
#include <linux/watchdog.h>
#define ABX8XX_REG_HTH 0x00
#define ABX8XX_REG_SC 0x01
#define ABX8XX_REG_MN 0x02
#define ABX8XX_REG_HR 0x03
#define ABX8XX_REG_DA 0x04
#define ABX8XX_REG_MO 0x05
#define ABX8XX_REG_YR 0x06
#define ABX8XX_REG_WD 0x07
#define ABX8XX_REG_AHTH 0x08
#define ABX8XX_REG_ASC 0x09
#define ABX8XX_REG_AMN 0x0a
#define ABX8XX_REG_AHR 0x0b
#define ABX8XX_REG_ADA 0x0c
#define ABX8XX_REG_AMO 0x0d
#define ABX8XX_REG_AWD 0x0e
#define ABX8XX_REG_STATUS 0x0f
#define ABX8XX_STATUS_AF BIT(2)
#define ABX8XX_STATUS_BLF BIT(4)
#define ABX8XX_STATUS_WDT BIT(6)
#define ABX8XX_REG_CTRL1 0x10
#define ABX8XX_CTRL_WRITE BIT(0)
#define ABX8XX_CTRL_ARST BIT(2)
#define ABX8XX_CTRL_12_24 BIT(6)
#define ABX8XX_REG_CTRL2 0x11
#define ABX8XX_CTRL2_RSVD BIT(5)
#define ABX8XX_REG_IRQ 0x12
#define ABX8XX_IRQ_AIE BIT(2)
#define ABX8XX_IRQ_IM_1_4 (0x3 << 5)
#define ABX8XX_REG_CD_TIMER_CTL 0x18
#define ABX8XX_REG_OSC 0x1c
#define ABX8XX_OSC_FOS BIT(3)
#define ABX8XX_OSC_BOS BIT(4)
#define ABX8XX_OSC_ACAL_512 BIT(5)
#define ABX8XX_OSC_ACAL_1024 BIT(6)
#define ABX8XX_OSC_OSEL BIT(7)
#define ABX8XX_REG_OSS 0x1d
#define ABX8XX_OSS_OF BIT(1)
#define ABX8XX_OSS_OMODE BIT(4)
#define ABX8XX_REG_WDT 0x1b
#define ABX8XX_WDT_WDS BIT(7)
#define ABX8XX_WDT_BMB_MASK 0x7c
#define ABX8XX_WDT_BMB_SHIFT 2
#define ABX8XX_WDT_MAX_TIME (ABX8XX_WDT_BMB_MASK >> ABX8XX_WDT_BMB_SHIFT)
#define ABX8XX_WDT_WRB_MASK 0x03
#define ABX8XX_WDT_WRB_1HZ 0x02
#define ABX8XX_REG_CFG_KEY 0x1f
#define ABX8XX_CFG_KEY_OSC 0xa1
#define ABX8XX_CFG_KEY_MISC 0x9d
#define ABX8XX_REG_ID0 0x28
#define ABX8XX_REG_OUT_CTRL 0x30
#define ABX8XX_OUT_CTRL_EXDS BIT(4)
#define ABX8XX_REG_TRICKLE 0x20
#define ABX8XX_TRICKLE_CHARGE_ENABLE 0xa0
#define ABX8XX_TRICKLE_STANDARD_DIODE 0x8
#define ABX8XX_TRICKLE_SCHOTTKY_DIODE 0x4
static u8 trickle_resistors[] = {0, 3, 6, 11};
enum abx80x_chip {AB0801, AB0803, AB0804, AB0805,
AB1801, AB1803, AB1804, AB1805, RV1805, ABX80X};
struct abx80x_cap {
u16 pn;
bool has_tc;
bool has_wdog;
};
static struct abx80x_cap abx80x_caps[] = {
[AB0801] = {.pn = 0x0801},
[AB0803] = {.pn = 0x0803},
[AB0804] = {.pn = 0x0804, .has_tc = true, .has_wdog = true},
[AB0805] = {.pn = 0x0805, .has_tc = true, .has_wdog = true},
[AB1801] = {.pn = 0x1801},
[AB1803] = {.pn = 0x1803},
[AB1804] = {.pn = 0x1804, .has_tc = true, .has_wdog = true},
[AB1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
[RV1805] = {.pn = 0x1805, .has_tc = true, .has_wdog = true},
[ABX80X] = {.pn = 0}
};
struct abx80x_priv {
struct rtc_device *rtc;
struct i2c_client *client;
struct watchdog_device wdog;
};
static int abx80x_is_rc_mode(struct i2c_client *client)
{
int flags = 0;
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
if (flags < 0) {
dev_err(&client->dev,
"Failed to read autocalibration attribute\n");
return flags;
}
return (flags & ABX8XX_OSS_OMODE) ? 1 : 0;
}
static int abx80x_enable_trickle_charger(struct i2c_client *client,
u8 trickle_cfg)
{
int err;
/*
* Write the configuration key register to enable access to the Trickle
* register
*/
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
ABX8XX_CFG_KEY_MISC);
if (err < 0) {
dev_err(&client->dev, "Unable to write configuration key\n");
return -EIO;
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_TRICKLE,
ABX8XX_TRICKLE_CHARGE_ENABLE |
trickle_cfg);
if (err < 0) {
dev_err(&client->dev, "Unable to write trickle register\n");
return -EIO;
}
return 0;
}
static int abx80x_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[8];
int err, flags, rc_mode = 0;
/* Read the Oscillator Failure only in XT mode */
rc_mode = abx80x_is_rc_mode(client);
if (rc_mode < 0)
return rc_mode;
if (!rc_mode) {
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
if (flags < 0)
return flags;
if (flags & ABX8XX_OSS_OF) {
dev_err(dev, "Oscillator failure, data is invalid.\n");
return -EINVAL;
}
}
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_HTH,
sizeof(buf), buf);
if (err < 0) {
dev_err(&client->dev, "Unable to read date\n");
return -EIO;
}
tm->tm_sec = bcd2bin(buf[ABX8XX_REG_SC] & 0x7F);
tm->tm_min = bcd2bin(buf[ABX8XX_REG_MN] & 0x7F);
tm->tm_hour = bcd2bin(buf[ABX8XX_REG_HR] & 0x3F);
tm->tm_wday = buf[ABX8XX_REG_WD] & 0x7;
tm->tm_mday = bcd2bin(buf[ABX8XX_REG_DA] & 0x3F);
tm->tm_mon = bcd2bin(buf[ABX8XX_REG_MO] & 0x1F) - 1;
tm->tm_year = bcd2bin(buf[ABX8XX_REG_YR]) + 100;
return 0;
}
static int abx80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[8];
int err, flags;
if (tm->tm_year < 100)
return -EINVAL;
buf[ABX8XX_REG_HTH] = 0;
buf[ABX8XX_REG_SC] = bin2bcd(tm->tm_sec);
buf[ABX8XX_REG_MN] = bin2bcd(tm->tm_min);
buf[ABX8XX_REG_HR] = bin2bcd(tm->tm_hour);
buf[ABX8XX_REG_DA] = bin2bcd(tm->tm_mday);
buf[ABX8XX_REG_MO] = bin2bcd(tm->tm_mon + 1);
buf[ABX8XX_REG_YR] = bin2bcd(tm->tm_year - 100);
buf[ABX8XX_REG_WD] = tm->tm_wday;
err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_HTH,
sizeof(buf), buf);
if (err < 0) {
dev_err(&client->dev, "Unable to write to date registers\n");
return -EIO;
}
/* Clear the OF bit of Oscillator Status Register */
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSS);
if (flags < 0)
return flags;
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSS,
flags & ~ABX8XX_OSS_OF);
if (err < 0) {
dev_err(&client->dev, "Unable to write oscillator status register\n");
return err;
}
return 0;
}
static irqreturn_t abx80x_handle_irq(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
struct abx80x_priv *priv = i2c_get_clientdata(client);
struct rtc_device *rtc = priv->rtc;
int status;
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return IRQ_NONE;
if (status & ABX8XX_STATUS_AF)
rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
/*
* It is unclear if we'll get an interrupt before the external
* reset kicks in.
*/
if (status & ABX8XX_STATUS_WDT)
dev_alert(&client->dev, "watchdog timeout interrupt.\n");
i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
return IRQ_HANDLED;
}
static int abx80x_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[7];
int irq_mask, err;
if (client->irq <= 0)
return -EINVAL;
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ASC,
sizeof(buf), buf);
if (err)
return err;
irq_mask = i2c_smbus_read_byte_data(client, ABX8XX_REG_IRQ);
if (irq_mask < 0)
return irq_mask;
t->time.tm_sec = bcd2bin(buf[0] & 0x7F);
t->time.tm_min = bcd2bin(buf[1] & 0x7F);
t->time.tm_hour = bcd2bin(buf[2] & 0x3F);
t->time.tm_mday = bcd2bin(buf[3] & 0x3F);
t->time.tm_mon = bcd2bin(buf[4] & 0x1F) - 1;
t->time.tm_wday = buf[5] & 0x7;
t->enabled = !!(irq_mask & ABX8XX_IRQ_AIE);
t->pending = (buf[6] & ABX8XX_STATUS_AF) && t->enabled;
return err;
}
static int abx80x_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
u8 alarm[6];
int err;
if (client->irq <= 0)
return -EINVAL;
alarm[0] = 0x0;
alarm[1] = bin2bcd(t->time.tm_sec);
alarm[2] = bin2bcd(t->time.tm_min);
alarm[3] = bin2bcd(t->time.tm_hour);
alarm[4] = bin2bcd(t->time.tm_mday);
alarm[5] = bin2bcd(t->time.tm_mon + 1);
err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_AHTH,
sizeof(alarm), alarm);
if (err < 0) {
dev_err(&client->dev, "Unable to write alarm registers\n");
return -EIO;
}
if (t->enabled) {
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
if (err)
return err;
}
return 0;
}
static int abx80x_rtc_set_autocalibration(struct device *dev,
int autocalibration)
{
struct i2c_client *client = to_i2c_client(dev);
int retval, flags = 0;
if ((autocalibration != 0) && (autocalibration != 1024) &&
(autocalibration != 512)) {
dev_err(dev, "autocalibration value outside permitted range\n");
return -EINVAL;
}
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
if (flags < 0)
return flags;
if (autocalibration == 0) {
flags &= ~(ABX8XX_OSC_ACAL_512 | ABX8XX_OSC_ACAL_1024);
} else if (autocalibration == 1024) {
/* 1024 autocalibration is 0x10 */
flags |= ABX8XX_OSC_ACAL_1024;
flags &= ~(ABX8XX_OSC_ACAL_512);
} else {
/* 512 autocalibration is 0x11 */
flags |= (ABX8XX_OSC_ACAL_1024 | ABX8XX_OSC_ACAL_512);
}
/* Unlock write access to Oscillator Control Register */
retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
ABX8XX_CFG_KEY_OSC);
if (retval < 0) {
dev_err(dev, "Failed to write CONFIG_KEY register\n");
return retval;
}
retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSC, flags);
return retval;
}
static int abx80x_rtc_get_autocalibration(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
int flags = 0, autocalibration;
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
if (flags < 0)
return flags;
if (flags & ABX8XX_OSC_ACAL_512)
autocalibration = 512;
else if (flags & ABX8XX_OSC_ACAL_1024)
autocalibration = 1024;
else
autocalibration = 0;
return autocalibration;
}
static ssize_t autocalibration_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int retval;
unsigned long autocalibration = 0;
retval = kstrtoul(buf, 10, &autocalibration);
if (retval < 0) {
dev_err(dev, "Failed to store RTC autocalibration attribute\n");
return -EINVAL;
}
retval = abx80x_rtc_set_autocalibration(dev->parent, autocalibration);
return retval ? retval : count;
}
static ssize_t autocalibration_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int autocalibration = 0;
autocalibration = abx80x_rtc_get_autocalibration(dev->parent);
if (autocalibration < 0) {
dev_err(dev, "Failed to read RTC autocalibration\n");
sprintf(buf, "0\n");
return autocalibration;
}
return sprintf(buf, "%d\n", autocalibration);
}
static DEVICE_ATTR_RW(autocalibration);
static ssize_t oscillator_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev->parent);
int retval, flags, rc_mode = 0;
if (strncmp(buf, "rc", 2) == 0) {
rc_mode = 1;
} else if (strncmp(buf, "xtal", 4) == 0) {
rc_mode = 0;
} else {
dev_err(dev, "Oscillator selection value outside permitted ones\n");
return -EINVAL;
}
flags = i2c_smbus_read_byte_data(client, ABX8XX_REG_OSC);
if (flags < 0)
return flags;
if (rc_mode == 0)
flags &= ~(ABX8XX_OSC_OSEL);
else
flags |= (ABX8XX_OSC_OSEL);
/* Unlock write access on Oscillator Control register */
retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
ABX8XX_CFG_KEY_OSC);
if (retval < 0) {
dev_err(dev, "Failed to write CONFIG_KEY register\n");
return retval;
}
retval = i2c_smbus_write_byte_data(client, ABX8XX_REG_OSC, flags);
if (retval < 0) {
dev_err(dev, "Failed to write Oscillator Control register\n");
return retval;
}
return retval ? retval : count;
}
static ssize_t oscillator_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int rc_mode = 0;
struct i2c_client *client = to_i2c_client(dev->parent);
rc_mode = abx80x_is_rc_mode(client);
if (rc_mode < 0) {
dev_err(dev, "Failed to read RTC oscillator selection\n");
sprintf(buf, "\n");
return rc_mode;
}
if (rc_mode)
return sprintf(buf, "rc\n");
else
return sprintf(buf, "xtal\n");
}
static DEVICE_ATTR_RW(oscillator);
static struct attribute *rtc_calib_attrs[] = {
&dev_attr_autocalibration.attr,
&dev_attr_oscillator.attr,
NULL,
};
static const struct attribute_group rtc_calib_attr_group = {
.attrs = rtc_calib_attrs,
};
static int abx80x_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct i2c_client *client = to_i2c_client(dev);
int err;
if (enabled)
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
else
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
ABX8XX_IRQ_IM_1_4);
return err;
}
static int abx80x_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
struct i2c_client *client = to_i2c_client(dev);
int status, tmp;
switch (cmd) {
case RTC_VL_READ:
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return status;
tmp = status & ABX8XX_STATUS_BLF ? RTC_VL_BACKUP_LOW : 0;
return put_user(tmp, (unsigned int __user *)arg);
case RTC_VL_CLR:
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return status;
status &= ~ABX8XX_STATUS_BLF;
tmp = i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
if (tmp < 0)
return tmp;
return 0;
default:
return -ENOIOCTLCMD;
}
}
static const struct rtc_class_ops abx80x_rtc_ops = {
.read_time = abx80x_rtc_read_time,
.set_time = abx80x_rtc_set_time,
.read_alarm = abx80x_read_alarm,
.set_alarm = abx80x_set_alarm,
.alarm_irq_enable = abx80x_alarm_irq_enable,
.ioctl = abx80x_ioctl,
};
static int abx80x_dt_trickle_cfg(struct i2c_client *client)
{
struct device_node *np = client->dev.of_node;
const char *diode;
int trickle_cfg = 0;
int i, ret;
u32 tmp;
ret = of_property_read_string(np, "abracon,tc-diode", &diode);
if (ret)
return ret;
if (!strcmp(diode, "standard")) {
trickle_cfg |= ABX8XX_TRICKLE_STANDARD_DIODE;
} else if (!strcmp(diode, "schottky")) {
trickle_cfg |= ABX8XX_TRICKLE_SCHOTTKY_DIODE;
} else {
dev_dbg(&client->dev, "Invalid tc-diode value: %s\n", diode);
return -EINVAL;
}
ret = of_property_read_u32(np, "abracon,tc-resistor", &tmp);
if (ret)
return ret;
for (i = 0; i < sizeof(trickle_resistors); i++)
if (trickle_resistors[i] == tmp)
break;
if (i == sizeof(trickle_resistors)) {
dev_dbg(&client->dev, "Invalid tc-resistor value: %u\n", tmp);
return -EINVAL;
}
return (trickle_cfg | i);
}
#ifdef CONFIG_WATCHDOG
static inline u8 timeout_bits(unsigned int timeout)
{
return ((timeout << ABX8XX_WDT_BMB_SHIFT) & ABX8XX_WDT_BMB_MASK) |
ABX8XX_WDT_WRB_1HZ;
}
static int __abx80x_wdog_set_timeout(struct watchdog_device *wdog,
unsigned int timeout)
{
struct abx80x_priv *priv = watchdog_get_drvdata(wdog);
u8 val = ABX8XX_WDT_WDS | timeout_bits(timeout);
/*
* Writing any timeout to the WDT register resets the watchdog timer.
* Writing 0 disables it.
*/
return i2c_smbus_write_byte_data(priv->client, ABX8XX_REG_WDT, val);
}
static int abx80x_wdog_set_timeout(struct watchdog_device *wdog,
unsigned int new_timeout)
{
int err = 0;
if (watchdog_hw_running(wdog))
err = __abx80x_wdog_set_timeout(wdog, new_timeout);
if (err == 0)
wdog->timeout = new_timeout;
return err;
}
static int abx80x_wdog_ping(struct watchdog_device *wdog)
{
return __abx80x_wdog_set_timeout(wdog, wdog->timeout);
}
static int abx80x_wdog_start(struct watchdog_device *wdog)
{
return __abx80x_wdog_set_timeout(wdog, wdog->timeout);
}
static int abx80x_wdog_stop(struct watchdog_device *wdog)
{
return __abx80x_wdog_set_timeout(wdog, 0);
}
static const struct watchdog_info abx80x_wdog_info = {
.identity = "abx80x watchdog",
.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE,
};
static const struct watchdog_ops abx80x_wdog_ops = {
.owner = THIS_MODULE,
.start = abx80x_wdog_start,
.stop = abx80x_wdog_stop,
.ping = abx80x_wdog_ping,
.set_timeout = abx80x_wdog_set_timeout,
};
static int abx80x_setup_watchdog(struct abx80x_priv *priv)
{
priv->wdog.parent = &priv->client->dev;
priv->wdog.ops = &abx80x_wdog_ops;
priv->wdog.info = &abx80x_wdog_info;
priv->wdog.min_timeout = 1;
priv->wdog.max_timeout = ABX8XX_WDT_MAX_TIME;
priv->wdog.timeout = ABX8XX_WDT_MAX_TIME;
watchdog_set_drvdata(&priv->wdog, priv);
return devm_watchdog_register_device(&priv->client->dev, &priv->wdog);
}
#else
static int abx80x_setup_watchdog(struct abx80x_priv *priv)
{
return 0;
}
#endif
static int abx80x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device_node *np = client->dev.of_node;
struct abx80x_priv *priv;
int i, data, err, trickle_cfg = -EINVAL;
char buf[7];
unsigned int part = id->driver_data;
unsigned int partnumber;
unsigned int majrev, minrev;
unsigned int lot;
unsigned int wafer;
unsigned int uid;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
return -ENODEV;
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ID0,
sizeof(buf), buf);
if (err < 0) {
dev_err(&client->dev, "Unable to read partnumber\n");
return -EIO;
}
partnumber = (buf[0] << 8) | buf[1];
majrev = buf[2] >> 3;
minrev = buf[2] & 0x7;
lot = ((buf[4] & 0x80) << 2) | ((buf[6] & 0x80) << 1) | buf[3];
uid = ((buf[4] & 0x7f) << 8) | buf[5];
wafer = (buf[6] & 0x7c) >> 2;
dev_info(&client->dev, "model %04x, revision %u.%u, lot %x, wafer %x, uid %x\n",
partnumber, majrev, minrev, lot, wafer, uid);
data = i2c_smbus_read_byte_data(client, ABX8XX_REG_CTRL1);
if (data < 0) {
dev_err(&client->dev, "Unable to read control register\n");
return -EIO;
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL1,
((data & ~(ABX8XX_CTRL_12_24 |
ABX8XX_CTRL_ARST)) |
ABX8XX_CTRL_WRITE));
if (err < 0) {
dev_err(&client->dev, "Unable to write control register\n");
return -EIO;
}
/* Configure RV1805 specifics */
if (part == RV1805) {
/*
* Avoid accidentally entering test mode. This can happen
* on the RV1805 in case the reserved bit 5 in control2
* register is set. RV-1805-C3 datasheet indicates that
* the bit should be cleared in section 11h - Control2.
*/
data = i2c_smbus_read_byte_data(client, ABX8XX_REG_CTRL2);
if (data < 0) {
dev_err(&client->dev,
"Unable to read control2 register\n");
return -EIO;
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL2,
data & ~ABX8XX_CTRL2_RSVD);
if (err < 0) {
dev_err(&client->dev,
"Unable to write control2 register\n");
return -EIO;
}
/*
* Avoid extra power leakage. The RV1805 uses smaller
* 10pin package and the EXTI input is not present.
* Disable it to avoid leakage.
*/
data = i2c_smbus_read_byte_data(client, ABX8XX_REG_OUT_CTRL);
if (data < 0) {
dev_err(&client->dev,
"Unable to read output control register\n");
return -EIO;
}
/*
* Write the configuration key register to enable access to
* the config2 register
*/
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CFG_KEY,
ABX8XX_CFG_KEY_MISC);
if (err < 0) {
dev_err(&client->dev,
"Unable to write configuration key\n");
return -EIO;
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_OUT_CTRL,
data | ABX8XX_OUT_CTRL_EXDS);
if (err < 0) {
dev_err(&client->dev,
"Unable to write output control register\n");
return -EIO;
}
}
/* part autodetection */
if (part == ABX80X) {
for (i = 0; abx80x_caps[i].pn; i++)
if (partnumber == abx80x_caps[i].pn)
break;
if (abx80x_caps[i].pn == 0) {
dev_err(&client->dev, "Unknown part: %04x\n",
partnumber);
return -EINVAL;
}
part = i;
}
if (partnumber != abx80x_caps[part].pn) {
dev_err(&client->dev, "partnumber mismatch %04x != %04x\n",
partnumber, abx80x_caps[part].pn);
return -EINVAL;
}
if (np && abx80x_caps[part].has_tc)
trickle_cfg = abx80x_dt_trickle_cfg(client);
if (trickle_cfg > 0) {
dev_info(&client->dev, "Enabling trickle charger: %02x\n",
trickle_cfg);
abx80x_enable_trickle_charger(client, trickle_cfg);
}
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CD_TIMER_CTL,
BIT(2));
if (err)
return err;
priv = devm_kzalloc(&client->dev, sizeof(*priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
priv->rtc = devm_rtc_allocate_device(&client->dev);
if (IS_ERR(priv->rtc))
return PTR_ERR(priv->rtc);
priv->rtc->ops = &abx80x_rtc_ops;
priv->client = client;
i2c_set_clientdata(client, priv);
if (abx80x_caps[part].has_wdog) {
err = abx80x_setup_watchdog(priv);
if (err)
return err;
}
if (client->irq > 0) {
dev_info(&client->dev, "IRQ %d supplied\n", client->irq);
err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
abx80x_handle_irq,
IRQF_SHARED | IRQF_ONESHOT,
"abx8xx",
client);
if (err) {
dev_err(&client->dev, "unable to request IRQ, alarms disabled\n");
client->irq = 0;
}
}
err = rtc_add_group(priv->rtc, &rtc_calib_attr_group);
if (err) {
dev_err(&client->dev, "Failed to create sysfs group: %d\n",
err);
return err;
}
return rtc_register_device(priv->rtc);
}
static const struct i2c_device_id abx80x_id[] = {
{ "abx80x", ABX80X },
{ "ab0801", AB0801 },
{ "ab0803", AB0803 },
{ "ab0804", AB0804 },
{ "ab0805", AB0805 },
{ "ab1801", AB1801 },
{ "ab1803", AB1803 },
{ "ab1804", AB1804 },
{ "ab1805", AB1805 },
{ "rv1805", RV1805 },
{ }
};
MODULE_DEVICE_TABLE(i2c, abx80x_id);
#ifdef CONFIG_OF
static const struct of_device_id abx80x_of_match[] = {
{
.compatible = "abracon,abx80x",
.data = (void *)ABX80X
},
{
.compatible = "abracon,ab0801",
.data = (void *)AB0801
},
{
.compatible = "abracon,ab0803",
.data = (void *)AB0803
},
{
.compatible = "abracon,ab0804",
.data = (void *)AB0804
},
{
.compatible = "abracon,ab0805",
.data = (void *)AB0805
},
{
.compatible = "abracon,ab1801",
.data = (void *)AB1801
},
{
.compatible = "abracon,ab1803",
.data = (void *)AB1803
},
{
.compatible = "abracon,ab1804",
.data = (void *)AB1804
},
{
.compatible = "abracon,ab1805",
.data = (void *)AB1805
},
{
.compatible = "microcrystal,rv1805",
.data = (void *)RV1805
},
{ }
};
MODULE_DEVICE_TABLE(of, abx80x_of_match);
#endif
static struct i2c_driver abx80x_driver = {
.driver = {
.name = "rtc-abx80x",
.of_match_table = of_match_ptr(abx80x_of_match),
},
.probe = abx80x_probe,
.id_table = abx80x_id,
};
module_i2c_driver(abx80x_driver);
MODULE_AUTHOR("Philippe De Muyter <phdm@macqel.be>");
MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@bootlin.com>");
MODULE_DESCRIPTION("Abracon ABX80X RTC driver");
MODULE_LICENSE("GPL v2");